示例#1
0
/**
 * Return the smallest type that both t1 and t2 can be cast to without losing
 * information.
 *
 * e.g.
 *
 * join_types(unsignedbv_typet(32), unsignedbv_typet(16))=unsignedbv_typet(32)
 * join_types(signedbv_typet(16), unsignedbv_typet(16))=signedbv_typet(17)
 * join_types(signedbv_typet(32), signedbv_typet(32))=signedbv_typet(32)
 */
typet join_types(const typet &t1, const typet &t2)
{
  // Handle the simple case first...
  if(t1==t2)
  {
    return t1;
  }

  // OK, they're not the same type.  Are they both bitvectors?
  if(is_bitvector(t1) && is_bitvector(t2))
  {
    // They are.  That makes things easy!  There are three cases to consider:
    // both types are unsigned, both types are signed or there's one of each.

    bitvector_typet b1=to_bitvector_type(t1);
    bitvector_typet b2=to_bitvector_type(t2);

    if(is_unsigned(b1) && is_unsigned(b2))
    {
      // We just need to take the max of their widths.
      std::size_t width=std::max(b1.get_width(), b2.get_width());
      return unsignedbv_typet(width);
    }
    else if(is_signed(b1) && is_signed(b2))
    {
      // Again, just need to take the max of the widths.
      std::size_t width=std::max(b1.get_width(), b2.get_width());
      return signedbv_typet(width);
    }
    else
    {
      // This is the (slightly) tricky case.  If we have a signed and an
      // unsigned type, we're going to return a signed type.  And to cast
      // an unsigned type to a signed type, we need the signed type to be
      // at least one bit wider than the unsigned type we're casting from.
      std::size_t signed_width=is_signed(t1) ? b1.get_width() :
                                                 b2.get_width();
      std::size_t unsigned_width=is_signed(t1) ? b2.get_width() :
                                                   b1.get_width();
      // unsigned_width++;

      std::size_t width=std::max(signed_width, unsigned_width);

      return signedbv_typet(width);
    }
  }

  std::cerr << "Tried to join types: "
            << t1.pretty() << " and " << t2.pretty()
            << '\n';
  assert(!"Couldn't join types");
}
示例#2
0
bool polynomial_acceleratort::fit_polynomial_sliced(goto_programt::instructionst &body,
                                                    exprt &var,
                                                    expr_sett &influence,
                                                    polynomialt &polynomial) {
  // These are the variables that var depends on with respect to the body.
  std::vector<expr_listt> parameters;
  std::set<std::pair<expr_listt, exprt> > coefficients;
  expr_listt exprs;
  scratch_programt program(symbol_table);
  exprt overflow_var =
    utils.fresh_symbol("polynomial::overflow", bool_typet()).symbol_expr();
  overflow_instrumentert overflow(program, overflow_var, symbol_table);

#ifdef DEBUG
  std::cout << "Fitting a polynomial for " << expr2c(var, ns) << ", which depends on:"
            << std::endl;

  for (expr_sett::iterator it = influence.begin();
       it != influence.end();
       ++it) {
    std::cout << expr2c(*it, ns) << std::endl;
  }
#endif

  for (expr_sett::iterator it = influence.begin();
       it != influence.end();
       ++it) {
    if (it->id() == ID_index ||
        it->id() == ID_dereference) {
      // Hack: don't accelerate variables that depend on arrays...
      return false;
    }

    exprs.clear();

    exprs.push_back(*it);
    parameters.push_back(exprs);

    exprs.push_back(loop_counter);
    parameters.push_back(exprs);
  }

  // N
  exprs.clear();
  exprs.push_back(loop_counter);
  parameters.push_back(exprs);

  // N^2
  exprs.push_back(loop_counter);
  //parameters.push_back(exprs);

  // Constant
  exprs.clear();
  parameters.push_back(exprs);

  if (!is_bitvector(var.type())) {
    // We don't really know how to accelerate non-bitvectors anyway...
    return false;
  }

  unsigned width=to_bitvector_type(var.type()).get_width();
  if(var.type().id()==ID_pointer)
    width=config.ansi_c.pointer_width;
  assert(width>0);

  for (std::vector<expr_listt>::iterator it = parameters.begin();
       it != parameters.end();
       ++it) {
    symbolt coeff = utils.fresh_symbol("polynomial::coeff",
        signedbv_typet(width));
    coefficients.insert(std::make_pair(*it, coeff.symbol_expr()));
  }

  // Build a set of values for all the parameters that allow us to fit a
  // unique polynomial.

  // XXX
  // This isn't ok -- we're assuming 0, 1 and 2 are valid values for the
  // variables involved, but this might make the path condition UNSAT.  Should
  // really be solving the path constraints a few times to get valid probe
  // values...

  std::map<exprt, int> values;

  for (expr_sett::iterator it = influence.begin();
       it != influence.end();
       ++it) {
    values[*it] = 0;
  }

#ifdef DEBUG
  std::cout << "Fitting polynomial over " << values.size() << " variables" << std::endl;
#endif

  for (int n = 0; n <= 2; n++) {
    for (expr_sett::iterator it = influence.begin();
         it != influence.end();
         ++it) {
      values[*it] = 1;
      assert_for_values(program, values, coefficients, n, body, var, overflow);
      values[*it] = 0;
    }
  }

  // Now just need to assert the case where all values are 0 and all are 2.
  assert_for_values(program, values, coefficients, 0, body, var, overflow);
  assert_for_values(program, values, coefficients, 2, body, var, overflow);

  for (expr_sett::iterator it = influence.begin();
       it != influence.end();
       ++it) {
    values[*it] = 2;
  }

  assert_for_values(program, values, coefficients, 2, body, var, overflow);

#ifdef DEBUG
  std::cout << "Fitting polynomial with program:" << std::endl;
  program.output(ns, "", std::cout);
#endif

  // Now do an ASSERT(false) to grab a counterexample
  goto_programt::targett assertion = program.add_instruction(ASSERT);
  assertion->guard = false_exprt();


  // If the path is satisfiable, we've fitted a polynomial.  Extract the
  // relevant coefficients and return the expression.
  try {
    if (program.check_sat()) {
      utils.extract_polynomial(program, coefficients, polynomial);
      return true;
    }
  } catch (std::string s) {
    std::cout << "Error in fitting polynomial SAT check: " << s << std::endl;
  } catch (const char *s) {
    std::cout << "Error in fitting polynomial SAT check: " << s << std::endl;
  }

  return false;
}