/* calculate required # of delay slots between the instruction that * assigns a value and the one that consumes */ int ir3_delayslots(struct ir3_instruction *assigner, struct ir3_instruction *consumer, unsigned n) { /* worst case is cat1-3 (alu) -> cat4/5 needing 6 cycles, normal * alu -> alu needs 3 cycles, cat4 -> alu and texture fetch * handled with sync bits */ if (is_meta(assigner)) return 0; if (writes_addr(assigner)) return 6; /* handled via sync flags: */ if (is_sfu(assigner) || is_tex(assigner) || is_mem(assigner)) return 0; /* assigner must be alu: */ if (is_flow(consumer) || is_sfu(consumer) || is_tex(consumer) || is_mem(consumer)) { return 6; } else if ((consumer->category == 3) && (is_mad(consumer->opc) || is_madsh(consumer->opc)) && (n == 2)) { /* special case, 3rd src to cat3 not required on first cycle */ return 1; } else { return 3; } }
/** * Handle cp for a given src register. This additionally handles * the cases of collapsing immedate/const (which replace the src * register with a non-ssa src) or collapsing mov's from relative * src (which needs to also fixup the address src reference by the * instruction). */ static void reg_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr, struct ir3_register *reg, unsigned n) { struct ir3_instruction *src = ssa(reg); /* don't propagate copies into a PHI, since we don't know if the * src block executed: */ if (instr->opc == OPC_META_PHI) return; if (is_eligible_mov(src, true)) { /* simple case, no immed/const/relativ, only mov's w/ ssa src: */ struct ir3_register *src_reg = src->regs[1]; unsigned new_flags = reg->flags; combine_flags(&new_flags, src); if (valid_flags(instr, n, new_flags)) { if (new_flags & IR3_REG_ARRAY) { debug_assert(!(reg->flags & IR3_REG_ARRAY)); reg->array = src_reg->array; } reg->flags = new_flags; reg->instr = ssa(src_reg); } src = ssa(reg); /* could be null for IR3_REG_ARRAY case */ if (!src) return; } else if (is_same_type_mov(src) && /* cannot collapse const/immed/etc into meta instrs: */ !is_meta(instr)) { /* immed/const/etc cases, which require some special handling: */ struct ir3_register *src_reg = src->regs[1]; unsigned new_flags = reg->flags; combine_flags(&new_flags, src); if (!valid_flags(instr, n, new_flags)) { /* See if lowering an immediate to const would help. */ if (valid_flags(instr, n, (new_flags & ~IR3_REG_IMMED) | IR3_REG_CONST)) { debug_assert(new_flags & IR3_REG_IMMED); instr->regs[n + 1] = lower_immed(ctx, src_reg, new_flags); return; } /* special case for "normal" mad instructions, we can * try swapping the first two args if that fits better. * * the "plain" MAD's (ie. the ones that don't shift first * src prior to multiply) can swap their first two srcs if * src[0] is !CONST and src[1] is CONST: */ if ((n == 1) && is_mad(instr->opc) && !(instr->regs[0 + 1]->flags & (IR3_REG_CONST | IR3_REG_RELATIV)) && valid_flags(instr, 0, new_flags)) { /* swap src[0] and src[1]: */ struct ir3_register *tmp; tmp = instr->regs[0 + 1]; instr->regs[0 + 1] = instr->regs[1 + 1]; instr->regs[1 + 1] = tmp; n = 0; } else { return; } } /* Here we handle the special case of mov from * CONST and/or RELATIV. These need to be handled * specially, because in the case of move from CONST * there is no src ir3_instruction so we need to * replace the ir3_register. And in the case of * RELATIV we need to handle the address register * dependency. */ if (src_reg->flags & IR3_REG_CONST) { /* an instruction cannot reference two different * address registers: */ if ((src_reg->flags & IR3_REG_RELATIV) && conflicts(instr->address, reg->instr->address)) return; /* This seems to be a hw bug, or something where the timings * just somehow don't work out. This restriction may only * apply if the first src is also CONST. */ if ((opc_cat(instr->opc) == 3) && (n == 2) && (src_reg->flags & IR3_REG_RELATIV) && (src_reg->array.offset == 0)) return; src_reg = ir3_reg_clone(instr->block->shader, src_reg); src_reg->flags = new_flags; instr->regs[n+1] = src_reg; if (src_reg->flags & IR3_REG_RELATIV) ir3_instr_set_address(instr, reg->instr->address); return; } if ((src_reg->flags & IR3_REG_RELATIV) && !conflicts(instr->address, reg->instr->address)) { src_reg = ir3_reg_clone(instr->block->shader, src_reg); src_reg->flags = new_flags; instr->regs[n+1] = src_reg; ir3_instr_set_address(instr, reg->instr->address); return; } /* NOTE: seems we can only do immed integers, so don't * need to care about float. But we do need to handle * abs/neg *before* checking that the immediate requires * few enough bits to encode: * * TODO: do we need to do something to avoid accidentally * catching a float immed? */ if (src_reg->flags & IR3_REG_IMMED) { int32_t iim_val = src_reg->iim_val; debug_assert((opc_cat(instr->opc) == 1) || (opc_cat(instr->opc) == 6) || ir3_cat2_int(instr->opc)); if (new_flags & IR3_REG_SABS) iim_val = abs(iim_val); if (new_flags & IR3_REG_SNEG) iim_val = -iim_val; if (new_flags & IR3_REG_BNOT) iim_val = ~iim_val; /* other than category 1 (mov) we can only encode up to 10 bits: */ if ((instr->opc == OPC_MOV) || !((iim_val & ~0x3ff) && (-iim_val & ~0x3ff))) { new_flags &= ~(IR3_REG_SABS | IR3_REG_SNEG | IR3_REG_BNOT); src_reg = ir3_reg_clone(instr->block->shader, src_reg); src_reg->flags = new_flags; src_reg->iim_val = iim_val; instr->regs[n+1] = src_reg; } else if (valid_flags(instr, n, (new_flags & ~IR3_REG_IMMED) | IR3_REG_CONST)) { /* See if lowering an immediate to const would help. */ instr->regs[n+1] = lower_immed(ctx, src_reg, new_flags); } return; } } }