kern_return_t ipc_object_alloc_dead_name( ipc_space_t space, mach_port_t name) { ipc_entry_t entry; kern_return_t kr; is_write_lock(space); kr = ipc_entry_alloc_name(space, name, &entry); if (kr != KERN_SUCCESS) { is_write_unlock(space); return kr; } if (ipc_right_inuse(space, name, entry)) return KERN_NAME_EXISTS; /* null object, MACH_PORT_TYPE_DEAD_NAME, 1 uref */ assert(entry->ie_object == IO_NULL); entry->ie_bits |= MACH_PORT_TYPE_DEAD_NAME | 1; is_write_unlock(space); return KERN_SUCCESS; }
kern_return_t ipc_right_lookup_write( ipc_space_t space, mach_port_t name, ipc_entry_t *entryp) { ipc_entry_t entry; assert(space != IS_NULL); is_write_lock(space); if (!space->is_active) { is_write_unlock(space); return KERN_INVALID_TASK; } if ((entry = ipc_entry_lookup(space, name)) == IE_NULL) { is_write_unlock(space); return KERN_INVALID_NAME; } *entryp = entry; return KERN_SUCCESS; }
void ipc_space_terminate( ipc_space_t space) { ipc_entry_t table; ipc_entry_num_t size; mach_port_index_t index; assert(space != IS_NULL); is_write_lock(space); if (!is_active(space)) { is_write_unlock(space); return; } is_mark_inactive(space); /* * If somebody is trying to grow the table, * we must wait until they finish and figure * out the space died. */ while (is_growing(space)) is_write_sleep(space); is_write_unlock(space); /* * Now we can futz with it unlocked. */ table = space->is_table; size = space->is_table_size; for (index = 0; index < size; index++) { ipc_entry_t entry = &table[index]; mach_port_type_t type; type = IE_BITS_TYPE(entry->ie_bits); if (type != MACH_PORT_TYPE_NONE) { mach_port_name_t name; name = MACH_PORT_MAKE(index, IE_BITS_GEN(entry->ie_bits)); ipc_right_terminate(space, name, entry); } } it_entries_free(space->is_table_next-1, table); space->is_table_size = 0; /* * Because the space is now dead, * we must release the "active" reference for it. * Our caller still has his reference. */ is_release(space); }
kern_return_t ipc_object_alloc_name( ipc_space_t space, ipc_object_type_t otype, mach_port_type_t type, mach_port_urefs_t urefs, mach_port_t name, ipc_object_t *objectp) { ipc_object_t object; ipc_entry_t entry; kern_return_t kr; assert(otype < IOT_NUMBER); assert((type & MACH_PORT_TYPE_ALL_RIGHTS) == type); assert(type != MACH_PORT_TYPE_NONE); assert(urefs <= MACH_PORT_UREFS_MAX); object = io_alloc(otype); if (object == IO_NULL) return KERN_RESOURCE_SHORTAGE; if (otype == IOT_PORT) { ipc_port_t port = (ipc_port_t)object; memset(port, 0, sizeof(*port)); } else if (otype == IOT_PORT_SET) { ipc_pset_t pset = (ipc_pset_t)object; memset(pset, 0, sizeof(*pset)); } is_write_lock(space); kr = ipc_entry_alloc_name(space, name, &entry); if (kr != KERN_SUCCESS) { is_write_unlock(space); io_free(otype, object); return kr; } if (ipc_right_inuse(space, name, entry)) { io_free(otype, object); return KERN_NAME_EXISTS; } entry->ie_bits |= type | urefs; entry->ie_object = object; io_lock_init(object); io_lock(object); is_write_unlock(space); object->io_references = 1; /* for entry, not caller */ object->io_bits = io_makebits(TRUE, otype, 0); *objectp = object; return KERN_SUCCESS; }
/* * ipc_space_clean - remove all port references from an ipc space. * * In order to follow the traditional semantic, ipc_space_destroy * will not destroy the entire port table of a shared space. Instead * it will simply clear its own sub-space. */ void ipc_space_clean( ipc_space_t space) { ipc_entry_t table; ipc_entry_num_t size; mach_port_index_t index; /* * If somebody is trying to grow the table, * we must wait until they finish and figure * out the space died. */ retry: is_write_lock(space); while (is_growing(space)) is_write_sleep(space); if (!is_active(space)) { is_write_unlock(space); return; } /* * Now we can futz with it since we have the write lock. */ table = space->is_table; size = space->is_table_size; for (index = 0; index < size; index++) { ipc_entry_t entry = &table[index]; mach_port_type_t type; type = IE_BITS_TYPE(entry->ie_bits); if (type != MACH_PORT_TYPE_NONE) { mach_port_name_t name = MACH_PORT_MAKE(index, IE_BITS_GEN(entry->ie_bits)); ipc_right_destroy(space, name, entry, FALSE, 0); /* unlocks space */ goto retry; } } /* * JMM - Now the table is cleaned out. We don't bother shrinking the * size of the table at this point, but we probably should if it is * really large. */ is_write_unlock(space); }
kern_return_t mach_set_port_label( ipc_space_t space, mach_port_name_t name, vm_offset_t labelstr) { #ifdef MAC ipc_entry_t entry; kern_return_t kr; struct label inl; int rc; if (space == IS_NULL || space->is_task == NULL) return KERN_INVALID_TASK; if (!MACH_PORT_VALID(name)) return KERN_INVALID_NAME; mac_init_port_label(&inl); rc = mac_internalize_port_label(&inl, labelstr); if (rc) return KERN_INVALID_ARGUMENT; kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; if (io_otype(entry->ie_object) != IOT_PORT) { is_write_unlock(space); return KERN_INVALID_RIGHT; } ipc_port_t port = (ipc_port_t) entry->ie_object; ip_lock(port); rc = mac_check_port_relabel(&space->is_task->maclabel, &port->ip_label, &inl); if (rc) kr = KERN_NO_ACCESS; else mac_copy_port_label(&inl, &port->ip_label); ip_unlock(port); is_write_unlock(space); return kr; #else return KERN_INVALID_ARGUMENT; #endif }
kern_return_t mach_port_type( ipc_space_t space, mach_port_name_t name, mach_port_type_t *typep) { mach_port_urefs_t urefs; ipc_entry_t entry; kern_return_t kr; if (space == IS_NULL) return KERN_INVALID_TASK; if (name == MACH_PORT_NULL) return KERN_INVALID_NAME; if (name == MACH_PORT_DEAD) { *typep = MACH_PORT_TYPE_DEAD_NAME; return KERN_SUCCESS; } kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ kr = ipc_right_info(space, name, entry, typep, &urefs); if (kr == KERN_SUCCESS) is_write_unlock(space); /* space is unlocked */ return kr; }
kern_return_t ipc_pset_alloc( ipc_space_t space, mach_port_name_t *namep, ipc_pset_t *psetp) { ipc_pset_t pset; mach_port_name_t name; kern_return_t kr; kr = ipc_object_alloc(space, IOT_PORT_SET, MACH_PORT_TYPE_PORT_SET, 0, &name, (ipc_object_t *) &pset); if (kr != KERN_SUCCESS) return kr; /* pset and space are locked */ pset->ips_local_name = name; ipc_mqueue_init(&pset->ips_messages, TRUE /* set */); is_write_unlock(space); *namep = name; *psetp = pset; return KERN_SUCCESS; }
kern_return_t ipc_pset_alloc( ipc_space_t space, mach_port_name_t *namep, ipc_pset_t *psetp) { ipc_pset_t pset; mach_port_name_t name; kern_return_t kr; uint64_t reserved_link; reserved_link = waitq_link_reserve(NULL); kr = ipc_object_alloc(space, IOT_PORT_SET, MACH_PORT_TYPE_PORT_SET, 0, &name, (ipc_object_t *) &pset); if (kr != KERN_SUCCESS) { waitq_link_release(reserved_link); return kr; } /* pset and space are locked */ pset->ips_local_name = name; ipc_mqueue_init(&pset->ips_messages, TRUE /* set */, &reserved_link); is_write_unlock(space); waitq_link_release(reserved_link); *namep = name; *psetp = pset; return KERN_SUCCESS; }
kern_return_t ipc_object_copyin( ipc_space_t space, mach_port_name_t name, mach_msg_type_name_t msgt_name, ipc_object_t *objectp) { ipc_entry_t entry; ipc_port_t soright; kern_return_t kr; /* * Could first try a read lock when doing * MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND, * and MACH_MSG_TYPE_MAKE_SEND_ONCE. */ kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ kr = ipc_right_copyin(space, name, entry, msgt_name, TRUE, objectp, &soright); if (IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE) ipc_entry_dealloc(space, name, entry); is_write_unlock(space); if ((kr == KERN_SUCCESS) && (soright != IP_NULL)) ipc_notify_port_deleted(soright, name); return kr; }
kern_return_t ipc_object_rename( ipc_space_t space, mach_port_name_t oname, mach_port_name_t nname) { ipc_entry_t oentry, nentry; kern_return_t kr; kr = ipc_entry_alloc_name(space, nname, &nentry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ if (ipc_right_inuse(space, nname, nentry)) { /* space is unlocked */ return KERN_NAME_EXISTS; } /* don't let ipc_entry_lookup see the uninitialized new entry */ if ((oname == nname) || ((oentry = ipc_entry_lookup(space, oname)) == IE_NULL)) { ipc_entry_dealloc(space, nname, nentry); is_write_unlock(space); return KERN_INVALID_NAME; } kr = ipc_right_rename(space, oname, oentry, nname, nentry); /* space is unlocked */ return kr; }
/* * Get a label handle representing the given port's port label. */ kern_return_t mach_get_label( ipc_space_t space, mach_port_name_t name, mach_port_name_t *outlabel) { ipc_entry_t entry; ipc_port_t port; struct label outl; kern_return_t kr; int dead; if (!MACH_PORT_VALID(name)) return KERN_INVALID_NAME; /* Lookup the port name in the task's space. */ kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; port = (ipc_port_t) entry->ie_object; dead = ipc_right_check(space, port, name, entry); if (dead) { is_write_unlock(space); return KERN_INVALID_RIGHT; } /* port is now locked */ is_write_unlock(space); /* Make sure we are not dealing with a label handle. */ if (ip_kotype(port) == IKOT_LABELH) { /* already is a label handle! */ ip_unlock(port); return KERN_INVALID_ARGUMENT; } /* Copy the port label and stash it in a new label handle. */ mac_init_port_label(&outl); mac_copy_port_label(&port->ip_label, &outl); kr = labelh_new_user(space, &outl, outlabel); ip_unlock(port); return KERN_SUCCESS; }
kern_return_t ipc_object_alloc( ipc_space_t space, ipc_object_type_t otype, mach_port_type_t type, mach_port_urefs_t urefs, mach_port_name_t *namep, ipc_object_t *objectp) { ipc_object_t object; ipc_entry_t entry; kern_return_t kr; assert(otype < IOT_NUMBER); assert((type & MACH_PORT_TYPE_ALL_RIGHTS) == type); assert(type != MACH_PORT_TYPE_NONE); assert(urefs <= MACH_PORT_UREFS_MAX); object = io_alloc(otype); if (object == IO_NULL) return KERN_RESOURCE_SHORTAGE; if (otype == IOT_PORT) { ipc_port_t port = (ipc_port_t)object; bzero((char *)port, sizeof(*port)); #if CONFIG_MACF_MACH mac_port_label_init(&port->ip_label); #endif } else if (otype == IOT_PORT_SET) { ipc_pset_t pset = (ipc_pset_t)object; bzero((char *)pset, sizeof(*pset)); } io_lock_init(object); *namep = CAST_MACH_PORT_TO_NAME(object); kr = ipc_entry_alloc(space, namep, &entry); if (kr != KERN_SUCCESS) { io_free(otype, object); return kr; } /* space is write-locked */ entry->ie_bits |= type | urefs; entry->ie_object = object; io_lock(object); is_write_unlock(space); object->io_references = 1; /* for entry, not caller */ object->io_bits = io_makebits(TRUE, otype, 0); *objectp = object; return KERN_SUCCESS; }
kern_return_t ipc_object_copyin( ipc_space_t space, mach_port_name_t name, mach_msg_type_name_t msgt_name, ipc_object_t *objectp) { ipc_entry_t entry; ipc_port_t soright; ipc_port_t release_port; kern_return_t kr; queue_head_t links_data; queue_t links = &links_data; wait_queue_link_t wql; queue_init(links); /* * Could first try a read lock when doing * MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND, * and MACH_MSG_TYPE_MAKE_SEND_ONCE. */ kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ release_port = IP_NULL; kr = ipc_right_copyin(space, name, entry, msgt_name, TRUE, objectp, &soright, &release_port, links); if (IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE) ipc_entry_dealloc(space, name, entry); is_write_unlock(space); while(!queue_empty(links)) { wql = (wait_queue_link_t) dequeue(links); wait_queue_link_free(wql); } if (release_port != IP_NULL) ip_release(release_port); if ((kr == KERN_SUCCESS) && (soright != IP_NULL)) ipc_notify_port_deleted(soright, name); return kr; }
kern_return_t mach_get_label_text( ipc_space_t space, mach_port_name_t name, vm_offset_t policies, vm_offset_t outlabel) { ipc_entry_t entry; kern_return_t kr; struct label *l; int dead; if (space == IS_NULL || space->is_task == NULL) return KERN_INVALID_TASK; if (!MACH_PORT_VALID(name)) return KERN_INVALID_NAME; kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; dead = ipc_right_check(space, entry->ie_object, name, entry); if (dead) { is_write_unlock(space); return KERN_INVALID_RIGHT; } /* object (port) is now locked */ is_write_unlock(space); l = io_getlabel(entry->ie_object); mac_externalize_port_label(l, policies, outlabel, 512, 0); io_unlocklabel(entry->ie_object); io_unlock(entry->ie_object); return KERN_SUCCESS; }
kern_return_t ipc_object_alloc_dead( ipc_space_t space, mach_port_t *namep) { ipc_entry_t entry; kern_return_t kr; is_write_lock(space); kr = ipc_entry_alloc(space, namep, &entry); if (kr != KERN_SUCCESS) { is_write_unlock(space); return kr; } /* null object, MACH_PORT_TYPE_DEAD_NAME, 1 uref */ assert(entry->ie_object == IO_NULL); entry->ie_bits |= MACH_PORT_TYPE_DEAD_NAME | 1; is_write_unlock(space); return KERN_SUCCESS; }
boolean_t ipc_right_inuse( ipc_space_t space, mach_port_t name, ipc_entry_t entry) { ipc_entry_bits_t bits = entry->ie_bits; if (IE_BITS_TYPE(bits) != MACH_PORT_TYPE_NONE) { is_write_unlock(space); return TRUE; } return FALSE; }
kern_return_t ipc_object_copyin( ipc_space_t space, mach_port_name_t name, mach_msg_type_name_t msgt_name, ipc_object_t *objectp) { ipc_entry_t entry; ipc_port_t soright; ipc_port_t release_port; kern_return_t kr; int assertcnt = 0; /* * Could first try a read lock when doing * MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND, * and MACH_MSG_TYPE_MAKE_SEND_ONCE. */ kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ release_port = IP_NULL; kr = ipc_right_copyin(space, name, entry, msgt_name, TRUE, objectp, &soright, &release_port, &assertcnt); if (IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE) ipc_entry_dealloc(space, name, entry); is_write_unlock(space); #if IMPORTANCE_INHERITANCE if (0 < assertcnt && ipc_importance_task_is_any_receiver_type(current_task()->task_imp_base)) { ipc_importance_task_drop_internal_assertion(current_task()->task_imp_base, assertcnt); } #endif /* IMPORTANCE_INHERITANCE */ if (release_port != IP_NULL) ip_release(release_port); if ((kr == KERN_SUCCESS) && (soright != IP_NULL)) ipc_notify_port_deleted(soright, name); return kr; }
kern_return_t ipc_port_alloc( ipc_space_t space, mach_port_name_t *namep, ipc_port_t *portp) { ipc_port_t port; mach_port_name_t name; kern_return_t kr; #if MACH_ASSERT uintptr_t buf[IP_CALLSTACK_MAX]; ipc_port_callstack_init_debug(&buf[0], IP_CALLSTACK_MAX); #endif /* MACH_ASSERT */ kr = ipc_object_alloc(space, IOT_PORT, MACH_PORT_TYPE_RECEIVE, 0, &name, (ipc_object_t *) &port); if (kr != KERN_SUCCESS) return kr; /* port and space are locked */ ipc_port_init(port, space, name); #if MACH_ASSERT ipc_port_init_debug(port, &buf[0], IP_CALLSTACK_MAX); #endif /* MACH_ASSERT */ /* unlock space after init */ is_write_unlock(space); #if CONFIG_MACF_MACH task_t issuer = current_task(); tasklabel_lock2 (issuer, space->is_task); mac_port_label_associate(&issuer->maclabel, &space->is_task->maclabel, &port->ip_label); tasklabel_unlock2 (issuer, space->is_task); #endif *namep = name; *portp = port; return KERN_SUCCESS; }
kern_return_t mach_port_destroy( ipc_space_t space, mach_port_name_t name) { ipc_entry_t entry; kern_return_t kr; if (space == IS_NULL) return KERN_INVALID_TASK; if (!MACH_PORT_VALID(name)) return KERN_SUCCESS; kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ kr = ipc_right_destroy(space, name, entry); is_write_unlock(space); return kr; }
mach_msg_return_t mach_msg_trap( mach_msg_header_t *msg, mach_msg_option_t option, mach_msg_size_t send_size, mach_msg_size_t rcv_size, mach_port_t rcv_name, mach_msg_timeout_t time_out, mach_port_t notify) { mach_msg_return_t mr; /* first check for common cases */ if (option == (MACH_SEND_MSG|MACH_RCV_MSG)) { ipc_thread_t self = current_thread(); ipc_space_t space = self->task->itk_space; ipc_kmsg_t kmsg; ipc_port_t dest_port; ipc_object_t rcv_object; ipc_mqueue_t rcv_mqueue; mach_msg_size_t reply_size; /* * This case is divided into ten sections, each * with a label. There are five optimized * sections and six unoptimized sections, which * do the same thing but handle all possible * cases and are slower. * * The five sections for an RPC are * 1) Get request message into a buffer. * (fast_get or slow_get) * 2) Copyin request message and rcv_name. * (fast_copyin or slow_copyin) * 3) Enqueue request and dequeue reply. * (fast_send_receive or * slow_send and slow_receive) * 4) Copyout reply message. * (fast_copyout or slow_copyout) * 5) Put reply message to user's buffer. * (fast_put or slow_put) * * Keep the locking hierarchy firmly in mind. * (First spaces, then ports, then port sets, * then message queues.) Only a non-blocking * attempt can be made to acquire locks out of * order, or acquire two locks on the same level. * Acquiring two locks on the same level will * fail if the objects are really the same, * unless simple locking is disabled. This is OK, * because then the extra unlock does nothing. * * There are two major reasons these RPCs can't use * ipc_thread_switch, and use slow_send/slow_receive: * 1) Kernel RPCs. * 2) Servers fall behind clients, so * client doesn't find a blocked server thread and * server finds waiting messages and can't block. */ /* fast_get: */ /* * optimized ipc_kmsg_get * * No locks, references, or messages held. * We must clear ikm_cache before copyinmsg. */ if ((send_size > IKM_SAVED_MSG_SIZE) || (send_size < sizeof(mach_msg_header_t)) || (send_size & 3) || ((kmsg = ikm_cache()) == IKM_NULL)) goto slow_get; ikm_cache() = IKM_NULL; ikm_check_initialized(kmsg, IKM_SAVED_KMSG_SIZE); if (copyinmsg(msg, &kmsg->ikm_header, send_size)) { ikm_free(kmsg); goto slow_get; } kmsg->ikm_header.msgh_size = send_size; fast_copyin: /* * optimized ipc_kmsg_copyin/ipc_mqueue_copyin * * We have the request message data in kmsg. * Must still do copyin, send, receive, etc. * * If the message isn't simple, we can't combine * ipc_kmsg_copyin_header and ipc_mqueue_copyin, * because copyin of the message body might * affect rcv_name. */ switch (kmsg->ikm_header.msgh_bits) { case MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE): { ipc_entry_t table; ipc_entry_num_t size; ipc_port_t reply_port; /* sending a request message */ { mach_port_index_t index; mach_port_gen_t gen; { mach_port_t reply_name = kmsg->ikm_header.msgh_local_port; if (reply_name != rcv_name) goto slow_copyin; /* optimized ipc_entry_lookup of reply_name */ index = MACH_PORT_INDEX(reply_name); gen = MACH_PORT_GEN(reply_name); } is_read_lock(space); assert(space->is_active); size = space->is_table_size; table = space->is_table; if (index >= size) goto abort_request_copyin; { ipc_entry_t entry; ipc_entry_bits_t bits; entry = &table[index]; bits = entry->ie_bits; /* check generation number and type bit */ if ((bits & (IE_BITS_GEN_MASK| MACH_PORT_TYPE_RECEIVE)) != (gen | MACH_PORT_TYPE_RECEIVE)) goto abort_request_copyin; reply_port = (ipc_port_t) entry->ie_object; assert(reply_port != IP_NULL); } } /* optimized ipc_entry_lookup of dest_name */ { mach_port_index_t index; mach_port_gen_t gen; { mach_port_t dest_name = kmsg->ikm_header.msgh_remote_port; index = MACH_PORT_INDEX(dest_name); gen = MACH_PORT_GEN(dest_name); } if (index >= size) goto abort_request_copyin; { ipc_entry_t entry; ipc_entry_bits_t bits; entry = &table[index]; bits = entry->ie_bits; /* check generation number and type bit */ if ((bits & (IE_BITS_GEN_MASK|MACH_PORT_TYPE_SEND)) != (gen | MACH_PORT_TYPE_SEND)) goto abort_request_copyin; assert(IE_BITS_UREFS(bits) > 0); dest_port = (ipc_port_t) entry->ie_object; assert(dest_port != IP_NULL); } } /* * To do an atomic copyin, need simultaneous * locks on both ports and the space. If * dest_port == reply_port, and simple locking is * enabled, then we will abort. Otherwise it's * OK to unlock twice. */ ip_lock(dest_port); if (!ip_active(dest_port) || !ip_lock_try(reply_port)) { ip_unlock(dest_port); goto abort_request_copyin; } is_read_unlock(space); assert(dest_port->ip_srights > 0); dest_port->ip_srights++; ip_reference(dest_port); assert(ip_active(reply_port)); assert(reply_port->ip_receiver_name == kmsg->ikm_header.msgh_local_port); assert(reply_port->ip_receiver == space); reply_port->ip_sorights++; ip_reference(reply_port); kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, MACH_MSG_TYPE_PORT_SEND_ONCE); kmsg->ikm_header.msgh_remote_port = (mach_port_t) dest_port; kmsg->ikm_header.msgh_local_port = (mach_port_t) reply_port; /* make sure we can queue to the destination */ if (dest_port->ip_receiver == ipc_space_kernel) { /* * The kernel server has a reference to * the reply port, which it hands back * to us in the reply message. We do * not need to keep another reference to * it. */ ip_unlock(reply_port); assert(ip_active(dest_port)); ip_unlock(dest_port); goto kernel_send; } if (dest_port->ip_msgcount >= dest_port->ip_qlimit) goto abort_request_send_receive; /* optimized ipc_mqueue_copyin */ if (reply_port->ip_pset != IPS_NULL) goto abort_request_send_receive; rcv_object = (ipc_object_t) reply_port; io_reference(rcv_object); rcv_mqueue = &reply_port->ip_messages; imq_lock(rcv_mqueue); io_unlock(rcv_object); goto fast_send_receive; abort_request_copyin: is_read_unlock(space); goto slow_copyin; abort_request_send_receive: ip_unlock(dest_port); ip_unlock(reply_port); goto slow_send; } case MACH_MSGH_BITS(MACH_MSG_TYPE_MOVE_SEND_ONCE, 0): { ipc_entry_num_t size; ipc_entry_t table; /* sending a reply message */ { mach_port_t reply_name = kmsg->ikm_header.msgh_local_port; if (reply_name != MACH_PORT_NULL) goto slow_copyin; } is_write_lock(space); assert(space->is_active); /* optimized ipc_entry_lookup */ size = space->is_table_size; table = space->is_table; { ipc_entry_t entry; mach_port_gen_t gen; mach_port_index_t index; { mach_port_t dest_name = kmsg->ikm_header.msgh_remote_port; index = MACH_PORT_INDEX(dest_name); gen = MACH_PORT_GEN(dest_name); } if (index >= size) goto abort_reply_dest_copyin; entry = &table[index]; /* check generation, collision bit, and type bit */ if ((entry->ie_bits & (IE_BITS_GEN_MASK| IE_BITS_COLLISION| MACH_PORT_TYPE_SEND_ONCE)) != (gen | MACH_PORT_TYPE_SEND_ONCE)) goto abort_reply_dest_copyin; /* optimized ipc_right_copyin */ assert(IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_SEND_ONCE); assert(IE_BITS_UREFS(entry->ie_bits) == 1); assert((entry->ie_bits & IE_BITS_MAREQUEST) == 0); if (entry->ie_request != 0) goto abort_reply_dest_copyin; dest_port = (ipc_port_t) entry->ie_object; assert(dest_port != IP_NULL); ip_lock(dest_port); if (!ip_active(dest_port)) { ip_unlock(dest_port); goto abort_reply_dest_copyin; } assert(dest_port->ip_sorights > 0); /* optimized ipc_entry_dealloc */ entry->ie_next = table->ie_next; table->ie_next = index; entry->ie_bits = gen; entry->ie_object = IO_NULL; } kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND_ONCE, 0); kmsg->ikm_header.msgh_remote_port = (mach_port_t) dest_port; /* make sure we can queue to the destination */ assert(dest_port->ip_receiver != ipc_space_kernel); /* optimized ipc_entry_lookup/ipc_mqueue_copyin */ { ipc_entry_t entry; ipc_entry_bits_t bits; { mach_port_index_t index; mach_port_gen_t gen; index = MACH_PORT_INDEX(rcv_name); gen = MACH_PORT_GEN(rcv_name); if (index >= size) goto abort_reply_rcv_copyin; entry = &table[index]; bits = entry->ie_bits; /* check generation number */ if ((bits & IE_BITS_GEN_MASK) != gen) goto abort_reply_rcv_copyin; } /* check type bits; looking for receive or set */ if (bits & MACH_PORT_TYPE_PORT_SET) { ipc_pset_t rcv_pset; rcv_pset = (ipc_pset_t) entry->ie_object; assert(rcv_pset != IPS_NULL); ips_lock(rcv_pset); assert(ips_active(rcv_pset)); rcv_object = (ipc_object_t) rcv_pset; rcv_mqueue = &rcv_pset->ips_messages; } else if (bits & MACH_PORT_TYPE_RECEIVE) { ipc_port_t rcv_port; rcv_port = (ipc_port_t) entry->ie_object; assert(rcv_port != IP_NULL); if (!ip_lock_try(rcv_port)) goto abort_reply_rcv_copyin; assert(ip_active(rcv_port)); if (rcv_port->ip_pset != IPS_NULL) { ip_unlock(rcv_port); goto abort_reply_rcv_copyin; } rcv_object = (ipc_object_t) rcv_port; rcv_mqueue = &rcv_port->ip_messages; } else goto abort_reply_rcv_copyin; } is_write_unlock(space); io_reference(rcv_object); imq_lock(rcv_mqueue); io_unlock(rcv_object); goto fast_send_receive; abort_reply_dest_copyin: is_write_unlock(space); goto slow_copyin; abort_reply_rcv_copyin: ip_unlock(dest_port); is_write_unlock(space); goto slow_send; } default: goto slow_copyin; } /*NOTREACHED*/ fast_send_receive: /* * optimized ipc_mqueue_send/ipc_mqueue_receive * * Finished get/copyin of kmsg and copyin of rcv_name. * space is unlocked, dest_port is locked, * we can queue kmsg to dest_port, * rcv_mqueue is locked, rcv_object holds a ref, * if rcv_object is a port it isn't in a port set * * Note that if simple locking is turned off, * then we could have dest_mqueue == rcv_mqueue * and not abort when we try to lock dest_mqueue. */ assert(ip_active(dest_port)); assert(dest_port->ip_receiver != ipc_space_kernel); assert((dest_port->ip_msgcount < dest_port->ip_qlimit) || (MACH_MSGH_BITS_REMOTE(kmsg->ikm_header.msgh_bits) == MACH_MSG_TYPE_PORT_SEND_ONCE)); assert((kmsg->ikm_header.msgh_bits & MACH_MSGH_BITS_CIRCULAR) == 0); { ipc_mqueue_t dest_mqueue; ipc_thread_t receiver; { ipc_pset_t dest_pset; dest_pset = dest_port->ip_pset; if (dest_pset == IPS_NULL) dest_mqueue = &dest_port->ip_messages; else dest_mqueue = &dest_pset->ips_messages; } if (!imq_lock_try(dest_mqueue)) { abort_send_receive: ip_unlock(dest_port); imq_unlock(rcv_mqueue); ipc_object_release(rcv_object); goto slow_send; } receiver = ipc_thread_queue_first(&dest_mqueue->imq_threads); if ((receiver == ITH_NULL) || (ipc_kmsg_queue_first(&rcv_mqueue->imq_messages) != IKM_NULL)) { imq_unlock(dest_mqueue); goto abort_send_receive; } /* * There is a receiver thread waiting, and * there is no reply message for us to pick up. * We have hope of hand-off, so save state. */ self->ith_msg = msg; self->ith_rcv_size = rcv_size; self->ith_object = rcv_object; self->ith_mqueue = rcv_mqueue; if ((receiver->swap_func == (void (*)()) mach_msg_continue) && thread_handoff(self, mach_msg_continue, receiver)) { assert(current_thread() == receiver); /* * We can use the optimized receive code, * because the receiver is using no options. */ } else if ((receiver->swap_func == (void (*)()) exception_raise_continue) && thread_handoff(self, mach_msg_continue, receiver)) { counter(c_mach_msg_trap_block_exc++); assert(current_thread() == receiver); /* * We are a reply message coming back through * the optimized exception-handling path. * Finish with rcv_mqueue and dest_mqueue, * and then jump to exception code with * dest_port still locked. We don't bother * with a sequence number in this case. */ ipc_thread_enqueue_macro( &rcv_mqueue->imq_threads, self); self->ith_state = MACH_RCV_IN_PROGRESS; self->ith_msize = MACH_MSG_SIZE_MAX; imq_unlock(rcv_mqueue); ipc_thread_rmqueue_first_macro( &dest_mqueue->imq_threads, receiver); imq_unlock(dest_mqueue); exception_raise_continue_fast(dest_port, kmsg); /*NOTREACHED*/ return MACH_MSG_SUCCESS; } else if ((send_size <= receiver->ith_msize) && thread_handoff(self, mach_msg_continue, receiver)) { assert(current_thread() == receiver); if ((receiver->swap_func == (void (*)()) mach_msg_receive_continue) && ((receiver->ith_option & MACH_RCV_NOTIFY) == 0)) { /* * We can still use the optimized code. */ } else { counter(c_mach_msg_trap_block_slow++); /* * We are running as the receiver, * but we can't use the optimized code. * Finish send/receive processing. */ dest_port->ip_msgcount++; ip_unlock(dest_port); ipc_thread_enqueue_macro( &rcv_mqueue->imq_threads, self); self->ith_state = MACH_RCV_IN_PROGRESS; self->ith_msize = MACH_MSG_SIZE_MAX; imq_unlock(rcv_mqueue); ipc_thread_rmqueue_first_macro( &dest_mqueue->imq_threads, receiver); receiver->ith_state = MACH_MSG_SUCCESS; receiver->ith_kmsg = kmsg; receiver->ith_seqno = dest_port->ip_seqno++; imq_unlock(dest_mqueue); /* * Call the receiver's continuation. */ receiver->wait_result = THREAD_AWAKENED; (*receiver->swap_func)(); /*NOTREACHED*/ return MACH_MSG_SUCCESS; } } else { /* * The receiver can't accept the message, * or we can't switch to the receiver. */ imq_unlock(dest_mqueue); goto abort_send_receive; } counter(c_mach_msg_trap_block_fast++); /* * Safe to unlock dest_port now that we are * committed to this path, because we hold * dest_mqueue locked. We never bother changing * dest_port->ip_msgcount. */ ip_unlock(dest_port); /* * We need to finish preparing self for its * time asleep in rcv_mqueue. */ ipc_thread_enqueue_macro(&rcv_mqueue->imq_threads, self); self->ith_state = MACH_RCV_IN_PROGRESS; self->ith_msize = MACH_MSG_SIZE_MAX; imq_unlock(rcv_mqueue); /* * Finish extracting receiver from dest_mqueue. */ ipc_thread_rmqueue_first_macro( &dest_mqueue->imq_threads, receiver); kmsg->ikm_header.msgh_seqno = dest_port->ip_seqno++; imq_unlock(dest_mqueue); /* * We don't have to do any post-dequeue processing of * the message. We never incremented ip_msgcount, we * know it has no msg-accepted request, and blocked * senders aren't a worry because we found the port * with a receiver waiting. */ self = receiver; space = self->task->itk_space; msg = self->ith_msg; rcv_size = self->ith_rcv_size; rcv_object = self->ith_object; /* inline ipc_object_release */ io_lock(rcv_object); io_release(rcv_object); io_check_unlock(rcv_object); } fast_copyout: /* * Nothing locked and no references held, except * we have kmsg with msgh_seqno filled in. Must * still check against rcv_size and do * ipc_kmsg_copyout/ipc_kmsg_put. */ assert((ipc_port_t) kmsg->ikm_header.msgh_remote_port == dest_port); reply_size = kmsg->ikm_header.msgh_size; if (rcv_size < reply_size) goto slow_copyout; /* optimized ipc_kmsg_copyout/ipc_kmsg_copyout_header */ switch (kmsg->ikm_header.msgh_bits) { case MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, MACH_MSG_TYPE_PORT_SEND_ONCE): { ipc_port_t reply_port = (ipc_port_t) kmsg->ikm_header.msgh_local_port; mach_port_t dest_name, reply_name; /* receiving a request message */ if (!IP_VALID(reply_port)) goto slow_copyout; is_write_lock(space); assert(space->is_active); /* * To do an atomic copyout, need simultaneous * locks on both ports and the space. If * dest_port == reply_port, and simple locking is * enabled, then we will abort. Otherwise it's * OK to unlock twice. */ ip_lock(dest_port); if (!ip_active(dest_port) || !ip_lock_try(reply_port)) goto abort_request_copyout; if (!ip_active(reply_port)) { ip_unlock(reply_port); goto abort_request_copyout; } assert(reply_port->ip_sorights > 0); ip_unlock(reply_port); { ipc_entry_t table; ipc_entry_t entry; mach_port_index_t index; /* optimized ipc_entry_get */ table = space->is_table; index = table->ie_next; if (index == 0) goto abort_request_copyout; entry = &table[index]; table->ie_next = entry->ie_next; entry->ie_request = 0; { mach_port_gen_t gen; assert((entry->ie_bits &~ IE_BITS_GEN_MASK) == 0); gen = entry->ie_bits + IE_BITS_GEN_ONE; reply_name = MACH_PORT_MAKE(index, gen); /* optimized ipc_right_copyout */ entry->ie_bits = gen | (MACH_PORT_TYPE_SEND_ONCE | 1); } assert(MACH_PORT_VALID(reply_name)); entry->ie_object = (ipc_object_t) reply_port; is_write_unlock(space); } /* optimized ipc_object_copyout_dest */ assert(dest_port->ip_srights > 0); ip_release(dest_port); if (dest_port->ip_receiver == space) dest_name = dest_port->ip_receiver_name; else dest_name = MACH_PORT_NULL; if ((--dest_port->ip_srights == 0) && (dest_port->ip_nsrequest != IP_NULL)) { ipc_port_t nsrequest; mach_port_mscount_t mscount; /* a rather rare case */ nsrequest = dest_port->ip_nsrequest; mscount = dest_port->ip_mscount; dest_port->ip_nsrequest = IP_NULL; ip_unlock(dest_port); ipc_notify_no_senders(nsrequest, mscount); } else ip_unlock(dest_port); if (! ipc_port_flag_protected_payload(dest_port)) { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( MACH_MSG_TYPE_PORT_SEND_ONCE, MACH_MSG_TYPE_PORT_SEND); kmsg->ikm_header.msgh_local_port = dest_name; } else { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( MACH_MSG_TYPE_PORT_SEND_ONCE, MACH_MSG_TYPE_PROTECTED_PAYLOAD); kmsg->ikm_header.msgh_protected_payload = dest_port->ip_protected_payload; } kmsg->ikm_header.msgh_remote_port = reply_name; goto fast_put; abort_request_copyout: ip_unlock(dest_port); is_write_unlock(space); goto slow_copyout; } case MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND_ONCE, 0): { mach_port_t dest_name; /* receiving a reply message */ ip_lock(dest_port); if (!ip_active(dest_port)) goto slow_copyout; /* optimized ipc_object_copyout_dest */ assert(dest_port->ip_sorights > 0); if (dest_port->ip_receiver == space) { ip_release(dest_port); dest_port->ip_sorights--; dest_name = dest_port->ip_receiver_name; ip_unlock(dest_port); } else { ip_unlock(dest_port); ipc_notify_send_once(dest_port); dest_name = MACH_PORT_NULL; } if (! ipc_port_flag_protected_payload(dest_port)) { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PORT_SEND_ONCE); kmsg->ikm_header.msgh_local_port = dest_name; } else { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PROTECTED_PAYLOAD); kmsg->ikm_header.msgh_protected_payload = dest_port->ip_protected_payload; } kmsg->ikm_header.msgh_remote_port = MACH_PORT_NULL; goto fast_put; } case MACH_MSGH_BITS_COMPLEX| MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND_ONCE, 0): { mach_port_t dest_name; /* receiving a complex reply message */ ip_lock(dest_port); if (!ip_active(dest_port)) goto slow_copyout; /* optimized ipc_object_copyout_dest */ assert(dest_port->ip_sorights > 0); if (dest_port->ip_receiver == space) { ip_release(dest_port); dest_port->ip_sorights--; dest_name = dest_port->ip_receiver_name; ip_unlock(dest_port); } else { ip_unlock(dest_port); ipc_notify_send_once(dest_port); dest_name = MACH_PORT_NULL; } if (! ipc_port_flag_protected_payload(dest_port)) { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PORT_SEND_ONCE); kmsg->ikm_header.msgh_local_port = dest_name; } else { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PROTECTED_PAYLOAD); kmsg->ikm_header.msgh_protected_payload = dest_port->ip_protected_payload; } kmsg->ikm_header.msgh_remote_port = MACH_PORT_NULL; mr = ipc_kmsg_copyout_body( (vm_offset_t) (&kmsg->ikm_header + 1), (vm_offset_t) &kmsg->ikm_header + kmsg->ikm_header.msgh_size, space, current_map()); if (mr != MACH_MSG_SUCCESS) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); return mr | MACH_RCV_BODY_ERROR; } goto fast_put; } default: goto slow_copyout; } /*NOTREACHED*/ fast_put: /* * We have the reply message data in kmsg, * and the reply message size in reply_size. * Just need to copy it out to the user and free kmsg. * We must check ikm_cache after copyoutmsg. */ ikm_check_initialized(kmsg, kmsg->ikm_size); if ((kmsg->ikm_size != IKM_SAVED_KMSG_SIZE) || copyoutmsg(&kmsg->ikm_header, msg, reply_size) || (ikm_cache() != IKM_NULL)) goto slow_put; ikm_cache() = kmsg; thread_syscall_return(MACH_MSG_SUCCESS); /*NOTREACHED*/ return MACH_MSG_SUCCESS; /* help for the compiler */ /* * The slow path has a few non-register temporary * variables used only for call-by-reference. */ { ipc_kmsg_t temp_kmsg; mach_port_seqno_t temp_seqno; ipc_object_t temp_rcv_object; ipc_mqueue_t temp_rcv_mqueue; slow_get: /* * No locks, references, or messages held. * Still have to get the request, send it, * receive reply, etc. */ mr = ipc_kmsg_get(msg, send_size, &temp_kmsg); if (mr != MACH_MSG_SUCCESS) { thread_syscall_return(mr); /*NOTREACHED*/ } kmsg = temp_kmsg; /* try to get back on optimized path */ goto fast_copyin; slow_copyin: /* * We have the message data in kmsg, but * we still need to copyin, send it, * receive a reply, and do copyout. */ mr = ipc_kmsg_copyin(kmsg, space, current_map(), MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { ikm_free(kmsg); thread_syscall_return(mr); /*NOTREACHED*/ } /* try to get back on optimized path */ if (kmsg->ikm_header.msgh_bits & MACH_MSGH_BITS_CIRCULAR) goto slow_send; dest_port = (ipc_port_t) kmsg->ikm_header.msgh_remote_port; assert(IP_VALID(dest_port)); ip_lock(dest_port); if (dest_port->ip_receiver == ipc_space_kernel) { assert(ip_active(dest_port)); ip_unlock(dest_port); goto kernel_send; } if (ip_active(dest_port) && ((dest_port->ip_msgcount < dest_port->ip_qlimit) || (MACH_MSGH_BITS_REMOTE(kmsg->ikm_header.msgh_bits) == MACH_MSG_TYPE_PORT_SEND_ONCE))) { /* * Try an optimized ipc_mqueue_copyin. * It will work if this is a request message. */ ipc_port_t reply_port; reply_port = (ipc_port_t) kmsg->ikm_header.msgh_local_port; if (IP_VALID(reply_port)) { if (ip_lock_try(reply_port)) { if (ip_active(reply_port) && reply_port->ip_receiver == space && reply_port->ip_receiver_name == rcv_name && reply_port->ip_pset == IPS_NULL) { /* Grab a reference to the reply port. */ rcv_object = (ipc_object_t) reply_port; io_reference(rcv_object); rcv_mqueue = &reply_port->ip_messages; imq_lock(rcv_mqueue); io_unlock(rcv_object); goto fast_send_receive; } ip_unlock(reply_port); } } } ip_unlock(dest_port); goto slow_send; kernel_send: /* * Special case: send message to kernel services. * The request message has been copied into the * kmsg. Nothing is locked. */ { ipc_port_t reply_port; /* * Perform the kernel function. */ kmsg = ipc_kobject_server(kmsg); if (kmsg == IKM_NULL) { /* * No reply. Take the * slow receive path. */ goto slow_get_rcv_port; } /* * Check that: * the reply port is alive * we hold the receive right * the name has not changed. * the port is not in a set * If any of these are not true, * we cannot directly receive the reply * message. */ reply_port = (ipc_port_t) kmsg->ikm_header.msgh_remote_port; ip_lock(reply_port); if ((!ip_active(reply_port)) || (reply_port->ip_receiver != space) || (reply_port->ip_receiver_name != rcv_name) || (reply_port->ip_pset != IPS_NULL)) { ip_unlock(reply_port); ipc_mqueue_send_always(kmsg); goto slow_get_rcv_port; } rcv_mqueue = &reply_port->ip_messages; imq_lock(rcv_mqueue); /* keep port locked, and don`t change ref count yet */ /* * If there are messages on the port * or other threads waiting for a message, * we cannot directly receive the reply. */ if ((ipc_thread_queue_first(&rcv_mqueue->imq_threads) != ITH_NULL) || (ipc_kmsg_queue_first(&rcv_mqueue->imq_messages) != IKM_NULL)) { imq_unlock(rcv_mqueue); ip_unlock(reply_port); ipc_mqueue_send_always(kmsg); goto slow_get_rcv_port; } /* * We can directly receive this reply. * Since the kernel reply never blocks, * it holds no message_accepted request. * Since there were no messages queued * on the reply port, there should be * no threads blocked waiting to send. */ assert(kmsg->ikm_marequest == IMAR_NULL); assert(ipc_thread_queue_first(&reply_port->ip_blocked) == ITH_NULL); dest_port = reply_port; kmsg->ikm_header.msgh_seqno = dest_port->ip_seqno++; imq_unlock(rcv_mqueue); /* * inline ipc_object_release. * Port is still locked. * Reference count was not incremented. */ ip_check_unlock(reply_port); /* copy out the kernel reply */ goto fast_copyout; } slow_send: /* * Nothing is locked. We have acquired kmsg, but * we still need to send it and receive a reply. */ mr = ipc_mqueue_send(kmsg, MACH_MSG_OPTION_NONE, MACH_MSG_TIMEOUT_NONE); if (mr != MACH_MSG_SUCCESS) { mr |= ipc_kmsg_copyout_pseudo(kmsg, space, current_map()); assert(kmsg->ikm_marequest == IMAR_NULL); (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); thread_syscall_return(mr); /*NOTREACHED*/ } slow_get_rcv_port: /* * We have sent the message. Copy in the receive port. */ mr = ipc_mqueue_copyin(space, rcv_name, &temp_rcv_mqueue, &temp_rcv_object); if (mr != MACH_MSG_SUCCESS) { thread_syscall_return(mr); /*NOTREACHED*/ } rcv_mqueue = temp_rcv_mqueue; rcv_object = temp_rcv_object; /* hold ref for rcv_object; rcv_mqueue is locked */ /* slow_receive: */ /* * Now we have sent the request and copied in rcv_name, * so rcv_mqueue is locked and hold ref for rcv_object. * Just receive a reply and try to get back to fast path. * * ipc_mqueue_receive may not return, because if we block * then our kernel stack may be discarded. So we save * state here for mach_msg_continue to pick up. */ self->ith_msg = msg; self->ith_rcv_size = rcv_size; self->ith_object = rcv_object; self->ith_mqueue = rcv_mqueue; mr = ipc_mqueue_receive(rcv_mqueue, MACH_MSG_OPTION_NONE, MACH_MSG_SIZE_MAX, MACH_MSG_TIMEOUT_NONE, FALSE, mach_msg_continue, &temp_kmsg, &temp_seqno); /* rcv_mqueue is unlocked */ ipc_object_release(rcv_object); if (mr != MACH_MSG_SUCCESS) { thread_syscall_return(mr); /*NOTREACHED*/ } (kmsg = temp_kmsg)->ikm_header.msgh_seqno = temp_seqno; dest_port = (ipc_port_t) kmsg->ikm_header.msgh_remote_port; goto fast_copyout; slow_copyout: /* * Nothing locked and no references held, except * we have kmsg with msgh_seqno filled in. Must * still check against rcv_size and do * ipc_kmsg_copyout/ipc_kmsg_put. */ reply_size = kmsg->ikm_header.msgh_size; if (rcv_size < reply_size) { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); thread_syscall_return(MACH_RCV_TOO_LARGE); /*NOTREACHED*/ } mr = ipc_kmsg_copyout(kmsg, space, current_map(), MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { if ((mr &~ MACH_MSG_MASK) == MACH_RCV_BODY_ERROR) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); } thread_syscall_return(mr); /*NOTREACHED*/ } /* try to get back on optimized path */ goto fast_put; slow_put: mr = ipc_kmsg_put(msg, kmsg, reply_size); thread_syscall_return(mr); /*NOTREACHED*/ } } else if (option == MACH_SEND_MSG) { ipc_space_t space = current_space(); vm_map_t map = current_map(); ipc_kmsg_t kmsg; mr = ipc_kmsg_get(msg, send_size, &kmsg); if (mr != MACH_MSG_SUCCESS) return mr; mr = ipc_kmsg_copyin(kmsg, space, map, MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { ikm_free(kmsg); return mr; } mr = ipc_mqueue_send(kmsg, MACH_MSG_OPTION_NONE, MACH_MSG_TIMEOUT_NONE); if (mr != MACH_MSG_SUCCESS) { mr |= ipc_kmsg_copyout_pseudo(kmsg, space, map); assert(kmsg->ikm_marequest == IMAR_NULL); (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } return mr; } else if (option == MACH_RCV_MSG) { ipc_thread_t self = current_thread(); ipc_space_t space = current_space(); vm_map_t map = current_map(); ipc_object_t object; ipc_mqueue_t mqueue; ipc_kmsg_t kmsg; mach_port_seqno_t seqno; mr = ipc_mqueue_copyin(space, rcv_name, &mqueue, &object); if (mr != MACH_MSG_SUCCESS) return mr; /* hold ref for object; mqueue is locked */ /* * ipc_mqueue_receive may not return, because if we block * then our kernel stack may be discarded. So we save * state here for mach_msg_continue to pick up. */ self->ith_msg = msg; self->ith_rcv_size = rcv_size; self->ith_object = object; self->ith_mqueue = mqueue; mr = ipc_mqueue_receive(mqueue, MACH_MSG_OPTION_NONE, MACH_MSG_SIZE_MAX, MACH_MSG_TIMEOUT_NONE, FALSE, mach_msg_continue, &kmsg, &seqno); /* mqueue is unlocked */ ipc_object_release(object); if (mr != MACH_MSG_SUCCESS) return mr; kmsg->ikm_header.msgh_seqno = seqno; if (rcv_size < kmsg->ikm_header.msgh_size) { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); return MACH_RCV_TOO_LARGE; } mr = ipc_kmsg_copyout(kmsg, space, map, MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { if ((mr &~ MACH_MSG_MASK) == MACH_RCV_BODY_ERROR) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); } return mr; } return ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else if (option == MACH_MSG_OPTION_NONE) { /* * We can measure the "null mach_msg_trap" * (syscall entry and thread_syscall_return exit) * with this path. */ thread_syscall_return(MACH_MSG_SUCCESS); /*NOTREACHED*/ } if (option & MACH_SEND_MSG) { mr = mach_msg_send(msg, option, send_size, time_out, notify); if (mr != MACH_MSG_SUCCESS) return mr; } if (option & MACH_RCV_MSG) { mr = mach_msg_receive(msg, option, rcv_size, rcv_name, time_out, notify); if (mr != MACH_MSG_SUCCESS) return mr; } return MACH_MSG_SUCCESS; }
kern_return_t ipc_object_copyout_name( ipc_space_t space, ipc_object_t object, mach_msg_type_name_t msgt_name, boolean_t overflow, mach_port_name_t name) { mach_port_name_t oname; ipc_entry_t oentry; ipc_entry_t entry; kern_return_t kr; #if IMPORTANCE_INHERITANCE int assertcnt = 0; ipc_importance_task_t task_imp = IIT_NULL; #endif /* IMPORTANCE_INHERITANCE */ assert(IO_VALID(object)); assert(io_otype(object) == IOT_PORT); kr = ipc_entry_alloc_name(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ if ((msgt_name != MACH_MSG_TYPE_PORT_SEND_ONCE) && ipc_right_reverse(space, object, &oname, &oentry)) { /* object is locked and active */ if (name != oname) { io_unlock(object); if (IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE) ipc_entry_dealloc(space, name, entry); is_write_unlock(space); return KERN_RIGHT_EXISTS; } assert(entry == oentry); assert(entry->ie_bits & MACH_PORT_TYPE_SEND_RECEIVE); } else { if (ipc_right_inuse(space, name, entry)) return KERN_NAME_EXISTS; assert(IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE); assert(entry->ie_object == IO_NULL); io_lock(object); if (!io_active(object)) { io_unlock(object); ipc_entry_dealloc(space, name, entry); is_write_unlock(space); return KERN_INVALID_CAPABILITY; } entry->ie_object = object; } /* space is write-locked and active, object is locked and active */ #if IMPORTANCE_INHERITANCE /* * We are slamming a receive right into the space, without * first having been enqueued on a port destined there. So, * we have to arrange to boost the task appropriately if this * port has assertions (and the task wants them). */ if (msgt_name == MACH_MSG_TYPE_PORT_RECEIVE) { ipc_port_t port = (ipc_port_t)object; if (space->is_task != TASK_NULL) { task_imp = space->is_task->task_imp_base; if (ipc_importance_task_is_any_receiver_type(task_imp)) { assertcnt = port->ip_impcount; ipc_importance_task_reference(task_imp); } } /* take port out of limbo */ assert(port->ip_tempowner != 0); port->ip_tempowner = 0; } #endif /* IMPORTANCE_INHERITANCE */ kr = ipc_right_copyout(space, name, entry, msgt_name, overflow, object); /* object is unlocked */ is_write_unlock(space); #if IMPORTANCE_INHERITANCE /* * Add the assertions to the task that we captured before */ if (task_imp != IIT_NULL) { ipc_importance_task_hold_internal_assertion(task_imp, assertcnt); ipc_importance_task_release(task_imp); } #endif /* IMPORTANCE_INHERITANCE */ return kr; }
kern_return_t ipc_object_copyout( ipc_space_t space, ipc_object_t object, mach_msg_type_name_t msgt_name, boolean_t overflow, mach_port_name_t *namep) { mach_port_name_t name; ipc_entry_t entry; kern_return_t kr; assert(IO_VALID(object)); assert(io_otype(object) == IOT_PORT); is_write_lock(space); for (;;) { if (!is_active(space)) { is_write_unlock(space); return KERN_INVALID_TASK; } if ((msgt_name != MACH_MSG_TYPE_PORT_SEND_ONCE) && ipc_right_reverse(space, object, &name, &entry)) { /* object is locked and active */ assert(entry->ie_bits & MACH_PORT_TYPE_SEND_RECEIVE); break; } name = CAST_MACH_PORT_TO_NAME(object); kr = ipc_entry_get(space, &name, &entry); if (kr != KERN_SUCCESS) { /* unlocks/locks space, so must start again */ kr = ipc_entry_grow_table(space, ITS_SIZE_NONE); if (kr != KERN_SUCCESS) return kr; /* space is unlocked */ continue; } assert(IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE); assert(entry->ie_object == IO_NULL); io_lock(object); if (!io_active(object)) { io_unlock(object); ipc_entry_dealloc(space, name, entry); is_write_unlock(space); return KERN_INVALID_CAPABILITY; } entry->ie_object = object; break; } /* space is write-locked and active, object is locked and active */ kr = ipc_right_copyout(space, name, entry, msgt_name, overflow, object); /* object is unlocked */ is_write_unlock(space); if (kr == KERN_SUCCESS) *namep = name; return kr; }
kern_return_t ipc_right_dnrequest( ipc_space_t space, mach_port_t name, boolean_t immediate, ipc_port_t notify, ipc_port_t *previousp) { ipc_port_t previous; for (;;) { ipc_entry_t entry; ipc_entry_bits_t bits; kern_return_t kr; kr = ipc_right_lookup_write(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ bits = entry->ie_bits; if (bits & MACH_PORT_TYPE_PORT_RIGHTS) { ipc_port_t port; ipc_port_request_index_t request; port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); if (!ipc_right_check(space, port, name, entry)) { /* port is locked and active */ if (notify == IP_NULL) { previous = ipc_right_dncancel_macro( space, port, name, entry); ip_unlock(port); is_write_unlock(space); break; } /* * If a registered soright exists, * want to atomically switch with it. * If ipc_port_dncancel finds us a * soright, then the following * ipc_port_dnrequest will reuse * that slot, so we are guaranteed * not to unlock and retry. */ previous = ipc_right_dncancel_macro(space, port, name, entry); kr = ipc_port_dnrequest(port, name, notify, &request); if (kr != KERN_SUCCESS) { assert(previous == IP_NULL); is_write_unlock(space); kr = ipc_port_dngrow(port); /* port is unlocked */ if (kr != KERN_SUCCESS) return kr; continue; } assert(request != 0); ip_unlock(port); entry->ie_request = request; is_write_unlock(space); break; } bits = entry->ie_bits; assert(bits & MACH_PORT_TYPE_DEAD_NAME); } if ((bits & MACH_PORT_TYPE_DEAD_NAME) && immediate && (notify != IP_NULL)) { mach_port_urefs_t urefs = IE_BITS_UREFS(bits); assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_DEAD_NAME); assert(urefs > 0); if (MACH_PORT_UREFS_OVERFLOW(urefs, 1)) { is_write_unlock(space); return KERN_UREFS_OVERFLOW; } entry->ie_bits = bits + 1; /* increment urefs */ is_write_unlock(space); ipc_notify_dead_name(notify, name); previous = IP_NULL; break; } is_write_unlock(space); if (bits & MACH_PORT_TYPE_PORT_OR_DEAD) return KERN_INVALID_ARGUMENT; else return KERN_INVALID_RIGHT; } *previousp = previous; return KERN_SUCCESS; }
kern_return_t ipc_object_copyout_name( ipc_space_t space, ipc_object_t object, mach_msg_type_name_t msgt_name, boolean_t overflow, mach_port_name_t name) { mach_port_name_t oname; ipc_entry_t oentry; ipc_entry_t entry; kern_return_t kr; assert(IO_VALID(object)); assert(io_otype(object) == IOT_PORT); kr = ipc_entry_alloc_name(space, name, &entry); if (kr != KERN_SUCCESS) return kr; /* space is write-locked and active */ if ((msgt_name != MACH_MSG_TYPE_PORT_SEND_ONCE) && ipc_right_reverse(space, object, &oname, &oentry)) { /* object is locked and active */ if (name != oname) { io_unlock(object); if (IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE) ipc_entry_dealloc(space, name, entry); is_write_unlock(space); return KERN_RIGHT_EXISTS; } assert(entry == oentry); assert(entry->ie_bits & MACH_PORT_TYPE_SEND_RECEIVE); } else { if (ipc_right_inuse(space, name, entry)) return KERN_NAME_EXISTS; assert(IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_NONE); assert(entry->ie_object == IO_NULL); io_lock(object); if (!io_active(object)) { io_unlock(object); ipc_entry_dealloc(space, name, entry); is_write_unlock(space); return KERN_INVALID_CAPABILITY; } entry->ie_object = object; } /* space is write-locked and active, object is locked and active */ kr = ipc_right_copyout(space, name, entry, msgt_name, overflow, object); /* object is unlocked */ is_write_unlock(space); return kr; }
kern_return_t ipc_right_dealloc( ipc_space_t space, mach_port_t name, ipc_entry_t entry) { ipc_entry_bits_t bits = entry->ie_bits; mach_port_type_t type = IE_BITS_TYPE(bits); assert(space->is_active); switch (type) { case MACH_PORT_TYPE_DEAD_NAME: { dead_name: assert(IE_BITS_UREFS(bits) > 0); assert(entry->ie_request == 0); assert(entry->ie_object == IO_NULL); assert((bits & IE_BITS_MAREQUEST) == 0); if (IE_BITS_UREFS(bits) == 1) ipc_entry_dealloc(space, name, entry); else entry->ie_bits = bits-1; /* decrement urefs */ is_write_unlock(space); break; } case MACH_PORT_TYPE_SEND_ONCE: { ipc_port_t port, dnrequest; assert(IE_BITS_UREFS(bits) == 1); assert((bits & IE_BITS_MAREQUEST) == 0); port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); if (ipc_right_check(space, port, name, entry)) { bits = entry->ie_bits; assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_DEAD_NAME); goto dead_name; } /* port is locked and active */ assert(port->ip_sorights > 0); dnrequest = ipc_right_dncancel_macro(space, port, name, entry); ip_unlock(port); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); is_write_unlock(space); ipc_notify_send_once(port); if (dnrequest != IP_NULL) ipc_notify_port_deleted(dnrequest, name); break; } case MACH_PORT_TYPE_SEND: { ipc_port_t port; ipc_port_t dnrequest = IP_NULL; ipc_port_t nsrequest = IP_NULL; mach_port_mscount_t mscount = 0; /* '=0' to shut up lint */ assert(IE_BITS_UREFS(bits) > 0); port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); if (ipc_right_check(space, port, name, entry)) { bits = entry->ie_bits; assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_DEAD_NAME); goto dead_name; } /* port is locked and active */ assert(port->ip_srights > 0); if (IE_BITS_UREFS(bits) == 1) { if (--port->ip_srights == 0) { nsrequest = port->ip_nsrequest; if (nsrequest != IP_NULL) { port->ip_nsrequest = IP_NULL; mscount = port->ip_mscount; } } dnrequest = ipc_right_dncancel_macro(space, port, name, entry); ipc_reverse_remove(space, (ipc_object_t) port); if (bits & IE_BITS_MAREQUEST) ipc_marequest_cancel(space, name); ip_release(port); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); } else entry->ie_bits = bits-1; /* decrement urefs */ ip_unlock(port); /* even if dropped a ref, port is active */ is_write_unlock(space); if (nsrequest != IP_NULL) ipc_notify_no_senders(nsrequest, mscount); if (dnrequest != IP_NULL) ipc_notify_port_deleted(dnrequest, name); break; } case MACH_PORT_TYPE_SEND_RECEIVE: { ipc_port_t port; ipc_port_t nsrequest = IP_NULL; mach_port_mscount_t mscount = 0; /* '=0' to shut up lint */ assert(IE_BITS_UREFS(bits) > 0); port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); ip_lock(port); assert(ip_active(port)); assert(port->ip_receiver_name == name); assert(port->ip_receiver == space); assert(port->ip_srights > 0); if (IE_BITS_UREFS(bits) == 1) { if (--port->ip_srights == 0) { nsrequest = port->ip_nsrequest; if (nsrequest != IP_NULL) { port->ip_nsrequest = IP_NULL; mscount = port->ip_mscount; } } entry->ie_bits = bits &~ (IE_BITS_UREFS_MASK| MACH_PORT_TYPE_SEND); } else entry->ie_bits = bits-1; /* decrement urefs */ ip_unlock(port); is_write_unlock(space); if (nsrequest != IP_NULL) ipc_notify_no_senders(nsrequest, mscount); break; } default: is_write_unlock(space); return KERN_INVALID_RIGHT; } return KERN_SUCCESS; }
kern_return_t ipc_right_delta( ipc_space_t space, mach_port_t name, ipc_entry_t entry, mach_port_right_t right, mach_port_delta_t delta) { ipc_entry_bits_t bits = entry->ie_bits; assert(space->is_active); assert(right < MACH_PORT_RIGHT_NUMBER); /* Rights-specific restrictions and operations. */ switch (right) { case MACH_PORT_RIGHT_PORT_SET: { ipc_pset_t pset; if ((bits & MACH_PORT_TYPE_PORT_SET) == 0) goto invalid_right; assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_PORT_SET); assert(IE_BITS_UREFS(bits) == 0); assert((bits & IE_BITS_MAREQUEST) == 0); assert(entry->ie_request == 0); if (delta == 0) goto success; if (delta != -1) goto invalid_value; pset = (ipc_pset_t) entry->ie_object; assert(pset != IPS_NULL); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); ips_lock(pset); assert(ips_active(pset)); is_write_unlock(space); ipc_pset_destroy(pset); /* consumes ref, unlocks */ break; } case MACH_PORT_RIGHT_RECEIVE: { ipc_port_t port; ipc_port_t dnrequest = IP_NULL; if ((bits & MACH_PORT_TYPE_RECEIVE) == 0) goto invalid_right; if (delta == 0) goto success; if (delta != -1) goto invalid_value; if (bits & IE_BITS_MAREQUEST) { bits &= ~IE_BITS_MAREQUEST; ipc_marequest_cancel(space, name); } port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); /* * The port lock is needed for ipc_right_dncancel; * otherwise, we wouldn't have to take the lock * until just before dropping the space lock. */ ip_lock(port); assert(ip_active(port)); assert(port->ip_receiver_name == name); assert(port->ip_receiver == space); if (bits & MACH_PORT_TYPE_SEND) { assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_SEND_RECEIVE); assert(IE_BITS_UREFS(bits) > 0); assert(IE_BITS_UREFS(bits) < MACH_PORT_UREFS_MAX); assert(port->ip_srights > 0); /* * The remaining send right turns into a * dead name. Notice we don't decrement * ip_srights, generate a no-senders notif, * or use ipc_right_dncancel, because the * port is destroyed "first". */ bits &= ~IE_BITS_TYPE_MASK; bits |= MACH_PORT_TYPE_DEAD_NAME; if (entry->ie_request != 0) { entry->ie_request = 0; bits++; /* increment urefs */ } entry->ie_bits = bits; entry->ie_object = IO_NULL; } else { assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_RECEIVE); assert(IE_BITS_UREFS(bits) == 0); dnrequest = ipc_right_dncancel_macro(space, port, name, entry); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); } is_write_unlock(space); ipc_port_clear_receiver(port); ipc_port_destroy(port); /* consumes ref, unlocks */ if (dnrequest != IP_NULL) ipc_notify_port_deleted(dnrequest, name); break; } case MACH_PORT_RIGHT_SEND_ONCE: { ipc_port_t port, dnrequest; if ((bits & MACH_PORT_TYPE_SEND_ONCE) == 0) goto invalid_right; assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_SEND_ONCE); assert(IE_BITS_UREFS(bits) == 1); assert((bits & IE_BITS_MAREQUEST) == 0); if ((delta > 0) || (delta < -1)) goto invalid_value; port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); if (ipc_right_check(space, port, name, entry)) { assert(!(entry->ie_bits & MACH_PORT_TYPE_SEND_ONCE)); goto invalid_right; } /* port is locked and active */ assert(port->ip_sorights > 0); if (delta == 0) { ip_unlock(port); goto success; } dnrequest = ipc_right_dncancel_macro(space, port, name, entry); ip_unlock(port); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); is_write_unlock(space); ipc_notify_send_once(port); if (dnrequest != IP_NULL) ipc_notify_port_deleted(dnrequest, name); break; } case MACH_PORT_RIGHT_DEAD_NAME: { mach_port_urefs_t urefs; if (bits & MACH_PORT_TYPE_SEND_RIGHTS) { ipc_port_t port; port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); if (!ipc_right_check(space, port, name, entry)) { /* port is locked and active */ ip_unlock(port); goto invalid_right; } bits = entry->ie_bits; } else if ((bits & MACH_PORT_TYPE_DEAD_NAME) == 0) goto invalid_right; assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_DEAD_NAME); assert(IE_BITS_UREFS(bits) > 0); assert((bits & IE_BITS_MAREQUEST) == 0); assert(entry->ie_object == IO_NULL); assert(entry->ie_request == 0); urefs = IE_BITS_UREFS(bits); if (MACH_PORT_UREFS_UNDERFLOW(urefs, delta)) goto invalid_value; if (MACH_PORT_UREFS_OVERFLOW(urefs, delta)) goto urefs_overflow; if ((urefs + delta) == 0) ipc_entry_dealloc(space, name, entry); else entry->ie_bits = bits + delta; is_write_unlock(space); break; } case MACH_PORT_RIGHT_SEND: { mach_port_urefs_t urefs; ipc_port_t port; ipc_port_t dnrequest = IP_NULL; ipc_port_t nsrequest = IP_NULL; mach_port_mscount_t mscount = 0; /* '=0' to shut up lint */ if ((bits & MACH_PORT_TYPE_SEND) == 0) goto invalid_right; /* maximum urefs for send is MACH_PORT_UREFS_MAX-1 */ urefs = IE_BITS_UREFS(bits); if (MACH_PORT_UREFS_UNDERFLOW(urefs, delta)) goto invalid_value; if (MACH_PORT_UREFS_OVERFLOW(urefs+1, delta)) goto urefs_overflow; port = (ipc_port_t) entry->ie_object; assert(port != IP_NULL); if (ipc_right_check(space, port, name, entry)) { assert((entry->ie_bits & MACH_PORT_TYPE_SEND) == 0); goto invalid_right; } /* port is locked and active */ assert(port->ip_srights > 0); if ((urefs + delta) == 0) { if (--port->ip_srights == 0) { nsrequest = port->ip_nsrequest; if (nsrequest != IP_NULL) { port->ip_nsrequest = IP_NULL; mscount = port->ip_mscount; } } if (bits & MACH_PORT_TYPE_RECEIVE) { assert(port->ip_receiver_name == name); assert(port->ip_receiver == space); assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_SEND_RECEIVE); entry->ie_bits = bits &~ (IE_BITS_UREFS_MASK| MACH_PORT_TYPE_SEND); } else { assert(IE_BITS_TYPE(bits) == MACH_PORT_TYPE_SEND); dnrequest = ipc_right_dncancel_macro( space, port, name, entry); ipc_reverse_remove(space, (ipc_object_t) port); if (bits & IE_BITS_MAREQUEST) ipc_marequest_cancel(space, name); ip_release(port); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); } } else entry->ie_bits = bits + delta; ip_unlock(port); /* even if dropped a ref, port is active */ is_write_unlock(space); if (nsrequest != IP_NULL) ipc_notify_no_senders(nsrequest, mscount); if (dnrequest != IP_NULL) ipc_notify_port_deleted(dnrequest, name); break; } default: #if MACH_ASSERT assert(!"ipc_right_delta: strange right"); #else panic("ipc_right_delta: strange right"); #endif } return KERN_SUCCESS; success: is_write_unlock(space); return KERN_SUCCESS; invalid_right: is_write_unlock(space); return KERN_INVALID_RIGHT; invalid_value: is_write_unlock(space); return KERN_INVALID_VALUE; urefs_overflow: is_write_unlock(space); return KERN_UREFS_OVERFLOW; }
void ipc_space_destroy( ipc_space_t space) { ipc_tree_entry_t tentry; ipc_entry_t table; ipc_entry_num_t size; mach_port_index_t index; boolean_t active; assert(space != IS_NULL); is_write_lock(space); active = space->is_active; space->is_active = FALSE; is_write_unlock(space); if (!active) return; /* * If somebody is trying to grow the table, * we must wait until they finish and figure * out the space died. */ is_read_lock(space); while (space->is_growing) { assert_wait((event_t) space, FALSE); is_read_unlock(space); thread_block((void (*)(void)) 0); is_read_lock(space); } is_read_unlock(space); /* * Now we can futz with it without having it locked. */ table = space->is_table; size = space->is_table_size; for (index = 0; index < size; index++) { ipc_entry_t entry = &table[index]; mach_port_type_t type = IE_BITS_TYPE(entry->ie_bits); if (type != MACH_PORT_TYPE_NONE) { mach_port_t name = MACH_PORT_MAKEB(index, entry->ie_bits); ipc_right_clean(space, name, entry); } } it_entries_free(space->is_table_next-1, table); for (tentry = ipc_splay_traverse_start(&space->is_tree); tentry != ITE_NULL; tentry = ipc_splay_traverse_next(&space->is_tree, TRUE)) { mach_port_type_t type = IE_BITS_TYPE(tentry->ite_bits); mach_port_t name = tentry->ite_name; assert(type != MACH_PORT_TYPE_NONE); /* use object before ipc_right_clean releases ref */ if (type == MACH_PORT_TYPE_SEND) ipc_hash_global_delete(space, tentry->ite_object, name, tentry); ipc_right_clean(space, name, &tentry->ite_entry); } ipc_splay_traverse_finish(&space->is_tree); /* * Because the space is now dead, * we must release the "active" reference for it. * Our caller still has his reference. */ is_release(space); }
kern_return_t ipc_right_destroy( ipc_space_t space, mach_port_t name, ipc_entry_t entry) { ipc_entry_bits_t bits = entry->ie_bits; mach_port_type_t type = IE_BITS_TYPE(bits); assert(space->is_active); switch (type) { case MACH_PORT_TYPE_DEAD_NAME: assert(entry->ie_request == 0); assert(entry->ie_object == IO_NULL); assert((bits & IE_BITS_MAREQUEST) == 0); ipc_entry_dealloc(space, name, entry); is_write_unlock(space); break; case MACH_PORT_TYPE_PORT_SET: { ipc_pset_t pset = (ipc_pset_t) entry->ie_object; assert(entry->ie_request == 0); assert(pset != IPS_NULL); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); ips_lock(pset); assert(ips_active(pset)); is_write_unlock(space); ipc_pset_destroy(pset); /* consumes ref, unlocks */ break; } case MACH_PORT_TYPE_SEND: case MACH_PORT_TYPE_RECEIVE: case MACH_PORT_TYPE_SEND_RECEIVE: case MACH_PORT_TYPE_SEND_ONCE: { ipc_port_t port = (ipc_port_t) entry->ie_object; ipc_port_t nsrequest = IP_NULL; mach_port_mscount_t mscount = 0; /* '=0' to shut up lint */ ipc_port_t dnrequest; assert(port != IP_NULL); if (bits & IE_BITS_MAREQUEST) { assert(type & MACH_PORT_TYPE_SEND_RECEIVE); ipc_marequest_cancel(space, name); } if (type == MACH_PORT_TYPE_SEND) ipc_reverse_remove(space, (ipc_object_t) port); ip_lock(port); if (!ip_active(port)) { assert((type & MACH_PORT_TYPE_RECEIVE) == 0); ip_release(port); ip_check_unlock(port); entry->ie_request = 0; entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); is_write_unlock(space); break; } dnrequest = ipc_right_dncancel_macro(space, port, name, entry); entry->ie_object = IO_NULL; ipc_entry_dealloc(space, name, entry); is_write_unlock(space); if (type & MACH_PORT_TYPE_SEND) { assert(port->ip_srights > 0); if (--port->ip_srights == 0) { nsrequest = port->ip_nsrequest; if (nsrequest != IP_NULL) { port->ip_nsrequest = IP_NULL; mscount = port->ip_mscount; } } } if (type & MACH_PORT_TYPE_RECEIVE) { assert(ip_active(port)); assert(port->ip_receiver == space); ipc_port_clear_receiver(port); ipc_port_destroy(port); /* consumes our ref, unlocks */ } else if (type & MACH_PORT_TYPE_SEND_ONCE) { assert(port->ip_sorights > 0); ip_unlock(port); ipc_notify_send_once(port); /* consumes our ref */ } else { assert(port->ip_receiver != space); ip_release(port); ip_unlock(port); } if (nsrequest != IP_NULL) ipc_notify_no_senders(nsrequest, mscount); if (dnrequest != IP_NULL) ipc_notify_port_deleted(dnrequest, name); break; } default: #if MACH_ASSERT assert(!"ipc_right_destroy: strange type"); #else panic("ipc_right_destroy: strange type"); #endif } return KERN_SUCCESS; }
void exception_raise( ipc_port_t dest_port, ipc_port_t thread_port, ipc_port_t task_port, integer_t _exception, integer_t code, integer_t subcode) { ipc_thread_t self = current_thread(); ipc_thread_t receiver; ipc_port_t reply_port; ipc_mqueue_t dest_mqueue; ipc_mqueue_t reply_mqueue; ipc_kmsg_t kmsg; mach_msg_return_t mr; assert(IP_VALID(dest_port)); /* * We will eventually need a message buffer. * Grab the buffer now, while nothing is locked. * This buffer will get handed to the exception server, * and it will give the buffer back with its reply. */ kmsg = ikm_cache(); if (kmsg != IKM_NULL) { ikm_cache() = IKM_NULL; ikm_check_initialized(kmsg, IKM_SAVED_KMSG_SIZE); } else { kmsg = ikm_alloc(IKM_SAVED_MSG_SIZE); if (kmsg == IKM_NULL) panic("exception_raise"); ikm_init(kmsg, IKM_SAVED_MSG_SIZE); } /* * We need a reply port for the RPC. * Check first for a cached port. */ ith_lock(self); assert(self->ith_self != IP_NULL); reply_port = self->ith_rpc_reply; if (reply_port == IP_NULL) { ith_unlock(self); reply_port = ipc_port_alloc_reply(); ith_lock(self); if ((reply_port == IP_NULL) || (self->ith_rpc_reply != IP_NULL)) panic("exception_raise"); self->ith_rpc_reply = reply_port; } ip_lock(reply_port); assert(ip_active(reply_port)); ith_unlock(self); /* * Make a naked send-once right for the reply port, * to hand to the exception server. * Make an extra reference for the reply port, * to receive on. This protects us against * mach_msg_abort_rpc. */ reply_port->ip_sorights++; ip_reference(reply_port); ip_reference(reply_port); self->ith_port = reply_port; reply_mqueue = &reply_port->ip_messages; imq_lock(reply_mqueue); assert(ipc_kmsg_queue_empty(&reply_mqueue->imq_messages)); ip_unlock(reply_port); /* * Make sure we can queue to the destination port. */ if (!ip_lock_try(dest_port)) { imq_unlock(reply_mqueue); goto slow_exception_raise; } if (!ip_active(dest_port) || (dest_port->ip_receiver == ipc_space_kernel)) { imq_unlock(reply_mqueue); ip_unlock(dest_port); goto slow_exception_raise; } /* * Find the destination message queue. */ { ipc_pset_t dest_pset; dest_pset = dest_port->ip_pset; if (dest_pset == IPS_NULL) dest_mqueue = &dest_port->ip_messages; else dest_mqueue = &dest_pset->ips_messages; } if (!imq_lock_try(dest_mqueue)) { imq_unlock(reply_mqueue); ip_unlock(dest_port); goto slow_exception_raise; } /* * Safe to unlock dest_port, because we hold * dest_mqueue locked. We never bother changing * dest_port->ip_msgcount. */ ip_unlock(dest_port); receiver = ipc_thread_queue_first(&dest_mqueue->imq_threads); if ((receiver == ITH_NULL) || !((receiver->swap_func == (void (*)()) mach_msg_continue) || ((receiver->swap_func == (void (*)()) mach_msg_receive_continue) && (sizeof(struct mach_exception) <= receiver->ith_msize) && ((receiver->ith_option & MACH_RCV_NOTIFY) == 0))) || !thread_handoff(self, exception_raise_continue, receiver)) { imq_unlock(reply_mqueue); imq_unlock(dest_mqueue); goto slow_exception_raise; } counter(c_exception_raise_block++); assert(current_thread() == receiver); /* * We need to finish preparing self for its * time asleep in reply_mqueue. self is left * holding the extra ref for reply_port. */ ipc_thread_enqueue_macro(&reply_mqueue->imq_threads, self); self->ith_state = MACH_RCV_IN_PROGRESS; self->ith_msize = MACH_MSG_SIZE_MAX; imq_unlock(reply_mqueue); /* * Finish extracting receiver from dest_mqueue. */ ipc_thread_rmqueue_first_macro( &dest_mqueue->imq_threads, receiver); imq_unlock(dest_mqueue); /* * Release the receiver's reference for his object. */ { ipc_object_t object = receiver->ith_object; io_lock(object); io_release(object); io_check_unlock(object); } { struct mach_exception *exc = (struct mach_exception *) &kmsg->ikm_header; ipc_space_t space = receiver->task->itk_space; /* * We are running as the receiver now. We hold * the following resources, which must be consumed: * kmsg, send-once right for reply_port * send rights for dest_port, thread_port, task_port * Synthesize a kmsg for copyout to the receiver. */ exc->Head.msgh_bits = (MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND_ONCE, MACH_MSG_TYPE_PORT_SEND) | MACH_MSGH_BITS_COMPLEX); exc->Head.msgh_size = sizeof *exc; /* exc->Head.msgh_remote_port later */ /* exc->Head.msgh_local_port later */ exc->Head.msgh_seqno = 0; exc->Head.msgh_id = MACH_EXCEPTION_ID; exc->threadType = exc_port_proto; /* exc->thread later */ exc->taskType = exc_port_proto; /* exc->task later */ exc->exceptionType = exc_code_proto; exc->exception = _exception; exc->codeType = exc_code_proto; exc->code = code; exc->subcodeType = exc_code_proto; exc->subcode = subcode; /* * Check that the receiver can handle the message. */ if (receiver->ith_rcv_size < sizeof(struct mach_exception)) { /* * ipc_kmsg_destroy is a handy way to consume * the resources we hold, but it requires setup. */ exc->Head.msgh_bits = (MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, MACH_MSG_TYPE_PORT_SEND_ONCE) | MACH_MSGH_BITS_COMPLEX); exc->Head.msgh_remote_port = (mach_port_t) dest_port; exc->Head.msgh_local_port = (mach_port_t) reply_port; exc->thread = (mach_port_t) thread_port; exc->task = (mach_port_t) task_port; ipc_kmsg_destroy(kmsg); thread_syscall_return(MACH_RCV_TOO_LARGE); /*NOTREACHED*/ } is_write_lock(space); assert(space->is_active); /* * To do an atomic copyout, need simultaneous * locks on both ports and the space. */ ip_lock(dest_port); if (!ip_active(dest_port) || !ip_lock_try(reply_port)) { abort_copyout: ip_unlock(dest_port); is_write_unlock(space); /* * Oh well, we have to do the header the slow way. * First make it look like it's in-transit. */ exc->Head.msgh_bits = (MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, MACH_MSG_TYPE_PORT_SEND_ONCE) | MACH_MSGH_BITS_COMPLEX); exc->Head.msgh_remote_port = (mach_port_t) dest_port; exc->Head.msgh_local_port = (mach_port_t) reply_port; mr = ipc_kmsg_copyout_header(&exc->Head, space, MACH_PORT_NULL); if (mr == MACH_MSG_SUCCESS) goto copyout_body; /* * Ack! Prepare for ipc_kmsg_copyout_dest. * It will consume thread_port and task_port. */ exc->thread = (mach_port_t) thread_port; exc->task = (mach_port_t) task_port; ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(receiver->ith_msg, kmsg, sizeof(mach_msg_header_t)); thread_syscall_return(mr); /*NOTREACHED*/ } if (!ip_active(reply_port)) { ip_unlock(reply_port); goto abort_copyout; } assert(reply_port->ip_sorights > 0); ip_unlock(reply_port); { kern_return_t kr; ipc_entry_t entry; kr = ipc_entry_get (space, &exc->Head.msgh_remote_port, &entry); if (kr) goto abort_copyout; { mach_port_gen_t gen; assert((entry->ie_bits &~ IE_BITS_GEN_MASK) == 0); gen = entry->ie_bits + IE_BITS_GEN_ONE; /* optimized ipc_right_copyout */ entry->ie_bits = gen | (MACH_PORT_TYPE_SEND_ONCE | 1); } entry->ie_object = (ipc_object_t) reply_port; is_write_unlock(space); } /* optimized ipc_object_copyout_dest */ assert(dest_port->ip_srights > 0); ip_release(dest_port); exc->Head.msgh_local_port = ((dest_port->ip_receiver == space) ? dest_port->ip_receiver_name : MACH_PORT_NULL); if ((--dest_port->ip_srights == 0) && (dest_port->ip_nsrequest != IP_NULL)) { ipc_port_t nsrequest; mach_port_mscount_t mscount; /* a rather rare case */ nsrequest = dest_port->ip_nsrequest; mscount = dest_port->ip_mscount; dest_port->ip_nsrequest = IP_NULL; ip_unlock(dest_port); ipc_notify_no_senders(nsrequest, mscount); } else ip_unlock(dest_port); copyout_body: /* * Optimized version of ipc_kmsg_copyout_body, * to handle the two ports in the body. */ mr = (ipc_kmsg_copyout_object(space, (ipc_object_t) thread_port, MACH_MSG_TYPE_PORT_SEND, &exc->thread) | ipc_kmsg_copyout_object(space, (ipc_object_t) task_port, MACH_MSG_TYPE_PORT_SEND, &exc->task)); if (mr != MACH_MSG_SUCCESS) { (void) ipc_kmsg_put(receiver->ith_msg, kmsg, kmsg->ikm_header.msgh_size); thread_syscall_return(mr | MACH_RCV_BODY_ERROR); /*NOTREACHED*/ } } /* * Optimized version of ipc_kmsg_put. * We must check ikm_cache after copyoutmsg. */ ikm_check_initialized(kmsg, kmsg->ikm_size); assert(kmsg->ikm_size == IKM_SAVED_KMSG_SIZE); if (copyoutmsg(&kmsg->ikm_header, receiver->ith_msg, sizeof(struct mach_exception)) || (ikm_cache() != IKM_NULL)) { mr = ipc_kmsg_put(receiver->ith_msg, kmsg, kmsg->ikm_header.msgh_size); thread_syscall_return(mr); /*NOTREACHED*/ } ikm_cache() = kmsg; thread_syscall_return(MACH_MSG_SUCCESS); /*NOTREACHED*/ #ifndef __GNUC__ return; /* help for the compiler */ #endif slow_exception_raise: { struct mach_exception *exc = (struct mach_exception *) &kmsg->ikm_header; ipc_kmsg_t reply_kmsg; mach_port_seqno_t reply_seqno; exception_raise_misses++; /* * We hold the following resources, which must be consumed: * kmsg, send-once right and ref for reply_port * send rights for dest_port, thread_port, task_port * Synthesize a kmsg to send. */ exc->Head.msgh_bits = (MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, MACH_MSG_TYPE_PORT_SEND_ONCE) | MACH_MSGH_BITS_COMPLEX); exc->Head.msgh_size = sizeof *exc; exc->Head.msgh_remote_port = (mach_port_t) dest_port; exc->Head.msgh_local_port = (mach_port_t) reply_port; exc->Head.msgh_seqno = 0; exc->Head.msgh_id = MACH_EXCEPTION_ID; exc->threadType = exc_port_proto; exc->thread = (mach_port_t) thread_port; exc->taskType = exc_port_proto; exc->task = (mach_port_t) task_port; exc->exceptionType = exc_code_proto; exc->exception = _exception; exc->codeType = exc_code_proto; exc->code = code; exc->subcodeType = exc_code_proto; exc->subcode = subcode; ipc_mqueue_send_always(kmsg); /* * We are left with a ref for reply_port, * which we use to receive the reply message. */ ip_lock(reply_port); if (!ip_active(reply_port)) { ip_unlock(reply_port); exception_raise_continue_slow(MACH_RCV_PORT_DIED, IKM_NULL, /*dummy*/0); /*NOTREACHED*/ } imq_lock(reply_mqueue); ip_unlock(reply_port); mr = ipc_mqueue_receive(reply_mqueue, MACH_MSG_OPTION_NONE, MACH_MSG_SIZE_MAX, MACH_MSG_TIMEOUT_NONE, FALSE, exception_raise_continue, &reply_kmsg, &reply_seqno); /* reply_mqueue is unlocked */ exception_raise_continue_slow(mr, reply_kmsg, reply_seqno); /*NOTREACHED*/ } }