示例#1
0
/// @brief Create an isl map from a OpenScop matrix.
///
/// @param m The OpenScop matrix to translate.
/// @param Space The dimensions that are contained in the OpenScop matrix.
///
/// @return An isl map representing m.
isl_map *mapFromMatrix(scoplib_matrix_p m, __isl_take isl_space *Space,
                       unsigned scatteringDims) {
  isl_basic_map *bmap = isl_basic_map_universe(isl_space_copy(Space));

  for (unsigned i = 0; i < m->NbRows; ++i) {
    isl_constraint *c;

    c = constraintFromMatrixRow(m->p[i], isl_space_copy(Space));

    mpz_t minusOne;
    mpz_init(minusOne);
    mpz_set_si(minusOne, -1);
    isl_constraint_set_coefficient(c, isl_dim_out, i, minusOne);

    bmap = isl_basic_map_add_constraint(bmap, c);
  }

  for (unsigned i = m->NbRows; i < scatteringDims; i++) {
    isl_constraint *c;

    c = isl_equality_alloc(isl_local_space_from_space(isl_space_copy(Space)));

    mpz_t One;
    mpz_init(One);
    mpz_set_si(One, 1);
    isl_constraint_set_coefficient(c, isl_dim_out, i, One);

    bmap = isl_basic_map_add_constraint(bmap, c);
  }

  isl_space_free(Space);

  return isl_map_from_basic_map(bmap);
}
static
isl_map* build_access_function (scoplib_scop_p scop,
				                    scoplib_statement_p s,
				                    scoplib_matrix_p m,
						    isl_space* space,
						    isl_ctx* ctxt,
						    int* row_pos,
						    int array_id)
{
  isl_map* ret = NULL;
  int i;
  isl_val* tmp = isl_val_int_from_si (ctxt, 0);
  for (i = *row_pos; i < m->NbRows; ++i)
    {
      if (SCOPVAL_get_si(m->p[i][0]) == array_id)
	{
	  ret = isl_map_universe (isl_space_copy (space));
	  int pos = 0;
	  do
	    {
	      isl_local_space* ls =
		isl_local_space_from_space (isl_space_copy (space));
	      isl_constraint* cst = isl_equality_alloc (isl_local_space_copy (ls));

	      // Set input dimensions.
	      int k;
	      for (k = 0; k < s->nb_iterators; ++k)
		{
		  tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1]));
		  cst = isl_constraint_set_coefficient_val (cst, isl_dim_in, k, isl_val_copy(tmp));
		}
	      for (k = 0; k < scop->nb_parameters; ++k)
		{
		  tmp =
		    isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1+s->nb_iterators]));
		  cst =
		    isl_constraint_set_coefficient_val (cst, isl_dim_param, k,
							isl_val_copy (tmp));
		}
	      tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][m->NbColumns - 1]));
	      cst = isl_constraint_set_constant_val (cst, isl_val_copy(tmp));
	      // Set output dimension.
	      tmp = isl_val_set_si (tmp, -1);
	      isl_constraint_set_coefficient_val (cst, isl_dim_out, pos++, isl_val_copy (tmp));

	      // Insert constraint.
	      ret = isl_map_add_constraint (ret, cst);
	      ++i;
	    }
	  while (i < m->NbRows && SCOPVAL_get_si(m->p[i][0]) == 0);
	  *row_pos = i;
	  break;
       }
    }
  isl_val_free (tmp);

  return ret;
}
示例#3
0
/* Construct a parameter compression for "bset".
 * We basically just call isl_mat_parameter_compression with the right input
 * and then extend the resulting matrix to include the variables.
 *
 * Let the equalities be given as
 *
 *	B(p) + A x = 0
 *
 * and let [H 0] be the Hermite Normal Form of A, then
 *
 *	H^-1 B(p)
 *
 * needs to be integer, so we impose that each row is divisible by
 * the denominator.
 */
__isl_give isl_morph *isl_basic_set_parameter_compression(
	__isl_keep isl_basic_set *bset)
{
	unsigned nparam;
	unsigned nvar;
	int n_eq;
	isl_mat *H, *B;
	isl_vec *d;
	isl_mat *map, *inv;
	isl_basic_set *dom, *ran;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return isl_morph_empty(bset);
	if (bset->n_eq == 0)
		return isl_morph_identity(bset);

	isl_assert(bset->ctx, bset->n_div == 0, return NULL);

	n_eq = bset->n_eq;
	nparam = isl_basic_set_dim(bset, isl_dim_param);
	nvar = isl_basic_set_dim(bset, isl_dim_set);

	isl_assert(bset->ctx, n_eq <= nvar, return NULL);

	d = isl_vec_alloc(bset->ctx, n_eq);
	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
	H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 1 + nparam, nvar);
	H = isl_mat_left_hermite(H, 0, NULL, NULL);
	H = isl_mat_drop_cols(H, n_eq, nvar - n_eq);
	H = isl_mat_lin_to_aff(H);
	H = isl_mat_right_inverse(H);
	if (!H || !d)
		goto error;
	isl_seq_set(d->el, H->row[0][0], d->size);
	H = isl_mat_drop_rows(H, 0, 1);
	H = isl_mat_drop_cols(H, 0, 1);
	B = isl_mat_product(H, B);
	inv = isl_mat_parameter_compression(B, d);
	inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
	map = isl_mat_right_inverse(isl_mat_copy(inv));

	dom = isl_basic_set_universe(isl_space_copy(bset->dim));
	ran = isl_basic_set_universe(isl_space_copy(bset->dim));

	return isl_morph_alloc(dom, ran, map, inv);
error:
	isl_mat_free(H);
	isl_mat_free(B);
	isl_vec_free(d);
	return NULL;
}
示例#4
0
/// @brief Create an isl map from a OpenScop matrix.
///
/// @param m The OpenScop matrix to translate.
/// @param Space The dimensions that are contained in the OpenScop matrix.
///
/// @return An isl map representing m.
isl_map *mapFromMatrix(scoplib_matrix_p m, __isl_take isl_space *Space) {
  isl_basic_map *bmap = isl_basic_map_universe(isl_space_copy(Space));

  for (unsigned i = 0; i < m->NbRows; ++i) {
    isl_constraint *c;

    c = constraintFromMatrixRowFull(m->p[i], isl_space_copy(Space));
    bmap = isl_basic_map_add_constraint(bmap, c);
  }

  isl_space_free(Space);

  return isl_map_from_basic_map(bmap);
}
示例#5
0
/* Create a graft for "node" with no guards and no enforced conditions.
 */
__isl_give isl_ast_graft *isl_ast_graft_alloc(
	__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build)
{
	isl_ctx *ctx;
	isl_space *space;
	isl_ast_graft *graft;

	if (!node)
		return NULL;

	ctx = isl_ast_node_get_ctx(node);
	graft = isl_calloc_type(ctx, isl_ast_graft);
	if (!graft)
		goto error;

	space = isl_ast_build_get_space(build, 1);

	graft->ref = 1;
	graft->node = node;
	graft->guard = isl_set_universe(isl_space_copy(space));
	graft->enforced = isl_basic_set_universe(space);

	if (!graft->guard || !graft->enforced)
		return isl_ast_graft_free(graft);

	return graft;
error:
	isl_ast_node_free(node);
	return NULL;
}
示例#6
0
__isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph)
{
	if (!morph)
		return NULL;
	
	return isl_space_copy(morph->ran->dim);
}
示例#7
0
/* Apply the morphism to the set.
 */
__isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph,
	__isl_take isl_set *set)
{
	int i;

	if (!morph || !set)
		goto error;

	isl_assert(set->ctx, isl_space_is_equal(set->dim, morph->dom->dim), goto error);

	set = isl_set_cow(set);
	if (!set)
		goto error;

	isl_space_free(set->dim);
	set->dim = isl_space_copy(morph->ran->dim);
	if (!set->dim)
		goto error;

	for (i = 0; i < set->n; ++i) {
		set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]);
		if (!set->p[i])
			goto error;
	}

	isl_morph_free(morph);

	ISL_F_CLR(set, ISL_SET_NORMALIZED);

	return set;
error:
	isl_set_free(set);
	isl_morph_free(morph);
	return NULL;
}
示例#8
0
/* Given a lower and upper bound on the final variable and constraints
 * on the remaining variables where these bounds are active,
 * eliminate the variable from data->poly based on these bounds.
 * If the polynomial has been determined to be monotonic
 * in the variable, then simply plug in the appropriate bound.
 * If the current polynomial is tight and if this bound is integer,
 * then the result is still tight.  In all other cases, the results
 * may not be tight.
 * Otherwise, plug in the largest bound (in absolute value) in
 * the positive terms (if an upper bound is wanted) or the negative terms
 * (if a lower bounded is wanted) and the other bound in the other terms.
 *
 * If all variables have been eliminated, then record the result.
 * Ohterwise, recurse on the next variable.
 */
static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower,
	__isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
	void *user)
{
	struct range_data *data = (struct range_data *)user;
	int save_tight = data->tight;
	isl_qpolynomial *poly;
	isl_stat r;
	unsigned nvar;

	nvar = isl_basic_set_dim(bset, isl_dim_set);

	if (data->monotonicity) {
		isl_qpolynomial *sub;
		isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
		if (data->monotonicity * data->sign > 0) {
			if (data->tight)
				data->tight = bound_is_integer(upper, nvar);
			sub = bound2poly(upper, dim, nvar, 1);
			isl_constraint_free(lower);
		} else {
			if (data->tight)
				data->tight = bound_is_integer(lower, nvar);
			sub = bound2poly(lower, dim, nvar, -1);
			isl_constraint_free(upper);
		}
		poly = isl_qpolynomial_copy(data->poly);
		poly = plug_in_at_pos(poly, nvar, sub, data);
		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
	} else {
		isl_qpolynomial *l, *u;
		isl_qpolynomial *pos, *neg;
		isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
		unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
		int sign = data->sign * data->signs[nparam + nvar];

		data->tight = 0;

		u = bound2poly(upper, isl_space_copy(dim), nvar, 1);
		l = bound2poly(lower, dim, nvar, -1);

		pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
		neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);

		pos = plug_in_at_pos(pos, nvar, u, data);
		neg = plug_in_at_pos(neg, nvar, l, data);

		poly = isl_qpolynomial_add(pos, neg);
		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
	}

	if (isl_basic_set_dim(bset, isl_dim_set) == 0)
		r = add_guarded_poly(bset, poly, data);
	else
		r = propagate_on_domain(bset, poly, data);

	data->tight = save_tight;

	return r;
}
示例#9
0
/* Construct a basic set described by the "n" equalities of "bset" starting
 * at "first".
 */
static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
	unsigned first, unsigned n)
{
	int i, k;
	isl_basic_set *eq;
	unsigned total;

	isl_assert(bset->ctx, bset->n_div == 0, return NULL);

	total = isl_basic_set_total_dim(bset);
	eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0);
	if (!eq)
		return NULL;
	for (i = 0; i < n; ++i) {
		k = isl_basic_set_alloc_equality(eq);
		if (k < 0)
			goto error;
		isl_seq_cpy(eq->eq[k], bset->eq[first + k], 1 + total);
	}

	return eq;
error:
	isl_basic_set_free(eq);
	return NULL;
}
示例#10
0
			// Init
			void init_solver (void) {
				context = isl_ctx_alloc ();
				isl_space * vars = isl_space_set_alloc (context, 0, v_nb ());
				ls = isl_local_space_from_space (isl_space_copy (vars));
				solutions = isl_set_universe (vars);
				solution = 0;
				next_max_var = 0;
			}
示例#11
0
enum lp_result isl_constraints_opt(Matrix *C, Value *obj, Value denom,
				    enum lp_dir dir, Value *opt)
{
	int i;
	isl_ctx *ctx = isl_ctx_alloc();
	isl_space *dim;
	isl_local_space *ls;
	isl_mat *eq, *ineq;
	isl_basic_set *bset;
	isl_aff *aff;
	isl_val *v;
	enum isl_lp_result res;
	int max = dir == lp_max;

	eq = extract_equalities(ctx, C);
	ineq = extract_inequalities(ctx, C);
	dim = isl_space_set_alloc(ctx, 0, C->NbColumns - 2);
	ls = isl_local_space_from_space(isl_space_copy(dim));
	bset = isl_basic_set_from_constraint_matrices(dim, eq, ineq,
			isl_dim_set, isl_dim_div, isl_dim_param, isl_dim_cst);
	aff = isl_aff_zero_on_domain(ls);
	for (i = 0; i < C->NbColumns - 2; ++i) {
		v = isl_val_int_from_gmp(ctx, obj[i]);
		aff = isl_aff_set_coefficient_val(aff, isl_dim_in, i, v);
	}
	v = isl_val_int_from_gmp(ctx, obj[C->NbColumns - 2]);
	aff = isl_aff_set_constant_val(aff, v);
	v = isl_val_int_from_gmp(ctx, denom);
	aff = isl_aff_scale_down_val(aff, v);

	if (max)
		v = isl_val_floor(isl_basic_set_max_lp_val(bset, aff));
	else
		v = isl_val_ceil(isl_basic_set_min_lp_val(bset, aff));
	if (!v)
		res = isl_lp_error;
	else if (isl_val_is_nan(v))
		res = isl_lp_empty;
	else if (!isl_val_is_rat(v))
		res = isl_lp_unbounded;
	else {
		res = isl_lp_ok;
		isl_val_get_num_gmp(v, *opt);
	}

	isl_val_free(v);
	isl_aff_free(aff);
	isl_basic_set_free(bset);
	isl_ctx_free(ctx);

	return isl_lp_result2lp_result(res);
}
示例#12
0
/* Create a(n identity) morphism between empty sets of the same dimension
 * a "bset".
 */
__isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
{
	isl_mat *id;
	isl_basic_set *empty;
	unsigned total;

	if (!bset)
		return NULL;

	total = isl_basic_set_total_dim(bset);
	id = isl_mat_identity(bset->ctx, 1 + total);
	empty = isl_basic_set_empty(isl_space_copy(bset->dim));

	return isl_morph_alloc(empty, isl_basic_set_copy(empty),
		id, isl_mat_copy(id));
}
示例#13
0
__isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
{
	isl_mat *id;
	isl_basic_set *universe;
	unsigned total;

	if (!bset)
		return NULL;

	total = isl_basic_set_total_dim(bset);
	id = isl_mat_identity(bset->ctx, 1 + total);
	universe = isl_basic_set_universe(isl_space_copy(bset->dim));

	return isl_morph_alloc(universe, isl_basic_set_copy(universe),
		id, isl_mat_copy(id));
}
示例#14
0
/* Return  1 if poly is monotonically increasing in the last set variable,
 *        -1 if poly is monotonically decreasing in the last set variable,
 *	   0 if no conclusion,
 *	  -2 on error.
 *
 * We simply check the sign of p(x+1)-p(x)
 */
static int monotonicity(__isl_keep isl_basic_set *bset,
	__isl_keep isl_qpolynomial *poly, struct range_data *data)
{
	isl_ctx *ctx;
	isl_space *dim;
	isl_qpolynomial *sub = NULL;
	isl_qpolynomial *diff = NULL;
	int result = 0;
	int s;
	unsigned nvar;

	ctx = isl_qpolynomial_get_ctx(poly);
	dim = isl_qpolynomial_get_domain_space(poly);

	nvar = isl_basic_set_dim(bset, isl_dim_set);

	sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1);
	sub = isl_qpolynomial_add(sub,
		isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one));

	diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
			isl_dim_in, nvar - 1, 1, &sub);
	diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));

	s = has_sign(bset, diff, 1, data->signs);
	if (s < 0)
		goto error;
	if (s)
		result = 1;
	else {
		s = has_sign(bset, diff, -1, data->signs);
		if (s < 0)
			goto error;
		if (s)
			result = -1;
	}

	isl_qpolynomial_free(diff);
	isl_qpolynomial_free(sub);

	return result;
error:
	isl_qpolynomial_free(diff);
	isl_qpolynomial_free(sub);
	return -2;
}
static
isl_set* build_iteration_domain (scoplib_scop_p scop,
				                   scoplib_statement_p s,
						    isl_space* space,
						    isl_ctx* ctxt)
{
  isl_set* ret = isl_set_universe (isl_space_domain (isl_space_copy (space)));
  int i;
  isl_val* tmp = isl_val_int_from_si (ctxt, 0);
  scoplib_matrix_p m = s->domain->elt;
  for (i = 0; i < m->NbRows; ++i)
    {
      isl_local_space* ls =
  	isl_local_space_from_space (isl_set_get_space (ret));
      isl_constraint* cst;
      if (SCOPVAL_get_si(m->p[i][0]) == 0)
  	cst = isl_equality_alloc (isl_local_space_copy (ls));
      else
  	cst = isl_inequality_alloc (isl_local_space_copy (ls));

      // Set input dimensions.
      int k;
      for (k = 0; k < s->nb_iterators; ++k)
  	{
  	  tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1]));
  	  cst = isl_constraint_set_coefficient_val (cst, isl_dim_set, k, isl_val_copy (tmp));
  	}
      for (k = 0; k < scop->nb_parameters; ++k)
  	{
  	  tmp =
  	    isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1+s->nb_iterators]));
  	  cst =
  	    isl_constraint_set_coefficient_val (cst, isl_dim_param, k,
  						isl_val_copy (tmp));
  	}
      tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][m->NbColumns - 1]));
      cst = isl_constraint_set_constant_val (cst, isl_val_copy (tmp));

      // Insert constraint.
      ret = isl_set_add_constraint (ret, cst);
    }
  isl_val_free (tmp);

  return ret;
}
示例#16
0
__isl_give isl_val *FN(UNION,eval)(__isl_take UNION *u,
	__isl_take isl_point *pnt)
{
	uint32_t hash;
	struct isl_hash_table_entry *entry;
	isl_bool is_void;
	isl_space *space;
	isl_val *v;

	if (!u || !pnt)
		goto error;
	is_void = isl_point_is_void(pnt);
	if (is_void < 0)
		goto error;
	if (is_void)
		return FN(UNION,eval_void)(u, pnt);

	space = isl_space_copy(pnt->dim);
	if (!space)
		goto error;
	hash = isl_space_get_hash(space);
	entry = isl_hash_table_find(u->space->ctx, &u->table,
				    hash, &FN(UNION,has_domain_space),
				    space, 0);
	isl_space_free(space);
	if (!entry) {
		v = isl_val_zero(isl_point_get_ctx(pnt));
		isl_point_free(pnt);
	} else {
		v = FN(PART,eval)(FN(PART,copy)(entry->data), pnt);
	}
	FN(UNION,free)(u);
	return v;
error:
	FN(UNION,free)(u);
	isl_point_free(pnt);
	return NULL;
}
示例#17
0
/* Construct a unique identifier for a group in "grouping".
 *
 * The name is of the form G_n, with n the first value starting at
 * grouping->group_id that does not result in an identifier
 * that is already in use in the domain of the original schedule
 * constraints.
 */
static isl_id *construct_group_id(struct ppcg_grouping *grouping,
	__isl_take isl_space *space)
{
	isl_ctx *ctx;
	isl_id *id;
	isl_bool empty;
	isl_union_set *domain;

	if (!space)
		return NULL;

	ctx = isl_space_get_ctx(space);
	domain = isl_schedule_constraints_get_domain(grouping->sc);

	do {
		char buffer[20];
		isl_id *id;
		isl_set *set;

		snprintf(buffer, sizeof(buffer), "G_%d", grouping->group_id);
		grouping->group_id++;
		id = isl_id_alloc(ctx, buffer, NULL);
		space = isl_space_set_tuple_id(space, isl_dim_set, id);
		set = isl_union_set_extract_set(domain, isl_space_copy(space));
		empty = isl_set_plain_is_empty(set);
		isl_set_free(set);
	} while (empty >= 0 && !empty);

	if (empty < 0)
		space = isl_space_free(space);

	id = isl_space_get_tuple_id(space, isl_dim_set);

	isl_space_free(space);
	isl_union_set_free(domain);

	return id;
}
示例#18
0
/* Apply the morphism to the basic set.
 * We basically just compute the preimage of "bset" under the inverse mapping
 * in morph, add in stride constraints and intersect with the range
 * of the morphism.
 */
__isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
	__isl_take isl_basic_set *bset)
{
	isl_basic_set *res = NULL;
	isl_mat *mat = NULL;
	int i, k;
	int max_stride;

	if (!morph || !bset)
		goto error;

	isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
		    goto error);

	max_stride = morph->inv->n_row - 1;
	if (isl_int_is_one(morph->inv->row[0][0]))
		max_stride = 0;
	res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
		bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);

	for (i = 0; i < bset->n_div; ++i)
		if (isl_basic_set_alloc_div(res) < 0)
			goto error;

	mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_eq; ++i) {
		k = isl_basic_set_alloc_equality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->ineq[k] + mat->n_col,
				bset->ineq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
					1, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_div; ++i) {
		isl_int_mul(res->div[i][0],
				morph->inv->row[0][0], bset->div[i][0]);
		isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
		isl_seq_scale(res->div[i] + 1 + mat->n_col,
				bset->div[i] + 1 + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	res = add_strides(res, morph);

	if (isl_basic_set_is_rational(bset))
		res = isl_basic_set_set_rational(res);

	res = isl_basic_set_simplify(res);
	res = isl_basic_set_finalize(res);

	res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));

	isl_morph_free(morph);
	isl_basic_set_free(bset);
	return res;
error:
	isl_mat_free(mat);
	isl_morph_free(morph);
	isl_basic_set_free(bset);
	isl_basic_set_free(res);
	return NULL;
}
示例#19
0
/* Given a basic set, exploit the equalties in the a basic set to construct
 * a morphishm that maps the basic set to a lower-dimensional space.
 * Specifically, the morphism reduces the number of dimensions of type "type".
 *
 * This function is a slight generalization of isl_mat_variable_compression
 * in that it allows the input to be parametric and that it allows for the
 * compression of either parameters or set variables.
 *
 * We first select the equalities of interest, that is those that involve
 * variables of type "type" and no later variables.
 * Denote those equalities as
 *
 *		-C(p) + M x = 0
 *
 * where C(p) depends on the parameters if type == isl_dim_set and
 * is a constant if type == isl_dim_param.
 *
 * First compute the (left) Hermite normal form of M,
 *
 *		M [U1 U2] = M U = H = [H1 0]
 * or
 *		              M = H Q = [H1 0] [Q1]
 *                                             [Q2]
 *
 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
 * Define the transformed variables as
 *
 *		x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
 *		            [ x2' ]           [Q2]
 *
 * The equalities then become
 *
 *		-C(p) + H1 x1' = 0   or   x1' = H1^{-1} C(p) = C'(p)
 *
 * If the denominator of the constant term does not divide the
 * the common denominator of the parametric terms, then every
 * integer point is mapped to a non-integer point and then the original set has no
 * integer solutions (since the x' are a unimodular transformation
 * of the x).  In this case, an empty morphism is returned.
 * Otherwise, the transformation is given by
 *
 *		x = U1 H1^{-1} C(p) + U2 x2'
 *
 * The inverse transformation is simply
 *
 *		x2' = Q2 x
 *
 * Both matrices are extended to map the full original space to the full
 * compressed space.
 */
__isl_give isl_morph *isl_basic_set_variable_compression(
	__isl_keep isl_basic_set *bset, enum isl_dim_type type)
{
	unsigned otype;
	unsigned ntype;
	unsigned orest;
	unsigned nrest;
	int f_eq, n_eq;
	isl_space *dim;
	isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2;
	isl_basic_set *dom, *ran;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return isl_morph_empty(bset);

	isl_assert(bset->ctx, bset->n_div == 0, return NULL);

	otype = 1 + isl_space_offset(bset->dim, type);
	ntype = isl_basic_set_dim(bset, type);
	orest = otype + ntype;
	nrest = isl_basic_set_total_dim(bset) - (orest - 1);

	for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
		if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
			break;
	for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
		if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
			break;
	if (n_eq == 0)
		return isl_morph_identity(bset);

	H = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype);
	H = isl_mat_left_hermite(H, 0, &U, &Q);
	if (!H || !U || !Q)
		goto error;
	Q = isl_mat_drop_rows(Q, 0, n_eq);
	Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q);
	Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
	C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype);
	if (!C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	isl_seq_clr(C->row[0] + 1, otype - 1);
	isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype);
	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
	H1 = isl_mat_lin_to_aff(H1);
	C = isl_mat_inverse_product(H1, C);
	if (!C)
		goto error;
	isl_mat_free(H);

	if (!isl_int_is_one(C->row[0][0])) {
		int i;
		isl_int g;

		isl_int_init(g);
		for (i = 0; i < n_eq; ++i) {
			isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g);
			isl_int_gcd(g, g, C->row[0][0]);
			if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
				break;
		}
		isl_int_clear(g);

		if (i < n_eq) {
			isl_mat_free(C);
			isl_mat_free(U);
			isl_mat_free(Q);
			return isl_morph_empty(bset);
		}

		C = isl_mat_normalize(C);
	}

	U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, n_eq);
	U1 = isl_mat_lin_to_aff(U1);
	U2 = isl_mat_sub_alloc(U, 0, U->n_row, n_eq, U->n_row - n_eq);
	U2 = isl_mat_lin_to_aff(U2);
	isl_mat_free(U);

	C = isl_mat_product(U1, C);
	C = isl_mat_aff_direct_sum(C, U2);
	C = insert_parameter_rows(C, otype - 1);
	C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));

	dim = isl_space_copy(bset->dim);
	dim = isl_space_drop_dims(dim, type, 0, ntype);
	dim = isl_space_add_dims(dim, type, ntype - n_eq);
	ran = isl_basic_set_universe(dim);
	dom = copy_equalities(bset, f_eq, n_eq);

	return isl_morph_alloc(dom, ran, Q, C);
error:
	isl_mat_free(C);
	isl_mat_free(H);
	isl_mat_free(U);
	isl_mat_free(Q);
	return NULL;
}
static
isl_map* build_schedule (scoplib_scop_p scop,
				         scoplib_statement_p s,
			                 isl_space* sp,
			                 isl_ctx* ctxt)
{
  // Set up the space.
  isl_space* space_in  = isl_space_domain (isl_space_copy (sp));
  int dout = s->schedule->NbRows;
  isl_space* space_out = isl_space_set_alloc(ctxt, scop->nb_parameters, dout);
  int i;
  char buffer[32];
  char* name;
  for (i = 0; i < dout; ++i)
    {
      sprintf (buffer, "t%d", i);
      name = strdup (buffer);
      space_out = isl_space_set_dim_name (space_out, isl_dim_set, i, name);
    }
  for (i = 0; i < scop->nb_parameters; ++i)
    {
      name = strdup (((SgVariableSymbol*)(scop->parameters[i]))->get_name().str());
      space_out = isl_space_set_dim_name (space_out, isl_dim_param, i, name);
    }

  isl_space* space = isl_space_map_from_domain_and_range
    (isl_space_copy (space_in), isl_space_copy (space_out));
  isl_map* ret = isl_map_universe (isl_space_copy (space));
  isl_val* tmp = isl_val_int_from_si (ctxt, 0);
  scoplib_matrix_p m = s->schedule;
  for (i = 0; i < m->NbRows; ++i)
    {
      isl_local_space* ls =
  	isl_local_space_from_space (isl_space_copy (space));
      isl_constraint* cst;
      if (SCOPVAL_get_si(m->p[i][0]) == 0)
  	cst = isl_equality_alloc (isl_local_space_copy (ls));
      else
  	cst = isl_inequality_alloc (isl_local_space_copy (ls));

      // Set input dimensions.
      int k;
      for (k = 0; k < s->nb_iterators; ++k)
  	{
  	  tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1]));
  	  cst = isl_constraint_set_coefficient_val (cst, isl_dim_in, k, isl_val_copy (tmp));
  	}
      for (k = 0; k < scop->nb_parameters; ++k)
  	{
  	  tmp =
  	    isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][k+1+s->nb_iterators]));
  	  cst =
  	    isl_constraint_set_coefficient_val (cst, isl_dim_param, k,
  						isl_val_copy (tmp));
  	}
      tmp = isl_val_set_si (tmp, SCOPVAL_get_si(m->p[i][m->NbColumns - 1]));
      cst = isl_constraint_set_constant_val (cst, isl_val_copy (tmp));

      // Set output dimension.
      tmp = isl_val_set_si (tmp, -1);
      isl_constraint_set_coefficient_val (cst, isl_dim_out, i, isl_val_copy (tmp));

      // Insert constraint.
      ret = isl_map_add_constraint (ret, cst);
    }
  isl_val_free (tmp);

  return ret;
}
示例#21
0
enum order_sign isl_polyhedron_affine_sign(Polyhedron *D, Matrix *T,
					    struct barvinok_options *options)
{
	int i;
	isl_ctx *ctx = isl_ctx_alloc();
	isl_space *dim;
	isl_local_space *ls;
	isl_aff *aff;
	isl_basic_set *bset;
	isl_val *min, *max = NULL;
	isl_val *v;
	enum order_sign sign = order_undefined;

	assert(D->Dimension == T->NbColumns - 1);

	dim = isl_space_set_alloc(ctx, 0, D->Dimension);
	ls = isl_local_space_from_space(isl_space_copy(dim));
	bset = isl_basic_set_new_from_polylib(D, dim);
	aff = isl_aff_zero_on_domain(ls);
	for (i = 0; i < D->Dimension; ++i) {
		v = isl_val_int_from_gmp(ctx, T->p[0][i]);
		aff = isl_aff_set_coefficient_val(aff, isl_dim_in, i, v);
	}
	v = isl_val_int_from_gmp(ctx, T->p[0][D->Dimension]);
	aff = isl_aff_set_constant_val(aff, v);
	v = isl_val_int_from_gmp(ctx, T->p[1][D->Dimension]);
	aff = isl_aff_scale_down_val(aff, v);

	min = isl_basic_set_min_lp_val(bset, aff);
	min = isl_val_ceil(min);
	assert(min);

	if (isl_val_is_nan(min))
		sign = order_undefined;
	else if (isl_val_is_pos(min))
		sign = order_gt;
	else {
		max = isl_basic_set_max_lp_val(bset, aff);
		max = isl_val_floor(max);
		assert(max);

		if (isl_val_is_neg(max))
			sign = order_lt;
		else if (isl_val_is_zero(min) && isl_val_is_zero(max))
			sign = order_eq;
		else if (isl_val_is_zero(min))
			sign = order_ge;
		else if (isl_val_is_zero(max))
			sign = order_le;
		else
			sign = order_unknown;
	}

	isl_basic_set_free(bset);
	isl_aff_free(aff);
	isl_val_free(min);
	isl_val_free(max);
	isl_ctx_free(ctx);

	return sign;
}