示例#1
0
static void test_encoder_factory(uint32_t max_symbols, uint32_t max_symbol_size,
                                 int32_t codec, int32_t finite_field)
{
    kodoc_factory_t encoder_factory =
        kodoc_new_encoder_factory(codec, finite_field,
                                  max_symbols, max_symbol_size);

    // Test the max_* properties
    EXPECT_EQ(max_symbols, kodoc_factory_max_symbols(encoder_factory));
    EXPECT_EQ(max_symbol_size, kodoc_factory_max_symbol_size(encoder_factory));
    EXPECT_EQ(max_symbol_size * max_symbols,
              kodoc_factory_max_block_size(encoder_factory));
    EXPECT_GT(kodoc_factory_max_payload_size(encoder_factory), max_symbol_size);

    // Build an encoder with the default settings
    kodoc_coder_t encoder = kodoc_factory_build_coder(encoder_factory);

    EXPECT_EQ(max_symbols, kodoc_symbols(encoder));
    EXPECT_EQ(max_symbol_size, kodoc_symbol_size(encoder));

    // Lower the number of symbols and the symbol_size
    uint32_t new_symbols = max_symbols / 2;
    kodoc_factory_set_symbols(encoder_factory, new_symbols);

    uint32_t new_symbol_size = max_symbol_size - 4;
    kodoc_factory_set_symbol_size(encoder_factory, new_symbol_size);

    // Test that the max_* properties are not changed
    EXPECT_EQ(max_symbols, kodoc_factory_max_symbols(encoder_factory));
    EXPECT_EQ(max_symbol_size, kodoc_factory_max_symbol_size(encoder_factory));
    EXPECT_EQ(max_symbol_size * max_symbols,
              kodoc_factory_max_block_size(encoder_factory));
    EXPECT_GT(kodoc_factory_max_payload_size(encoder_factory), max_symbol_size);

    // Build an encoder with the changed settings
    kodoc_coder_t encoder2 = kodoc_factory_build_coder(encoder_factory);

    EXPECT_EQ(new_symbols, kodoc_symbols(encoder2));
    EXPECT_EQ(new_symbol_size, kodoc_symbol_size(encoder2));

    kodoc_delete_coder(encoder);
    kodoc_delete_coder(encoder2);
    kodoc_delete_factory(encoder_factory);
}
示例#2
0
inline void test_decoder_symbol_status_api(int32_t decoder_type)
{
    uint32_t symbols = 4;
    uint32_t symbol_size = 40;
    kodoc_factory_t decoder_factory = kodoc_new_decoder_factory(
        decoder_type, kodoc_binary8, symbols, symbol_size);

    kodoc_coder_t decoder = kodoc_factory_build_coder(decoder_factory);

    std::vector<uint8_t> data_out(kodoc_block_size(decoder), '\0');
    kodoc_set_mutable_symbols(decoder, data_out.data(), data_out.size());

    std::vector<uint8_t> symbol(kodoc_symbol_size(decoder));
    std::vector<uint8_t> coefficients(kodoc_coefficient_vector_size(decoder));

    coefficients = {1, 0, 0, 0};
    kodoc_read_symbol(decoder, symbol.data(), coefficients.data());

    EXPECT_EQ(0U, kodoc_symbols_uncoded(decoder));

    kodoc_update_symbol_status(decoder);

    EXPECT_EQ(1U, kodoc_symbols_uncoded(decoder));

    kodoc_set_status_updater_on(decoder);

    coefficients = {0, 1, 0, 0};
    kodoc_read_symbol(decoder, symbol.data(), coefficients.data());

    EXPECT_EQ(2U, kodoc_symbols_uncoded(decoder));

    kodoc_set_status_updater_off(decoder);

    kodoc_delete_coder(decoder);
    kodoc_delete_factory(decoder_factory);
}
示例#3
0
inline void run_test_basic_api(int32_t encoder_type, int32_t decoder_type,
                               int32_t finite_field, uint32_t symbols,
                               uint32_t symbol_size)
{
    kodoc_factory_t encoder_factory = kodoc_new_encoder_factory(
        encoder_type, finite_field, symbols, symbol_size);

    kodoc_factory_t decoder_factory = kodoc_new_decoder_factory(
        decoder_type, finite_field, symbols, symbol_size);

    kodoc_coder_t encoder = kodoc_factory_build_coder(encoder_factory);
    kodoc_coder_t decoder = kodoc_factory_build_coder(decoder_factory);

    EXPECT_EQ(symbols, kodoc_factory_max_symbols(encoder_factory));
    EXPECT_EQ(symbol_size, kodoc_factory_max_symbol_size(encoder_factory));
    EXPECT_EQ(symbols, kodoc_symbols(encoder));
    EXPECT_EQ(symbol_size, kodoc_symbol_size(encoder));

    EXPECT_EQ(symbols, kodoc_factory_max_symbols(decoder_factory));
    EXPECT_EQ(symbol_size, kodoc_factory_max_symbol_size(decoder_factory));
    EXPECT_EQ(symbols, kodoc_symbols(decoder));
    EXPECT_EQ(symbol_size, kodoc_symbol_size(decoder));

    EXPECT_EQ(symbols * symbol_size, kodoc_block_size(encoder));
    EXPECT_EQ(symbols * symbol_size, kodoc_block_size(decoder));

    EXPECT_TRUE(kodoc_factory_max_payload_size(encoder_factory) >=
                kodoc_payload_size(encoder));

    EXPECT_TRUE(kodoc_factory_max_payload_size(decoder_factory) >=
                kodoc_payload_size(decoder));

    EXPECT_EQ(kodoc_factory_max_payload_size(encoder_factory),
              kodoc_factory_max_payload_size(decoder_factory));

    if (encoder_type == kodoc_sparse_full_vector ||
        encoder_type == kodoc_sparse_seed)
    {
        // Set the coding vector density on the encoder
        kodoc_set_density(encoder, 0.2);
        EXPECT_EQ(0.2, kodoc_density(encoder));
    }

    uint32_t payload_size = kodoc_payload_size(encoder);
    uint8_t* payload = (uint8_t*) malloc(payload_size);

    uint8_t** input_symbols = NULL;
    uint8_t** output_symbols = NULL;

    // Allocate symbols in non-contiguous buffers
    input_symbols = (uint8_t**) malloc(symbols * sizeof(uint8_t*));
    output_symbols = (uint8_t**) malloc(symbols * sizeof(uint8_t*));

    for (uint32_t i = 0; i < symbols; ++i)
    {
        // Create the individual symbols for the encoder
        input_symbols[i] = (uint8_t*) malloc(symbol_size);

        // Randomize input data
        for (uint32_t j = 0; j < symbol_size; ++j)
            input_symbols[i][j] = rand() % 256;

        // Store the symbol pointer in the encoder
        kodoc_set_const_symbol(encoder, i, input_symbols[i], symbol_size);

        // Create the output symbol buffers for the decoder
        output_symbols[i] = (uint8_t*) malloc(symbol_size);

        // Specify the output buffers used for decoding
        kodoc_set_mutable_symbol(decoder, i, output_symbols[i], symbol_size);
    }

    if (kodoc_has_symbol_decoding_status_updater_interface(decoder))
    {
        EXPECT_FALSE(kodoc_is_status_updater_enabled(decoder));
        kodoc_set_status_updater_on(decoder);
        EXPECT_TRUE(kodoc_is_status_updater_enabled(decoder));
        kodoc_set_status_updater_off(decoder);
        EXPECT_FALSE(kodoc_is_status_updater_enabled(decoder));
    }
    else
    {
        EXPECT_TRUE(
            decoder_type == kodoc_fulcrum ||
            decoder_type == kodoc_reed_solomon
        );
    }

    EXPECT_TRUE(kodoc_is_complete(decoder) == 0);

    while (!kodoc_is_complete(decoder))
    {
        kodoc_write_payload(encoder, payload);
        kodoc_read_payload(decoder, payload);
    }

    EXPECT_TRUE(kodoc_is_complete(decoder) != 0);
    EXPECT_EQ(symbols, kodoc_rank(decoder));
    EXPECT_EQ(symbols, kodoc_symbols_uncoded(decoder));
    EXPECT_EQ(0U, kodoc_symbols_partially_decoded(decoder));
    EXPECT_EQ(0U, kodoc_symbols_missing(decoder));

    assert(input_symbols);
    assert(output_symbols);
    // Compare the input and output symbols one-by-one
    for (uint32_t i = 0; i < symbols; ++i)
    {
        EXPECT_EQ(memcmp(input_symbols[i], output_symbols[i], symbol_size), 0);

        free(input_symbols[i]);
        free(output_symbols[i]);
    }

    free(input_symbols);
    free(output_symbols);

    free(payload);

    kodoc_delete_coder(encoder);
    kodoc_delete_coder(decoder);

    kodoc_delete_factory(encoder_factory);
    kodoc_delete_factory(decoder_factory);
}
示例#4
0
void test_sliding_window(uint32_t max_symbols, uint32_t max_symbol_size,
                         int32_t finite_field)
{
    kodoc_factory_t encoder_factory = kodoc_new_encoder_factory(
        kodoc_sliding_window, finite_field, max_symbols, max_symbol_size);

    kodoc_factory_t decoder_factory = kodoc_new_decoder_factory(
        kodoc_sliding_window, finite_field, max_symbols, max_symbol_size);

    kodoc_coder_t encoder = kodoc_factory_build_coder(encoder_factory);
    kodoc_coder_t decoder = kodoc_factory_build_coder(decoder_factory);

    EXPECT_EQ(max_symbols,kodoc_factory_max_symbols(encoder_factory));
    EXPECT_EQ(max_symbol_size,kodoc_factory_max_symbol_size(encoder_factory));
    EXPECT_EQ(max_symbols, kodoc_symbols(encoder));
    EXPECT_EQ(max_symbol_size,kodoc_symbol_size(encoder));

    EXPECT_EQ(max_symbols, kodoc_factory_max_symbols(decoder_factory));
    EXPECT_EQ(max_symbol_size, kodoc_factory_max_symbol_size(decoder_factory));
    EXPECT_EQ(max_symbols, kodoc_symbols(decoder));
    EXPECT_EQ(max_symbol_size, kodoc_symbol_size(decoder));

    EXPECT_EQ(max_symbols * max_symbol_size, kodoc_block_size(encoder));
    EXPECT_EQ(max_symbols * max_symbol_size, kodoc_block_size(decoder));

    EXPECT_TRUE(kodoc_factory_max_payload_size(encoder_factory) >=
                kodoc_payload_size(encoder));

    EXPECT_TRUE(kodoc_factory_max_payload_size(decoder_factory) >=
                kodoc_payload_size(decoder));

    EXPECT_EQ(kodoc_factory_max_payload_size(encoder_factory),
              kodoc_factory_max_payload_size(decoder_factory));

    uint32_t feedback_size = 0;

    EXPECT_EQ(kodoc_feedback_size(encoder), kodoc_feedback_size(decoder));

    feedback_size = kodoc_feedback_size(encoder);
    EXPECT_TRUE(feedback_size > 0);

    // Allocate some storage for a "payload" the payload is what we would
    // eventually send over a network
    uint32_t payload_size = kodoc_payload_size(encoder);
    uint8_t* payload = (uint8_t*) malloc(payload_size);
    uint8_t* feedback = (uint8_t*) malloc(feedback_size);

    // Allocate some data to encode. In this case we make a buffer
    // with the same size as the encoder's block size (the max.
    // amount a single encoder can encode)
    uint32_t block_size = kodoc_block_size(encoder);
    uint8_t* data_in = (uint8_t*) malloc(block_size);
    uint8_t* data_out = (uint8_t*) malloc(block_size);

    // Just for fun - fill the data with random data
    for (uint32_t i = 0; i < block_size; ++i)
        data_in[i] = rand() % 256;

    // Install a custom trace function for the encoder and decoder
    kodoc_set_trace_callback(encoder, encoder_trace_callback, NULL);
    kodoc_set_trace_callback(decoder, decoder_trace_callback, NULL);

    // Assign the data buffer to the encoder so that we may start
    // to produce encoded symbols from it
    kodoc_set_const_symbols(encoder, data_in, block_size);

    kodoc_set_mutable_symbols(decoder, data_out, block_size);

    EXPECT_TRUE(kodoc_is_complete(decoder) == 0);

    while (!kodoc_is_complete(decoder))
    {
        // Encode the packet into the payload buffer
        uint32_t payload_used = kodoc_write_payload(encoder, payload);
        EXPECT_TRUE(payload_used <= kodoc_payload_size(encoder));

        // Pass that packet to the decoder
        kodoc_read_payload(decoder, payload);
        // All payloads must be innovative due to the perfect feedback
        EXPECT_TRUE(kodoc_is_partially_complete(decoder) != 0);

        kodoc_write_feedback(decoder, feedback);
        kodoc_read_feedback(encoder, feedback);
    }
    EXPECT_TRUE(kodoc_is_complete(decoder) != 0);

    // Check if we properly decoded the data
    EXPECT_EQ(memcmp(data_in, data_out, block_size), 0);

    // Check that the trace functions were called at least once
    EXPECT_GT(encoder_trace_called, 0U);
    EXPECT_GT(decoder_trace_called, 0U);

    free(data_in);
    free(data_out);
    free(payload);
    free(feedback);

    kodoc_delete_coder(encoder);
    kodoc_delete_coder(decoder);

    kodoc_delete_factory(encoder_factory);
    kodoc_delete_factory(decoder_factory);
}
void test_on_the_fly(uint32_t max_symbols, uint32_t max_symbol_size,
                     int32_t finite_field)
{
    kodoc_factory_t encoder_factory = kodoc_new_encoder_factory(
                                          kodoc_on_the_fly, finite_field, max_symbols, max_symbol_size);

    kodoc_factory_t decoder_factory = kodoc_new_decoder_factory(
                                          kodoc_on_the_fly, finite_field, max_symbols, max_symbol_size);

    kodoc_coder_t encoder = kodoc_factory_build_coder(encoder_factory);
    kodoc_coder_t decoder = kodoc_factory_build_coder(decoder_factory);

    uint32_t symbol_size = kodoc_symbol_size(encoder);
    uint32_t payload_size = kodoc_payload_size(encoder);
    uint8_t* payload = (uint8_t*) malloc(payload_size);

    uint32_t block_size = kodoc_block_size(encoder);
    uint8_t* data_in = (uint8_t*) malloc(block_size);
    uint8_t* data_out = (uint8_t*) malloc(block_size);

    for (uint32_t i = 0; i < block_size; ++i)
        data_in[i] = rand() % 256;

    kodoc_set_mutable_symbols(decoder, data_out, block_size);

    EXPECT_TRUE(kodoc_is_complete(decoder) == 0);

    while (!kodoc_is_complete(decoder))
    {
        EXPECT_GE(kodoc_rank(encoder), kodoc_rank(decoder));

        // The rank of an encoder indicates how many symbols have been added,
        // i.e. how many symbols are available for encoding
        uint32_t encoder_rank = kodoc_rank(encoder);

        // Randomly choose to add a new symbol (with 50% probability)
        // if the encoder rank is less than the maximum number of symbols
        if ((rand() % 2) && encoder_rank < kodoc_symbols(encoder))
        {
            // Calculate the offset to the next symbol to insert
            uint8_t* symbol = data_in + (encoder_rank * symbol_size);
            kodoc_set_const_symbol(encoder, encoder_rank, symbol, symbol_size);
        }
        // Generate an encoded packet
        kodoc_write_payload(encoder, payload);

        // Simulate that 50% of the packets are lost
        if (rand() % 2) continue;

        // Packet got through - pass that packet to the decoder
        kodoc_read_payload(decoder, payload);

        // Check the decoder rank and symbol counters
        EXPECT_GE(kodoc_rank(encoder), kodoc_rank(decoder));
        EXPECT_GE(kodoc_rank(decoder), kodoc_symbols_uncoded(decoder));
        EXPECT_GE(kodoc_rank(decoder), kodoc_symbols_partially_decoded(decoder));
        EXPECT_EQ(kodoc_symbols(decoder) - kodoc_rank(decoder),
                  kodoc_symbols_missing(decoder));

        // Check the decoder whether it is partially complete
        // The decoder has to support the partial decoding tracker
        if (kodoc_has_partial_decoding_interface(decoder) &&
                kodoc_is_partially_complete(decoder))
        {
            for (uint32_t i = 0; i < kodoc_symbols(decoder); ++i)
            {
                // Go through all symbols that are already decoded
                if (kodoc_is_symbol_uncoded(decoder, i))
                {
                    // All uncoded symbols must have a pivot
                    EXPECT_TRUE(kodoc_is_symbol_pivot(decoder, i) != 0);
                    // The uncoded symbols cannot be missing
                    EXPECT_TRUE(kodoc_is_symbol_missing(decoder, i) == 0);
                    // The uncoded symbols cannot be partially decoded
                    EXPECT_TRUE(
                        kodoc_is_symbol_partially_decoded(decoder, i) == 0);

                    uint8_t* original = data_in + i * symbol_size;
                    uint8_t* target = data_out + i * symbol_size;

                    // verify the decoded symbol against the original data
                    EXPECT_EQ(memcmp(original, target, symbol_size), 0);
                }
            }
        }
    }

    EXPECT_EQ(memcmp(data_in, data_out, block_size), 0);

    free(data_in);
    free(data_out);
    free(payload);

    kodoc_delete_coder(encoder);
    kodoc_delete_coder(decoder);

    kodoc_delete_factory(encoder_factory);
    kodoc_delete_factory(decoder_factory);
}