示例#1
0
/**
    Purpose
    -------
    DORMQL overwrites the general real M-by-N matrix C with

    @verbatim
                              SIDE = MagmaLeft   SIDE = MagmaRight
    TRANS = MagmaNoTrans:     Q * C              C * Q
    TRANS = MagmaTrans:  Q**H * C           C * Q**H
    @endverbatim

    where Q is a real unitary matrix defined as the product of k
    elementary reflectors

          Q = H(k) . . . H(2) H(1)

    as returned by DGEQLF. Q is of order M if SIDE = MagmaLeft and of order N
    if SIDE = MagmaRight.

    Arguments
    ---------
    @param[in]
    side    magma_side_t
      -     = MagmaLeft:      apply Q or Q**H from the Left;
      -     = MagmaRight:     apply Q or Q**H from the Right.

    @param[in]
    trans   magma_trans_t
      -     = MagmaNoTrans:    No transpose, apply Q;
      -     = MagmaTrans: Conjugate transpose, apply Q**H.

    @param[in]
    m       INTEGER
            The number of rows of the matrix C. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix C. N >= 0.

    @param[in]
    k       INTEGER
            The number of elementary reflectors whose product defines
            the matrix Q.
            If SIDE = MagmaLeft,  M >= K >= 0;
            if SIDE = MagmaRight, N >= K >= 0.

    @param[in]
    A       DOUBLE_PRECISION array, dimension (LDA,K)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,k, as returned by
            DGEQLF in the last k columns of its array argument A.
            A is modified by the routine but restored on exit.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.
            If SIDE = MagmaLeft,  LDA >= max(1,M);
            if SIDE = MagmaRight, LDA >= max(1,N).

    @param[in]
    tau     DOUBLE_PRECISION array, dimension (K)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by DGEQLF.

    @param[in,out]
    C       DOUBLE_PRECISION array, dimension (LDC,N)
            On entry, the M-by-N matrix C.
            On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

    @param[in]
    ldc     INTEGER
            The leading dimension of the array C. LDC >= max(1,M).

    @param[out]
    work    (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.
            If SIDE = MagmaLeft,  LWORK >= max(1,N);
            if SIDE = MagmaRight, LWORK >= max(1,M).
            For optimum performance
            if SIDE = MagmaLeft,  LWORK >= N*NB;
            if SIDE = MagmaRight, LWORK >= M*NB,
            where NB is the optimal blocksize.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_dgeqlf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_dormql(magma_side_t side, magma_trans_t trans,
             magma_int_t m, magma_int_t n, magma_int_t k,
             double *A, magma_int_t lda,
             double *tau,
             double *C, magma_int_t ldc,
             double *work, magma_int_t lwork,
             magma_int_t *info)
{
    #define  A(i_,j_) ( A + (i_) + (j_)*lda)
    #define dC(i_,j_) (dC + (i_) + (j_)*lddc)
    
    double *T, *T2;
    magma_int_t i, i1, i2, ib, nb, mi, ni, nq, nq_i, nw, step;
    magma_int_t iinfo, ldwork, lwkopt;
    magma_int_t left, notran, lquery;

    *info  = 0;
    left   = (side == MagmaLeft);
    notran = (trans == MagmaNoTrans);
    lquery = (lwork == -1);

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    } else {
        nq = n;
        nw = m;
    }
    
    /* Test the input arguments */
    if (! left && side != MagmaRight) {
        *info = -1;
    } else if (! notran && trans != MagmaTrans) {
        *info = -2;
    } else if (m < 0) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (k < 0 || k > nq) {
        *info = -5;
    } else if (lda < max(1,nq)) {
        *info = -7;
    } else if (ldc < max(1,m)) {
        *info = -10;
    } else if (lwork < max(1,nw) && ! lquery) {
        *info = -12;
    }

    if (*info == 0) {
        nb = magma_get_dgelqf_nb( min( m, n ));
        lwkopt = max(1,nw)*nb;
        work[0] = MAGMA_D_MAKE( lwkopt, 0 );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0 || k == 0) {
        work[0] = MAGMA_D_ONE;
        return *info;
    }

    ldwork = nw;

    if ( nb >= k ) {
        /* Use CPU code */
        lapackf77_dormql( lapack_side_const(side), lapack_trans_const(trans),
            &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, &iinfo);
    }
    else {
        /* Use hybrid CPU-GPU code */
        /* Allocate work space on the GPU.
         * nw*nb  for dwork (m or n) by nb
         * nq*nb  for dV    (n or m) by nb
         * nb*nb  for dT
         * lddc*n for dC.
         */
        magma_int_t lddc = ((m+31)/32)*32;
        double *dwork, *dV, *dT, *dC;
        magma_dmalloc( &dwork, (nw + nq + nb)*nb + lddc*n );
        if ( dwork == NULL ) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        dV = dwork + nw*nb;
        dT = dV    + nq*nb;
        dC = dT    + nb*nb;
        
        /* work space on CPU.
         * nb*nb for T
         * nb*nb for T2, used to save and restore diagonal block of panel */
        magma_dmalloc_pinned( &T, 2*nb*nb );
        if ( T == NULL ) {
            magma_free( dwork );
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
        T2 = T + nb*nb;
    
        /* Copy matrix C from the CPU to the GPU */
        magma_dsetmatrix( m, n, C, ldc, dC, lddc );
        
        if ( (left && notran) || (! left && ! notran) ) {
            i1 = 0;
            i2 = k;
            step = nb;
        } else {
            i1 = ((k - 1) / nb) * nb;
            i2 = 0;
            step = -nb;
        }

        // silence "uninitialized" warnings
        mi = 0;
        ni = 0;
        
        if (left) {
            ni = n;
        } else {
            mi = m;
        }

        for (i = i1; (step < 0 ? i >= i2 : i < i2); i += step) {
            ib = min(nb, k - i);
            
            /* Form the triangular factor of the block reflector
               H = H(i+ib-1) . . . H(i+1) H(i) */
            nq_i = nq - k + i + ib;
            lapackf77_dlarft("Backward", "Columnwise", &nq_i, &ib,
                             A(0,i), &lda, &tau[i], T, &ib);
            
            /* 1) set lower triangle of panel in A to identity,
               2) copy the panel from A to the GPU, and
               3) restore A                                      */
            dpanel_to_q( MagmaLower, ib, A(nq_i-ib,i), lda, T2 );
            magma_dsetmatrix( nq_i,  ib, A(0,      i), lda, dV, nq_i );
            dq_to_panel( MagmaLower, ib, A(nq_i-ib,i), lda, T2 );
            
            if (left) {
                /* H or H**H is applied to C(1:m-k+i+ib-1,1:n) */
                mi = m - k + i + ib;
            }
            else {
                /* H or H**H is applied to C(1:m,1:n-k+i+ib-1) */
                ni = n - k + i + ib;
            }
            
            /* Apply H or H**H; First copy T to the GPU */
            magma_dsetmatrix( ib, ib, T, ib, dT, ib );
            magma_dlarfb_gpu( side, trans, MagmaBackward, MagmaColumnwise,
                              mi, ni, ib,
                              dV, nq_i,
                              dT, ib,
                              dC, lddc,
                              dwork, ldwork );
        }
        magma_dgetmatrix( m, n, dC, lddc, C, ldc );

        magma_free( dwork );
        magma_free_pinned( T );
    }
    work[0] = MAGMA_D_MAKE( lwkopt, 0 );

    return *info;
} /* magma_dormql */
示例#2
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing dormql
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    double error, work[1];
    double c_neg_one = MAGMA_D_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    double *C, *R, *A, *W, *tau;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    double tol = opts.tolerance * lapackf77_dlamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { MagmaTrans, MagmaNoTrans };

    printf("    M     N     K   side   trans   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("===============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_dgeqlf_nb( m );
            ldc = m;
            // A is m x k (left) or n x k (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            lda = mm;
            gflops = FLOPS_DORMQL( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d  %4c   %5c    skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            // need at least 2*nb*nb for geqlf
            lwork_max = max( max( m*nb, n*nb ), 2*nb*nb );
            
            TESTING_MALLOC_CPU( C,   double, ldc*n );
            TESTING_MALLOC_CPU( R,   double, ldc*n );
            TESTING_MALLOC_CPU( A,   double, lda*k );
            TESTING_MALLOC_CPU( W,   double, lwork_max );
            TESTING_MALLOC_CPU( tau, double, k );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_dlarnv( &ione, ISEED, &size, C );
            lapackf77_dlacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*k;
            lapackf77_dlarnv( &ione, ISEED, &size, A );
            
            // compute QL factorization to get Householder vectors in A, tau
            magma_dgeqlf( mm, k, A, lda, tau, W, lwork_max, &info );
            if (info != 0)
                printf("magma_dgeqlf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_dormql( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0)
                printf("lapackf77_dormql returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_dormql( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            if (info != 0)
                printf("magma_dormql (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            lwork = (magma_int_t) MAGMA_D_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("optimal lwork %d > lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_dormql( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0)
                printf("magma_dormql returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
                        
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            error = lapackf77_dlange( "Fro", &m, &n, C, &ldc, work );
            size = ldc*n;
            blasf77_daxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_dlange( "Fro", &m, &n, R, &ldc, work ) / error;
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return status;
}
示例#3
0
extern "C" magma_int_t
magma_dormql(
    magma_side_t side, magma_trans_t trans,
    magma_int_t m, magma_int_t n, magma_int_t k,
    double *a, magma_int_t lda,
    double *tau,
    double *c, magma_int_t ldc,
    double *work, magma_int_t lwork,
    magma_queue_t queue,
    magma_int_t *info)
{
    /*  -- MAGMA (version 1.3.0) --
           Univ. of Tennessee, Knoxville
           Univ. of California, Berkeley
           Univ. of Colorado, Denver
           @date November 2014

        Purpose
        =======
        DORMQL overwrites the general real M-by-N matrix C with

                        SIDE = 'L'     SIDE = 'R'
        TRANS = 'N':      Q * C          C * Q
        TRANS = 'C':      Q**H * C       C * Q**H

        where Q is a real unitary matrix defined as the product of k
        elementary reflectors

              Q = H(k) . . . H(2) H(1)

        as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
        if SIDE = 'R'.

        Arguments
        =========
        SIDE    (input) CHARACTER*1
                = 'L': apply Q or Q**H from the Left;
                = 'R': apply Q or Q**H from the Right.

        TRANS   (input) CHARACTER*1
                = 'N':  No transpose, apply Q;
                = 'C':  Transpose, apply Q**H.

        M       (input) INTEGER
                The number of rows of the matrix C. M >= 0.

        N       (input) INTEGER
                The number of columns of the matrix C. N >= 0.

        K       (input) INTEGER
                The number of elementary reflectors whose product defines
                the matrix Q.
                If SIDE = 'L', M >= K >= 0;
                if SIDE = 'R', N >= K >= 0.

        A       (input) DOUBLE PRECISION array, dimension (LDA,K)
                The i-th column must contain the vector which defines the
                elementary reflector H(i), for i = 1,2,...,k, as returned by
                DGEQLF in the last k columns of its array argument A.
                A is modified by the routine but restored on exit.

        LDA     (input) INTEGER
                The leading dimension of the array A.
                If SIDE = 'L', LDA >= max(1,M);
                if SIDE = 'R', LDA >= max(1,N).

        TAU     (input) DOUBLE PRECISION array, dimension (K)
                TAU(i) must contain the scalar factor of the elementary
                reflector H(i), as returned by DGEQLF.

        C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
                On entry, the M-by-N matrix C.
                On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

        LDC     (input) INTEGER
                The leading dimension of the array C. LDC >= max(1,M).

        WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

        LWORK   (input) INTEGER
                The dimension of the array WORK.
                If SIDE = 'L', LWORK >= max(1,N);
                if SIDE = 'R', LWORK >= max(1,M).
                For optimum performance LWORK >= N*NB if SIDE = 'L', and
                LWORK >= M*NB if SIDE = 'R', where NB is the optimal
                blocksize.

                If LWORK = -1, then a workspace query is assumed; the routine
                only calculates the optimal size of the WORK array, returns
                this value as the first entry of the WORK array, and no error
                message related to LWORK is issued by XERBLA.

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value
        =====================================================================    */

    /* Allocate work space on the GPU */
    magmaDouble_ptr dwork, dc;
    magma_dmalloc( &dc, (m)*(n) );
    magma_dmalloc( &dwork, 2*(m + 64)*64 );

    /* Copy matrix C from the CPU to the GPU */
    magma_dsetmatrix( m, n, c, ldc, dc, 0, m, queue );
    //dc -= (1 + m);
    size_t dc_offset = -(1+m);

    magma_int_t a_offset, c_dim1, c_offset, i__4;

    magma_int_t i__;
    double t[2*4160]        /* was [65][64] */;
    magma_int_t i1, i2, i3, ib, nb, mi, ni, nq, nw;
    magma_int_t iinfo, ldwork, lwkopt;
    int lquery, left, notran;

    a_offset = 1 + lda;
    a -= a_offset;
    --tau;
    c_dim1 = ldc;
    c_offset = 1 + c_dim1;
    c -= c_offset;

    *info  = 0;
    left   = (side == MagmaLeft);
    notran = (trans == MagmaNoTrans);
    lquery = (lwork == -1);

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = max(1,n);
    } else {
        nq = n;
        nw = max(1,m);
    }
    if (! left && side != MagmaRight) {
        *info = -1;
    } else if (! notran && trans != MagmaConjTrans) {
        *info = -2;
    } else if (m < 0) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (k < 0 || k > nq) {
        *info = -5;
    } else if (lda < max(1,nq)) {
        *info = -7;
    } else if (ldc < max(1,m)) {
        *info = -10;
    }

    if (*info == 0) {
        if (m == 0 || n == 0) {
            lwkopt = 1;
        } else {
            /* Determine the block size.  NB may be at most NBMAX, where
               NBMAX is used to define the local array T.                 */
            nb = 64;
            lwkopt = nw * nb;
        }
        work[0] = MAGMA_D_MAKE( lwkopt, 0 );

        if (lwork < nw && ! lquery) {
            *info = -12;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0) {
        return *info;
    }

    ldwork = nw;

    if ( nb >= k )
    {
        /* Use CPU code */
        lapackf77_dormql(lapack_const(side), lapack_const(trans), &m, &n, &k, &a[a_offset], &lda, &tau[1],
                         &c[c_offset], &ldc, work, &lwork, &iinfo);
    }
    else
    {
        /* Use hybrid CPU-GPU code */
        if ((left && notran) || (! left && ! notran)) {
            i1 = 1;
            i2 = k;
            i3 = nb;
        } else {
            i1 = (k - 1) / nb * nb + 1;
            i2 = 1;
            i3 = -nb;
        }

        if (left) {
            ni = n;
        } else {
            mi = m;
        }

        for (i__ = i1; i3 < 0 ? i__ >= i2 : i__ <= i2; i__ += i3) {
            ib = min(nb, k - i__ + 1);

            /* Form the triangular factor of the block reflector
               H = H(i+ib-1) . . . H(i+1) H(i) */
            i__4 = nq - k + i__ + ib - 1;
            lapackf77_dlarft("Backward", "Columnwise", &i__4, &ib,
                             &a[i__ * lda + 1], &lda, &tau[i__], t, &ib);

            /* 1) Put 0s in the lower triangular part of A;
               2) copy the panel from A to the GPU, and
               3) restore A                                      */
            dpanel_to_q(MagmaLower, ib, &a[i__ + i__ * lda], lda, t+ib*ib);
            magma_dsetmatrix( i__4, ib, &a[1 + i__ * lda], lda, dwork, 0, i__4, queue );
            dq_to_panel(MagmaLower, ib, &a[i__ + i__ * lda], lda, t+ib*ib);

            if (left)
            {
                /* H or H' is applied to C(1:m-k+i+ib-1,1:n) */
                mi = m - k + i__ + ib - 1;
            }
            else
            {
                /* H or H' is applied to C(1:m,1:n-k+i+ib-1) */
                ni = n - k + i__ + ib - 1;
            }

            /* Apply H or H'; First copy T to the GPU */
            magma_dsetmatrix( ib, ib, t, ib, dwork, i__4*ib, ib, queue );
            magma_dlarfb_gpu(side, trans, MagmaBackward, MagmaColumnwise,
                             mi, ni, ib,
                             dwork, 0, i__4, dwork, i__4*ib, ib,
                             dc, dc_offset+(1+m), m,
                             dwork, (i__4*ib + ib*ib), ldwork, queue);
        }

        magma_dgetmatrix( m, n, dc, dc_offset+(1+m), m, &c[c_offset], ldc, queue );
    }
    work[0] = MAGMA_D_MAKE( lwkopt, 0 );

    //dc += (1 + m);
    magma_free( dc );
    magma_free( dwork );

    return *info;
} /* magma_dormql */