void ClientHandler::loop_semaforo() {
	pid_t pid_hijo;
	ignore_signals();

	pid_hijo = fork();

	if (pid_hijo) { // padre envia token a cliente
		int status = -1;
		ignore_childs();
		loop_semaforo_padre();
		leave_group();
		if (salir == 2) {
			kill(pid_hijo, SIGUSR2);
		} else if (salir == 1) {
			kill(pid_hijo, SIGUSR1);
		} else if (salir == 3) {
			kill(pid_hijo, SIGTERM);
		}
#if DEBUG_CLIENT_HANDLER==1
		std::cout << nombre_cliente << "(" << nombre_grupo << ") esperando hijo" << std::endl;
#endif
		Log::info("%s(%s) esperando hijo", nombre_cliente.c_str(), nombre_grupo.c_str());
		waitpid(pid_hijo, &status, 0);
#if DEBUG_CLIENT_HANDLER==1
		std::cout << nombre_cliente << "(" << nombre_grupo << ") hijo termino" << std::endl;
#endif
		Log::info("%s(%s) fin hijo", nombre_cliente.c_str(), nombre_grupo.c_str());
	} else {
		loop_semaforo_hijo();
		chequear_status_salida_hijo();
	}
}
示例#2
0
文件: telltale.cpp 项目: PNCG/neuron
void TelltaleState::join(TelltaleGroup* g) {
    if (g != group_) {
	Resource::ref(g);
	leave_group();
	group_ = g;
    }
}
    void multicast(lemon_job_id, const_buffer buffer)
    {
        LEMON_CHECK(!LEMON_CHECK_BUFF(buffer));

        leave_group(_group);

        close();
    }
void gcomm::AsioUdpSocket::close()
{
    Critical<AsioProtonet> crit(net_);
    if (state() != S_CLOSED)
    {
        if (is_multicast(target_ep_) == true)
        {
            leave_group(socket_, target_ep_);
        }
        socket_.close();
    }
    state_ = S_CLOSED;
}
void ClientHandler::loop_memoria() {
	bool tengo_el_token = false;
	do {
		try {
			tengo_el_token = false;
			grupo->lock_token();
			tengo_el_token = true;

		} catch (InterruptedSyscall & interruption) {
			Log::alert(interruption.what());
			tengo_el_token = false;
			leave = true;
		}
		try {
			send_token();

			if (recv_token() == 0) {
				leave = true;
			}

		} catch (OSError & error) {
#if DEBUG_CLIENT_HANDLER==1
			std::cout << nombre_cliente << "(" << nombre_grupo << ") Saliendo" << std::endl;
#endif
			Log::alert(error.what());
			leave = true;
		}

		try {
			if (leave) {
				leave_group();
			}
			if (tengo_el_token) {
				grupo->release_token(&cola_token_manager);
			}
			tengo_el_token = false;
		} catch (OSError & error) {
		}
	} while (!leave);
	try {
		mensaje.respuesta = mensajes::LEAVE_OK;
		socket.sendsome(&mensaje, sizeof(mensajes::mensajes_local_broker_token_t));
	} catch (OSError & error) {
	}
}
示例#6
0
文件: handler.c 项目: Lundessa/raven3
void free_group(struct group_data * group)
{
  struct char_data *tch;
	struct iterator_data Iterator;
	
  if (group->members->iSize) {
		for (tch = (struct char_data *) merge_iterator(&Iterator, group->members);
		  tch; 
		    tch = next_in_list(&Iterator))
          leave_group(tch);
          
    remove_iterator(&Iterator);
  }
  
  free_list(group->members);
  remove_from_list(group, group_list);
  free(group);
}
示例#7
0
int
main (int argc, char *argv[]) {
  char *dictfile = DICT_FILE;
  FILE *dict;
  char word[MAX_WORD_LEN];
  int sock, ret;
  struct in_addr rcvr_addr;
  struct sockaddr_in name;
  struct ip_mreq mreq;
#if BEW
  struct sockaddr_in local;
#endif 
  program_type prog_type = unknown;
  sec_serv_t sec_servs = sec_serv_none;
  unsigned char ttl = 5;
  int c;
  int key_size = 128;
  int tag_size = 8;
  int gcm_on = 0;
  char *input_key = NULL;
  char *address = NULL;
  char key[MAX_KEY_LEN];
  unsigned short port = 0;
  rtp_sender_t snd;
  srtp_policy_t policy;
  err_status_t status;
  int len;
  int do_list_mods = 0;
  uint32_t ssrc = 0xdeadbeef; /* ssrc value hardcoded for now */
#ifdef RTPW_USE_WINSOCK2
  WORD wVersionRequested = MAKEWORD(2, 0);
  WSADATA wsaData;

  ret = WSAStartup(wVersionRequested, &wsaData);
  if (ret != 0) {
    fprintf(stderr, "error: WSAStartup() failed: %d\n", ret);
    exit(1);
  }
#endif

  if (setup_signal_handler(argv[0]) != 0) {
    exit(1);
  }

  /* initialize srtp library */
  status = srtp_init();
  if (status) {
    printf("error: srtp initialization failed with error code %d\n", status);
    exit(1);
  }

  /* check args */
  while (1) {
    c = getopt_s(argc, argv, "k:rsgt:ae:ld:");
    if (c == -1) {
      break;
    }
    switch (c) {
    case 'k':
      input_key = optarg_s;
      break;
    case 'e':
      key_size = atoi(optarg_s);
      if (key_size != 128 && key_size != 256) {
        printf("error: encryption key size must be 128 or 256 (%d)\n", key_size);
        exit(1);
      }
      sec_servs |= sec_serv_conf;
      break;
    case 't':
      tag_size = atoi(optarg_s);
      if (tag_size != 8 && tag_size != 16) {
        printf("error: GCM tag size must be 8 or 16 (%d)\n", tag_size);
        exit(1);
      }
      break;
    case 'a':
      sec_servs |= sec_serv_auth;
      break;
    case 'g':
      gcm_on = 1;
      sec_servs |= sec_serv_auth;
      break;
    case 'r':
      prog_type = receiver;
      break;
    case 's':
      prog_type = sender;
      break;
    case 'd':
      status = crypto_kernel_set_debug_module(optarg_s, 1);
      if (status) {
        printf("error: set debug module (%s) failed\n", optarg_s);
        exit(1);
      }
      break;
    case 'l':
      do_list_mods = 1;
      break;
    default:
      usage(argv[0]);
    }
  }

  if (prog_type == unknown) {
    if (do_list_mods) {
      status = crypto_kernel_list_debug_modules();
      if (status) {
	printf("error: list of debug modules failed\n");
	exit(1);
      }
      return 0;
    } else {
      printf("error: neither sender [-s] nor receiver [-r] specified\n");
      usage(argv[0]);
    }
  }
   
  if ((sec_servs && !input_key) || (!sec_servs && input_key)) {
    /* 
     * a key must be provided if and only if security services have
     * been requested 
     */
    usage(argv[0]);
  }
    
  if (argc != optind_s + 2) {
    /* wrong number of arguments */
    usage(argv[0]);
  }

  /* get address from arg */
  address = argv[optind_s++];

  /* get port from arg */
  port = atoi(argv[optind_s++]);

  /* set address */
#ifdef HAVE_INET_ATON
  if (0 == inet_aton(address, &rcvr_addr)) {
    fprintf(stderr, "%s: cannot parse IP v4 address %s\n", argv[0], address);
    exit(1);
  }
  if (rcvr_addr.s_addr == INADDR_NONE) {
    fprintf(stderr, "%s: address error", argv[0]);
    exit(1);
  }
#else
  rcvr_addr.s_addr = inet_addr(address);
  if (0xffffffff == rcvr_addr.s_addr) {
    fprintf(stderr, "%s: cannot parse IP v4 address %s\n", argv[0], address);
    exit(1);
  }
#endif

  /* open socket */
  sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
  if (sock < 0) {
    int err;
#ifdef RTPW_USE_WINSOCK2
    err = WSAGetLastError();
#else
    err = errno;
#endif
    fprintf(stderr, "%s: couldn't open socket: %d\n", argv[0], err);
   exit(1);
  }

  name.sin_addr   = rcvr_addr;    
  name.sin_family = PF_INET;
  name.sin_port   = htons(port);
 
  if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
    if (prog_type == sender) {
      ret = setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, 
  	               sizeof(ttl));
      if (ret < 0) {
	fprintf(stderr, "%s: Failed to set TTL for multicast group", argv[0]);
	perror("");
	exit(1);
      }
    }

    mreq.imr_multiaddr.s_addr = rcvr_addr.s_addr;
    mreq.imr_interface.s_addr = htonl(INADDR_ANY);
    ret = setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, (void*)&mreq,
		     sizeof(mreq));
    if (ret < 0) {
      fprintf(stderr, "%s: Failed to join multicast group", argv[0]);
      perror("");
      exit(1);
    }
  }

  /* report security services selected on the command line */
  printf("security services: ");
  if (sec_servs & sec_serv_conf)
    printf("confidentiality ");
  if (sec_servs & sec_serv_auth)
    printf("message authentication");
  if (sec_servs == sec_serv_none)
    printf("none");
  printf("\n");
  
  /* set up the srtp policy and master key */    
  if (sec_servs) {
    /* 
     * create policy structure, using the default mechanisms but 
     * with only the security services requested on the command line,
     * using the right SSRC value
     */
    switch (sec_servs) {
    case sec_serv_conf_and_auth:
      if (gcm_on) {
#ifdef OPENSSL
	switch (key_size) {
	case 128:
	  crypto_policy_set_aes_gcm_128_8_auth(&policy.rtp);
	  crypto_policy_set_aes_gcm_128_8_auth(&policy.rtcp);
	  break;
	case 256:
	  crypto_policy_set_aes_gcm_256_8_auth(&policy.rtp);
	  crypto_policy_set_aes_gcm_256_8_auth(&policy.rtcp);
	  break;
	}
#else
	printf("error: GCM mode only supported when using the OpenSSL crypto engine.\n");
	return 0;
#endif
      } else {
	switch (key_size) {
	case 128:
          crypto_policy_set_rtp_default(&policy.rtp);
          crypto_policy_set_rtcp_default(&policy.rtcp);
	  break;
	case 256:
          crypto_policy_set_aes_cm_256_hmac_sha1_80(&policy.rtp);
          crypto_policy_set_rtcp_default(&policy.rtcp);
	  break;
	}
      }
      break;
    case sec_serv_conf:
      if (gcm_on) {
	  printf("error: GCM mode must always be used with auth enabled\n");
	  return -1;
      } else {
	switch (key_size) {
	case 128:
          crypto_policy_set_aes_cm_128_null_auth(&policy.rtp);
          crypto_policy_set_rtcp_default(&policy.rtcp);      
	  break;
	case 256:
          crypto_policy_set_aes_cm_256_null_auth(&policy.rtp);
          crypto_policy_set_rtcp_default(&policy.rtcp);      
	  break;
	}
      }
      break;
    case sec_serv_auth:
      if (gcm_on) {
#ifdef OPENSSL
	switch (key_size) {
	case 128:
	  crypto_policy_set_aes_gcm_128_8_only_auth(&policy.rtp);
	  crypto_policy_set_aes_gcm_128_8_only_auth(&policy.rtcp);
	  break;
	case 256:
	  crypto_policy_set_aes_gcm_256_8_only_auth(&policy.rtp);
	  crypto_policy_set_aes_gcm_256_8_only_auth(&policy.rtcp);
	  break;
	}
#else
	printf("error: GCM mode only supported when using the OpenSSL crypto engine.\n");
	return 0;
#endif
      } else {
        crypto_policy_set_null_cipher_hmac_sha1_80(&policy.rtp);
        crypto_policy_set_rtcp_default(&policy.rtcp);
      }
      break;
    default:
      printf("error: unknown security service requested\n");
      return -1;
    } 
    policy.ssrc.type  = ssrc_specific;
    policy.ssrc.value = ssrc;
    policy.key  = (uint8_t *) key;
    policy.ekt  = NULL;
    policy.next = NULL;
    policy.window_size = 128;
    policy.allow_repeat_tx = 0;
    policy.rtp.sec_serv = sec_servs;
    policy.rtcp.sec_serv = sec_serv_none;  /* we don't do RTCP anyway */

    if (gcm_on && tag_size != 8) {
	policy.rtp.auth_tag_len = tag_size;
    }

    /*
     * read key from hexadecimal on command line into an octet string
     */
    len = hex_string_to_octet_string(key, input_key, policy.rtp.cipher_key_len*2);
    
    /* check that hex string is the right length */
    if (len < policy.rtp.cipher_key_len*2) {
      fprintf(stderr, 
	      "error: too few digits in key/salt "
	      "(should be %d hexadecimal digits, found %d)\n",
	      policy.rtp.cipher_key_len*2, len);
      exit(1);    
    } 
    if (strlen(input_key) > policy.rtp.cipher_key_len*2) {
      fprintf(stderr, 
	      "error: too many digits in key/salt "
	      "(should be %d hexadecimal digits, found %u)\n",
	      policy.rtp.cipher_key_len*2, (unsigned)strlen(input_key));
      exit(1);    
    }
    
    printf("set master key/salt to %s/", octet_string_hex_string(key, 16));
    printf("%s\n", octet_string_hex_string(key+16, 14));
  
  } else {
    /*
     * we're not providing security services, so set the policy to the
     * null policy
     *
     * Note that this policy does not conform to the SRTP
     * specification, since RTCP authentication is required.  However,
     * the effect of this policy is to turn off SRTP, so that this
     * application is now a vanilla-flavored RTP application.
     */
    policy.key                 = (uint8_t *)key;
    policy.ssrc.type           = ssrc_specific;
    policy.ssrc.value          = ssrc;
    policy.rtp.cipher_type     = NULL_CIPHER;
    policy.rtp.cipher_key_len  = 0; 
    policy.rtp.auth_type       = NULL_AUTH;
    policy.rtp.auth_key_len    = 0;
    policy.rtp.auth_tag_len    = 0;
    policy.rtp.sec_serv        = sec_serv_none;   
    policy.rtcp.cipher_type    = NULL_CIPHER;
    policy.rtcp.cipher_key_len = 0; 
    policy.rtcp.auth_type      = NULL_AUTH;
    policy.rtcp.auth_key_len   = 0;
    policy.rtcp.auth_tag_len   = 0;
    policy.rtcp.sec_serv       = sec_serv_none;   
    policy.window_size         = 0;
    policy.allow_repeat_tx     = 0;
    policy.ekt                 = NULL;
    policy.next                = NULL;
  }

  if (prog_type == sender) {

#if BEW
    /* bind to local socket (to match crypto policy, if need be) */
    memset(&local, 0, sizeof(struct sockaddr_in));
    local.sin_addr.s_addr = htonl(INADDR_ANY);
    local.sin_port = htons(port);
    ret = bind(sock, (struct sockaddr *) &local, sizeof(struct sockaddr_in));
    if (ret < 0) {
      fprintf(stderr, "%s: bind failed\n", argv[0]);
      perror("");
      exit(1); 
    }
#endif /* BEW */

    /* initialize sender's rtp and srtp contexts */
    snd = rtp_sender_alloc();
    if (snd == NULL) {
      fprintf(stderr, "error: malloc() failed\n");
      exit(1);
    }
    rtp_sender_init(snd, sock, name, ssrc); 
    status = rtp_sender_init_srtp(snd, &policy);
    if (status) {
      fprintf(stderr, 
	      "error: srtp_create() failed with code %d\n", 
	      status);
      exit(1);
    }
 
    /* open dictionary */
    dict = fopen (dictfile, "r");
    if (dict == NULL) {
      fprintf(stderr, "%s: couldn't open file %s\n", argv[0], dictfile);
      if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
  	leave_group(sock, mreq, argv[0]);
      }
      exit(1);
    }
          
    /* read words from dictionary, then send them off */
    while (!interrupted && fgets(word, MAX_WORD_LEN, dict) != NULL) { 
      len = strlen(word) + 1;  /* plus one for null */
      
      if (len > MAX_WORD_LEN) 
	printf("error: word %s too large to send\n", word);
      else {
	rtp_sendto(snd, word, len);
        printf("sending word: %s", word);
      }
      usleep(USEC_RATE);
    }

    rtp_sender_deinit_srtp(snd);
    rtp_sender_dealloc(snd);

    fclose(dict);
  } else  { /* prog_type == receiver */
    rtp_receiver_t rcvr;
        
    if (bind(sock, (struct sockaddr *)&name, sizeof(name)) < 0) {
      close(sock);
      fprintf(stderr, "%s: socket bind error\n", argv[0]);
      perror(NULL);
      if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
    	leave_group(sock, mreq, argv[0]);
      }
      exit(1);
    }

    rcvr = rtp_receiver_alloc();
    if (rcvr == NULL) {
      fprintf(stderr, "error: malloc() failed\n");
      exit(1);
    }
    rtp_receiver_init(rcvr, sock, name, ssrc);
    status = rtp_receiver_init_srtp(rcvr, &policy);
    if (status) {
      fprintf(stderr, 
	      "error: srtp_create() failed with code %d\n", 
	      status);
      exit(1);
    }

    /* get next word and loop */
    while (!interrupted) {
      len = MAX_WORD_LEN;
      if (rtp_recvfrom(rcvr, word, &len) > -1)
	printf("\tword: %s\n", word);
    }
      
    rtp_receiver_deinit_srtp(rcvr);
    rtp_receiver_dealloc(rcvr);
  } 

  if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
    leave_group(sock, mreq, argv[0]);
  }

#ifdef RTPW_USE_WINSOCK2
  ret = closesocket(sock);
#else
  ret = close(sock);
#endif
  if (ret < 0) {
    fprintf(stderr, "%s: Failed to close socket", argv[0]);
    perror("");
  }

  status = srtp_shutdown();
  if (status) {
    printf("error: srtp shutdown failed with error code %d\n", status);
    exit(1);
  }

#ifdef RTPW_USE_WINSOCK2
  WSACleanup();
#endif

  return 0;
}
示例#8
0
文件: handler.c 项目: Lundessa/raven3
/* Extract a ch completely from the world, and leave his stuff behind */
void extract_char_final(struct char_data *ch)
{
  struct char_data *k, *temp;
  struct descriptor_data *d;
  struct obj_data *obj;
  int i;

  if (IN_ROOM(ch) == NOWHERE) {
    log("SYSERR: NOWHERE extracting char %s. (%s, extract_char_final)",
        GET_NAME(ch), __FILE__);
    exit(1);
  }

  /* We're booting the character of someone who has switched so first we need
   * to stuff them back into their own body.  This will set ch->desc we're
   * checking below this loop to the proper value. */
  if (!IS_NPC(ch) && !ch->desc) {
    for (d = descriptor_list; d; d = d->next)
      if (d->original == ch) {
	do_return(d->character, NULL, 0, 0);
        break;
      }
  }

  if (ch->desc) {
    /* This time we're extracting the body someone has switched into (not the
     * body of someone switching as above) so we need to put the switcher back
     * to their own body. If this body is not possessed, the owner won't have a
     * body after the removal so dump them to the main menu. */
    if (ch->desc->original)
      do_return(ch, NULL, 0, 0);
    else {
      /* Now we boot anybody trying to log in with the same character, to help
       * guard against duping.  CON_DISCONNECT is used to close a descriptor
       * without extracting the d->character associated with it, for being
       * link-dead, so we want CON_CLOSE to clean everything up. If we're
       * here, we know it's a player so no IS_NPC check required. */
      for (d = descriptor_list; d; d = d->next) {
        if (d == ch->desc)
          continue;
        if (d->character && GET_IDNUM(ch) == GET_IDNUM(d->character))
          STATE(d) = CON_CLOSE;
      }
      STATE(ch->desc) = CON_MENU;
      write_to_output(ch->desc, "%s", CONFIG_MENU);
    }
  }

  /* On with the character's assets... */
  if (ch->followers || ch->master)
    die_follower(ch);

  /* Check to see if we are grouped! */
  if (GROUP(ch))
    leave_group(ch);

  /* transfer objects to room, if any */
  while (ch->carrying) {
    obj = ch->carrying;
    obj_from_char(obj);
    obj_to_room(obj, IN_ROOM(ch));
  }

  /* transfer equipment to room, if any */
  for (i = 0; i < NUM_WEARS; i++)
    if (GET_EQ(ch, i))
      obj_to_room(unequip_char(ch, i), IN_ROOM(ch));

  if (FIGHTING(ch))
    stop_fighting(ch);

  for (k = combat_list; k; k = temp) {
    temp = k->next_fighting;
    if (FIGHTING(k) == ch)
      stop_fighting(k);
  }
  
  /* Whipe character from the memory of hunters and other intelligent NPCs... */
  for (temp = character_list; temp; temp = temp->next) {
    /* PCs can't use MEMORY, and don't use HUNTING() */
    if (!IS_NPC(temp))
      continue;
    /* If "temp" is hunting our extracted char, stop the hunt. */
    if (HUNTING(temp) == ch)
      HUNTING(temp) = NULL;
    /* If "temp" has allocated memory data and our ch is a PC, forget the 
     * extracted character (if he/she is remembered) */  
    if (!IS_NPC(ch) && GET_POS(ch) == POS_DEAD && MEMORY(temp))
      forget(temp, ch); /* forget() is safe to use without a check. */
  }

  char_from_room(ch);

  if (IS_NPC(ch)) {
    if (GET_MOB_RNUM(ch) != NOTHING)	/* prototyped */
      mob_index[GET_MOB_RNUM(ch)].number--;
    clearMemory(ch);

    if (SCRIPT(ch))
      extract_script(ch, MOB_TRIGGER);

    if (SCRIPT_MEM(ch))
      extract_script_mem(SCRIPT_MEM(ch));
  } else {
    save_char(ch);
    Crash_delete_crashfile(ch);
  }

  /* If there's a descriptor, they're in the menu now. */
  if (IS_NPC(ch) || !ch->desc)
    free_char(ch);
}
示例#9
0
文件: telltale.cpp 项目: PNCG/neuron
TelltaleState::~TelltaleState() {
    leave_group();
}