示例#1
0
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCone<PointT, PointNT>::optimizeModelCoefficients (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients)
{
  optimized_coefficients = model_coefficients;

  // Needs a set of valid model coefficients
  if (model_coefficients.size () != 7)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] Invalid number of model coefficients given (%lu)!\n", model_coefficients.size ());
    return;
  }

  if (inliers.empty ())
  {
    PCL_DEBUG ("[pcl::SampleConsensusModelCone:optimizeModelCoefficients] Inliers vector empty! Returning the same coefficients.\n");
    return;
  }

  tmp_inliers_ = &inliers;

  OptimizationFunctor functor (static_cast<int> (inliers.size ()), this);
  Eigen::NumericalDiff<OptimizationFunctor > num_diff (functor);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
  int info = lm.minimize (optimized_coefficients);

  // Compute the L2 norm of the residuals
  PCL_DEBUG ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
             info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
             model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);

  Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
  line_dir.normalize ();
  optimized_coefficients[3] = line_dir[0];
  optimized_coefficients[4] = line_dir[1];
  optimized_coefficients[5] = line_dir[2];
}
示例#2
0
template <typename PointT> void
pcl::SampleConsensusModelLine<PointT>::selectWithinDistance (
      const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers)
{
  // Needs a valid set of model coefficients
  if (!isModelValid (model_coefficients))
    return;

  double sqr_threshold = threshold * threshold;

  int nr_p = 0;
  inliers.resize (indices_->size ());
  error_sqr_dists_.resize (indices_->size ());

  // Obtain the line point and direction
  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  line_dir.normalize ();

  // Iterate through the 3d points and calculate the distances from them to the line
  for (size_t i = 0; i < indices_->size (); ++i)
  {
    // Calculate the distance from the point to the line
    // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p2-p0)) / norm(p2-p1)
    double sqr_distance = (line_pt - input_->points[(*indices_)[i]].getVector4fMap ()).cross3 (line_dir).squaredNorm ();

    if (sqr_distance < sqr_threshold)
    {
      // Returns the indices of the points whose squared distances are smaller than the threshold
      inliers[nr_p] = (*indices_)[i];
      error_sqr_dists_[nr_p] = sqr_distance;
      ++nr_p;
    }
  }
  inliers.resize (nr_p);
  error_sqr_dists_.resize (nr_p);
}
示例#3
0
template <typename PointT> void
pcl::SampleConsensusModelLine<PointT>::getDistancesToModel (
      const Eigen::VectorXf &model_coefficients, std::vector<double> &distances)
{
  // Needs a valid set of model coefficients
  if (!isModelValid (model_coefficients))
    return;

  distances.resize (indices_->size ());

  // Obtain the line point and direction
  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  line_dir.normalize ();

  // Iterate through the 3d points and calculate the distances from them to the line
  for (size_t i = 0; i < indices_->size (); ++i)
  {
    // Calculate the distance from the point to the line
    // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p2-p0)) / norm(p2-p1)
    // Need to estimate sqrt here to keep MSAC and friends general
    distances[i] = sqrt ((line_pt - input_->points[(*indices_)[i]].getVector4fMap ()).cross3 (line_dir).squaredNorm ());
  }
}
示例#4
0
template <typename PointT> void
pcl::SampleConsensusModelStick<PointT>::projectPoints (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
{
  // Needs a valid model coefficients
  if (!isModelValid (model_coefficients))
    return;

  // Obtain the line point and direction
  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);

  projected_points.header = input_->header;
  projected_points.is_dense = input_->is_dense;

  // Copy all the data fields from the input cloud to the projected one?
  if (copy_data_fields)
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (input_->points.size ());
    projected_points.width    = input_->width;
    projected_points.height   = input_->height;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < projected_points.points.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[i], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the line
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      Eigen::Vector4f pt (input_->points[inliers[i]].x, input_->points[inliers[i]].y, input_->points[inliers[i]].z, 0);
      // double k = (DOT_PROD_3D (points[i], p21) - dotA_B) / dotB_B;
      float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) / line_dir.dot (line_dir);

      Eigen::Vector4f pp = line_pt + k * line_dir;
      // Calculate the projection of the point on the line (pointProj = A + k * B)
      projected_points.points[inliers[i]].x = pp[0];
      projected_points.points[inliers[i]].y = pp[1];
      projected_points.points[inliers[i]].z = pp[2];
    }
  }
  else
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (inliers.size ());
    projected_points.width    = static_cast<uint32_t> (inliers.size ());
    projected_points.height   = 1;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < inliers.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[inliers[i]], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the line
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      Eigen::Vector4f pt (input_->points[inliers[i]].x, input_->points[inliers[i]].y, input_->points[inliers[i]].z, 0);
      // double k = (DOT_PROD_3D (points[i], p21) - dotA_B) / dotB_B;
      float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) / line_dir.dot (line_dir);

      Eigen::Vector4f pp = line_pt + k * line_dir;
      // Calculate the projection of the point on the line (pointProj = A + k * B)
      projected_points.points[i].x = pp[0];
      projected_points.points[i].y = pp[1];
      projected_points.points[i].z = pp[2];
    }
  }
}
示例#5
0
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelCylinder<PointT, PointNT>::projectPoints (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields)
{
  // Needs a valid set of model coefficients
  if (model_coefficients.size () != 7)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCylinder::projectPoints] Invalid number of model coefficients given (%zu)!\n", model_coefficients.size ());
    return;
  }

  projected_points.header = input_->header;
  projected_points.is_dense = input_->is_dense;

  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float ptdotdir = line_pt.dot (line_dir);
  float dirdotdir = 1.0f / line_dir.dot (line_dir);

  // Copy all the data fields from the input cloud to the projected one?
  if (copy_data_fields)
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (input_->points.size ());
    projected_points.width    = input_->width;
    projected_points.height   = input_->height;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < projected_points.points.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[i], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the cylinder
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      Eigen::Vector4f p (input_->points[inliers[i]].x,
                         input_->points[inliers[i]].y,
                         input_->points[inliers[i]].z,
                         1);

      float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;

      pcl::Vector4fMap pp = projected_points.points[inliers[i]].getVector4fMap ();
      pp = line_pt + k * line_dir;

      Eigen::Vector4f dir = p - pp;
      dir.normalize ();

      // Calculate the projection of the point onto the cylinder
      pp += dir * model_coefficients[6];
    }
  }
  else
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (inliers.size ());
    projected_points.width    = static_cast<uint32_t> (inliers.size ());
    projected_points.height   = 1;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < inliers.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[inliers[i]], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the plane
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      pcl::Vector4fMap pp = projected_points.points[i].getVector4fMap ();
      pcl::Vector4fMapConst p = input_->points[inliers[i]].getVector4fMap ();

      float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
      // Calculate the projection of the point on the line
      pp = line_pt + k * line_dir;

      Eigen::Vector4f dir = p - pp;
      dir.normalize ();

      // Calculate the projection of the point onto the cylinder
      pp += dir * model_coefficients[6];
    }
  }
}