//----------------------------------------------------------------------------
// 
//------------
void logarithmic_reg(	mmx_biv* ana,
						double* a,
						double* b){
mmx_biv		lana;
MMsMatrix*	mx=MMsMatrixClone(ana->data);
int			i;
	for(i=1;i<=mx->nl;i++){
		MMsSetDouble(mx,i,1,log(MMsGetDouble(mx,i,1)));
	}
	biv_analysis(mx,&lana);
	MMsMatrixFree(mx);
	linear_reg(&lana,a,b);
	MMsMatrixFree(lana.data);
	MMsMatrixFree(lana.indic);
}
示例#2
0
文件: main.cpp 项目: rforge/genabel
/**
 * Main routine. The main logic of ProbABEL can be found here
 *
 * \param argc Number of command line arguments
 * \param argv Vector containing the command line arguments
 *
 * \return 0 if all went well. Other integer numbers if an error
 * occurred
 */
int main(int argc, char * argv[])
{
    cmdvars input_var;
    input_var.set_variables(argc, argv);

    input_var.printinfo();

    cout << "Reading info data...\n" << flush;
    mlinfo mli(input_var.getMlinfofilename(), input_var.getMapfilename());
    int nsnps = mli.nsnps;
    phedata phd;
    cout << "Reading phenotype data...\n" << flush;
    int interaction_cox = create_phenotype(phd, input_var);

    masked_matrix invvarmatrix;

    if (input_var.getInverseFilename() != NULL)
    {
        loadInvSigma(input_var, phd, invvarmatrix);
    }

    gendata gtd;
    cout << "Reading genotype data... " << flush;
    if (!input_var.getIsFvf())
    {
        // TODO(maartenk): remove timing code
        // make clock to time loading of the non filevector file
        std::clock_t    start;
        start = std::clock();

        // use the non-filevector input format
        gtd.re_gendata(input_var.getGenfilename(), nsnps,
                       input_var.getNgpreds(), phd.nids_all, phd.nids,
                       phd.allmeasured, input_var.getSkipd(), phd.idnames);

        // TODO(maartenk): remove timing code
        double millisec=((std::clock() - start) / (double)(CLOCKS_PER_SEC / 1000))/1000;
        cout << "done in "<< millisec<< " seconds.\n" << flush;
    }
    else
    {
        // use the filevector input format (missing second last skipd
        // parameter)
        gtd.re_gendata(input_var.getStrGenfilename(), nsnps,
                       input_var.getNgpreds(), phd.nids_all, phd.nids,
                       phd.allmeasured, phd.idnames);
        cout << "done.\n" << flush;
    }


    // estimate null model
#if COXPH
    coxph_data nrgd = coxph_data(phd, gtd, -1);
#else
    regdata nrgd = regdata(phd, gtd, -1, input_var.isIsInteractionExcluded());
#endif

    std::cout << " loaded null data..." << std::flush;
#if LOGISTIC
    logistic_reg nrd = logistic_reg(nrgd);

    nrd.estimate(0, 0,
                 input_var.getInteraction(),
                 input_var.getNgpreds(),
                 invvarmatrix,
                 input_var.getRobust(),
                 1);
#elif LINEAR

    linear_reg nrd = linear_reg(nrgd);
#if DEBUG
    std::cout << "[DEBUG] linear_reg nrd = linear_reg(nrgd); DONE.";
#endif
    nrd.estimate(0, 0, input_var.getInteraction(),
                 input_var.getNgpreds(), invvarmatrix,
                 input_var.getRobust(), 1);
#elif COXPH
    coxph_reg nrd = coxph_reg(nrgd);
    nrd.estimate(nrgd, 0,
                 input_var.getInteraction(), input_var.getNgpreds(),
                 true, 1, mli, 0);
#endif
    double null_loglik = nrd.loglik;

    std::cout << " estimated null model...";
    // end null
#if COXPH
    coxph_data rgd(phd, gtd, 0);
#else
    regdata rgd(phd, gtd, 0, input_var.isIsInteractionExcluded());
#endif
    std::cout << " formed regression object...\n";


    // Open a vector of files that will be used for output. Depending
    // on the number of genomic predictors we either open 5 files (one
    // for each model if we have prob data) or one (if we have dosage
    // data).
    std::string outfilename_str(input_var.getOutfilename());
    std::vector<std::ofstream*> outfile;

    // Prob data: All models output. One file per model
    if (input_var.getNgpreds() == 2)
    {
        open_files_for_output(outfile, outfilename_str);
        if (input_var.getNohead() != 1)
        {
            create_header(outfile, input_var, phd, interaction_cox);
        }
    }
    else  // Dosage data: Only additive model => only one output file
    {
        outfile.push_back(
            new std::ofstream((outfilename_str + "_add.out.txt").c_str()));

        if (!outfile[0]->is_open())
        {
            std::cerr << "Cannot open file for writing: "
                      << outfilename_str
                      << "\n";
            exit(1);
        }
        if (input_var.getNohead() != 1)
        {
            create_header(outfile, input_var, phd, interaction_cox);
        }
    }  // END else: we have dosage data => only one file


    int maxmod = 5;             // Total number of models (in random
                                // order: additive, recessive,
                                // dominant, over_dominant, 2df). Only
                                // with dosage data can we run all of
                                // them. For dosage data we can only
                                // run the additive model.

    int start_pos, end_pos;

    std::vector<std::ostringstream *> beta_sebeta;
    // Han Chen
    std::vector<std::ostringstream *> covvalue;
    // Oct 26, 2009
    std::vector<std::ostringstream *> chi2;

    // Create string streams for betas, SEs, etc. These are used to
    // later store the various output values that will be written to
    // files.
    for (int i = 0; i < maxmod; i++)
    {
        beta_sebeta.push_back(new std::ostringstream());
        beta_sebeta[i]->precision(6);
        // *beta_sebeta[i] << scientific;
        // Han Chen
        covvalue.push_back(new std::ostringstream());
        covvalue[i]->precision(6);
        // *covvalue[i] << scientific;
        // Oct 26, 2009
        chi2.push_back(new std::ostringstream());
        chi2[i]->precision(6);
        // *chi2[i] << scientific;
    }


    // Here we start the analysis for each SNP.
    for (int csnp = 0; csnp < nsnps; csnp++)
    {
        rgd.update_snp(&gtd, csnp);


        int poly = 1;
        if (fabs(rgd.freq) < 1.e-16 || fabs(1. - rgd.freq) < 1.e-16)
        {
            poly = 0;
        }

        if (fabs(mli.Rsq[csnp]) < 1.e-16)
        {
            poly = 0;
        }

        // Write mlinfo information to the output file(s)
        // Prob data: All models output. One file per model
        if (input_var.getNgpreds() == 2)
        {
            for (unsigned int file = 0; file < outfile.size(); file++)
            {
                write_mlinfo(outfile, file, mli, csnp, input_var,
                             rgd.gcount, rgd.freq);
            }
        } else{
            // Dosage data: only additive model
            int file = 0;
            write_mlinfo(outfile, file, mli, csnp, input_var,
                         rgd.gcount, rgd.freq);
            maxmod = 1;         // We can only calculate the additive
                                // model with dosage data
        }

        // Run regression for each model for the current SNP
        for (int model = 0; model < maxmod; model++)
        {
            if (poly) // Allele freq is not too rare
            {
#if LOGISTIC
                logistic_reg rd(rgd);
#elif LINEAR
                linear_reg rd(rgd);
#elif COXPH
                coxph_reg rd(rgd);
#endif
#if !COXPH
                if (input_var.getScore())
                {
                    rd.score(nrd.residuals, model,
                             input_var.getInteraction(),
                             input_var.getNgpreds(),
                             invvarmatrix);
                }
                else
                {
                    rd.estimate(0, model,
                                input_var.getInteraction(),
                                input_var.getNgpreds(),
                                invvarmatrix,
                                input_var.getRobust());
                }
#else
                rd.estimate(rgd, model,
                            input_var.getInteraction(),
                            input_var.getNgpreds(), true, 0, mli, csnp);
#endif

                int number_of_rows_or_columns = rd.beta.nrow;
                start_pos = get_start_position(input_var, model,
                                               number_of_rows_or_columns);

                // The regression coefficients for the SNPs are in the
                // last rows of beta[] and sebeta[].
                for (int pos = start_pos; pos < rd.beta.nrow; pos++)
                {
                    *beta_sebeta[model] << input_var.getSep()
                                        << rd.beta[pos]
                                        << input_var.getSep()
                                        << rd.sebeta[pos];
                    // Han Chen
#if !COXPH
                    if (input_var.getInverseFilename() == NULL
                            && !input_var.getAllcov()
                            && input_var.getInteraction() != 0)
                    {
                        if (pos > start_pos)
                        {
                            if (model == 0)
                            {
                                if (input_var.getNgpreds() == 2)
                                {
                                    if (pos > start_pos + 2)
                                    {
                                        *covvalue[model]
                                            << rd.covariance[pos - 3]
                                            << input_var.getSep()
                                            << rd.covariance[pos - 2];
                                    }
                                }  // END ngpreds=2
                                else
                                {
                                    *covvalue[model] << rd.covariance[pos - 1];
                                }
                            }  // END model == 0
                            else
                            {
                                *covvalue[model] << rd.covariance[pos - 1];
                            }  // END model != 0
                        }  // END if pos > start_pos
                    }
#endif
                    // Oct 26, 2009
                }  // END for(pos = start_pos; pos < rd.beta.nrow; pos++)


                // calculate chi^2
                // ________________________________
                // cout <<  rd.loglik<<" "<<input_var.getNgpreds() << "\n";

                if (input_var.getInverseFilename() == NULL)
                { // Only if we don't have an inv.sigma file can we use LRT
                    if (input_var.getScore() == 0)
                    {
                        double loglik = rd.loglik;
                        if (rgd.gcount != gtd.nids)
                        {
                            // If SNP data is missing we didn't
                            // correctly compute the null likelihood

                            // Recalculate null likelihood by
                            // stripping the SNP data column(s) from
                            // the X matrix in the regression object
                            // and run the null model estimation again
                            // for this SNP.
#if !COXPH
                            regdata new_rgd = rgd;
#else
                            coxph_data new_rgd = rgd;
#endif

                            new_rgd.remove_snp_from_X();

#ifdef LINEAR
                            linear_reg new_null_rd(new_rgd);
#elif LOGISTIC
                            logistic_reg new_null_rd(new_rgd);
#endif
#if !COXPH
                            new_null_rd.estimate(0,
                                                 model,
                                                 input_var.getInteraction(),
                                                 input_var.getNgpreds(),
                                                 invvarmatrix,
                                                 input_var.getRobust(), 1);
#else
                            coxph_reg new_null_rd(new_rgd);
                            new_null_rd.estimate(new_rgd,
                                                 model,
                                                 input_var.getInteraction(),
                                                 input_var.getNgpreds(),
                                                 true, 1, mli, csnp);
#endif
                            *chi2[model] << 2. * (loglik - new_null_rd.loglik);
                        }
                        else
                        {
                            // No missing SNP data, we can compute the LRT
                            *chi2[model] << 2. * (loglik - null_loglik);
                        }
                    } else{
                        // We want score test output
                        *chi2[model] << rd.chi2_score;
                    }
                }  // END if( inv.sigma == NULL )
                else if (input_var.getInverseFilename() != NULL)
                {
                    // We can't use the LRT here, because mmscore is a
                    // REML method. Therefore go for the Wald test
                    if (input_var.getNgpreds() == 2 && model == 0)
                    {
                        /* For the 2df model we can't simply use the
                         * Wald statistic. This can be fixed using the
                         * equation just below Eq.(4) in the ProbABEL
                         * paper. TODO LCK
                         */
                        *chi2[model] << "NaN";
                    }
                    else
                    {
                        double Z = rd.beta[start_pos] / rd.sebeta[start_pos];
                        *chi2[model] << Z * Z;
                    }
                }
            }  // END first part of if(poly); allele not too rare
            else
            {   // SNP is rare: beta, sebeta, chi2 = NaN
                int number_of_rows_or_columns = rgd.X.ncol;
                start_pos = get_start_position(input_var, model,
                        number_of_rows_or_columns);

                if (input_var.getInteraction() != 0 && !input_var.getAllcov()
                    && input_var.getNgpreds() != 2)
                {
                    start_pos++;
                }

                if (input_var.getNgpreds() == 0)
                {
                    end_pos = rgd.X.ncol;
                } else{
                    end_pos = rgd.X.ncol - 1;
                }

                if (input_var.getInteraction() != 0)
                {
                    end_pos++;
                }

                for (int pos = start_pos; pos <= end_pos; pos++)
                {
                    *beta_sebeta[model] << input_var.getSep()
                            << "NaN"
                            << input_var.getSep()
                            << "NaN";
                }

                if (input_var.getNgpreds() == 2)
                {
                    // Han Chen
#if !COXPH
                    if (!input_var.getAllcov()
                            && input_var.getInteraction() != 0)
                    {
                        if (model == 0)
                        {
                            *covvalue[model] << "NaN"
                                             << input_var.getSep()
                                             << "NaN";
                        } else{
                            *covvalue[model] << "NaN";
                        }
                    }
#endif
                    // Oct 26, 2009
                    *chi2[model] << "NaN";
                } else{
                    // ngpreds==1 (and SNP is rare)
                    if (input_var.getInverseFilename() == NULL)
                    {
                        //                     Han Chen
#if !COXPH
                        if (!input_var.getAllcov()
                                && input_var.getInteraction() != 0)
                        {
                            *covvalue[model] << "NaN";
                        }
#endif
                        // Oct 26, 2009
                    }  // END if getInverseFilename == NULL
                    *chi2[model] << "NaN";
                }  // END ngpreds == 1 (and SNP is rare)
            }  // END else: SNP is rare
        }  // END of model cycle


        // Start writing beta's, se_beta's etc. to file
        if (input_var.getNgpreds() == 2)
        {
            for (int model = 0; model < maxmod; model++)
            {
                *outfile[model] << beta_sebeta[model]->str()
                                << input_var.getSep();
#if !COXPH
                if (!input_var.getAllcov() && input_var.getInteraction() != 0)
                {
                    *outfile[model] << covvalue[model]->str()
                                    << input_var.getSep();
                }
#endif
                *outfile[model] << chi2[model]->str()
                                << "\n";
            }  // END for loop over all models
        }
        else  // Dose data: only additive model. Only one output file
        {
            *outfile[0] << beta_sebeta[0]->str() << input_var.getSep();
#if !COXPH
            if (!input_var.getAllcov() && input_var.getInteraction() != 0)
            {
                *outfile[0] << covvalue[0]->str() << input_var.getSep();
            }
#endif
            *outfile[0] << chi2[0]->str() << "\n";
        }  // End ngpreds == 1 when writing output files


        // Clean chi2 and other streams
        for (int model = 0; model < maxmod; model++)
        {
            beta_sebeta[model]->str("");
            // Han Chen
            covvalue[model]->str("");
            // Oct 26, 2009
            chi2[model]->str("");
        }

        update_progress_to_cmd_line(csnp, nsnps);
    }  // END for loop over all SNPs


    // We're almost done. All computations have finished, time to
    // clean up.

    std::cout << setprecision(2) << fixed;
    std::cout << "\b\b\b\b\b\b\b\b\b" << 100.;
    std::cout << "%... done\n";

    // Close output files
    for (unsigned int i = 0; i < outfile.size(); i++)
    {
        outfile[i]->close();
        delete outfile[i];
    }

    // delete gtd;

    // Clean up a couple of vectors
    std::vector<std::ostringstream *>::iterator it = beta_sebeta.begin();
    while (it != beta_sebeta.end())
    {
        delete *it;
        ++it;
    }
    it = covvalue.begin();
    while (it != covvalue.end())
    {
        delete *it;
        ++it;
    }
    it = chi2.begin();
    while (it != chi2.end())
    {
        delete *it;
        ++it;
    }

    return (0);
}
示例#3
0
int main(int argc, char * argv[])
{
    cmdvars input_var;
    input_var.set_variables(argc, argv);

    input_var.printinfo();
    //	if (allcov && ngpreds>1)
    //	{
    //      cout << "\n\n"
    //           << "WARNING: --allcov allowed only for 1 predictor (MLDOSE)\n";
    //		allcov = 0;
    //	}
    mlinfo mli(input_var.getMlinfofilename(), input_var.getMapfilename());
    int nsnps = mli.nsnps;
    phedata phd;
    int interaction_cox = create_phenotype(phd, input_var);

    //interaction--;
    //	if (input_var.getInverseFilename()!= NULL && phd.ncov > 1)
    //     {
    //         std::cerr << "Error: In mmscore you can not use any covariates."
    //                   << " You phenotype file must conatin id column and "
    //                   << "trait (residuals) only\n";
    //         exit(1);
    //      }
    //	if (input_var.getInverseFilename()!= NULL &&
    //      (allcov == 1 || score == 1
    //                   || input_var.getInteraction()!= 0
    //                   || ngpreds==2))
    //      {
    //          std::cerr << "Error: In mmscore you can use additive model "
    //                    << "without any inetractions only\n";
    //          exit(1);
    //      }
    masked_matrix invvarmatrix;

    /*
     * now should be possible... delete this part later when everything works
     #if LOGISTIC
     if (input_var.getInverseFilename()!= NULL)
     {
         std::cerr << "ERROR: mmscore is forbidden for logistic regression\n";
         exit(1);
     }
     #endif
     */

    std::cout << "Reading data ..." << std::flush;
    if (input_var.getInverseFilename() != NULL)
    {
        loadInvSigma(input_var, phd, invvarmatrix);
    }

    gendata gtd;
    if (!input_var.getIsFvf())
        // use the non-filevector input format
        gtd.re_gendata(input_var.getGenfilename(), nsnps,
                       input_var.getNgpreds(), phd.nids_all, phd.nids,
                       phd.allmeasured, input_var.getSkipd(), phd.idnames);
    else
        // use the filevector input format (missing second last skipd
        // parameter)
        gtd.re_gendata(input_var.getStrGenfilename(), nsnps,
                       input_var.getNgpreds(), phd.nids_all, phd.nids,
                       phd.allmeasured, phd.idnames);

    std::cout << " loaded genotypic data ..." << std::flush;
    /**
       if (input_var.getIsFvf())
          gendata gtd(str_genfilename, nsnps, input_var.getNgpreds(),
                      phd.nids_all, phd.allmeasured, phd.idnames);
       else
           gendata gtd(input_var.getGenfilename(), nsnps,
                       input_var.getNgpreds(), phd.nids_all, phd.nids,
                       phd.allmeasured, skipd, phd.idnames);
     **/

    // estimate null model
#if COXPH
    coxph_data nrgd = coxph_data(phd, gtd, -1);
#else
    regdata nrgd = regdata(phd, gtd, -1, input_var.isIsInteractionExcluded());
#endif

    std::cout << " loaded null data ..." << std::flush;
#if LOGISTIC
    logistic_reg nrd = logistic_reg(nrgd);
    nrd.estimate(nrgd, 0, MAXITER, EPS, CHOLTOL, 0,
                 input_var.getInteraction(), input_var.getNgpreds(),
                 invvarmatrix, input_var.getRobust(), 1);
#elif LINEAR

    linear_reg nrd = linear_reg(nrgd);
#if DEBUG
    std::cout << "[DEBUG] linear_reg nrd = linear_reg(nrgd); DONE.";
#endif
    nrd.estimate(nrgd, 0, CHOLTOL, 0, input_var.getInteraction(),
                 input_var.getNgpreds(), invvarmatrix, input_var.getRobust(), 1);
#elif COXPH
    coxph_reg nrd(nrgd);

    nrd.estimate(nrgd, 0, MAXITER, EPS, CHOLTOL, 0,
                 input_var.getInteraction(), input_var.getNgpreds(), 1);
#endif

    std::cout << " estimated null model ...";
    // end null
#if COXPH
    coxph_data rgd(phd, gtd, 0);
#else
    regdata rgd(phd, gtd, 0, input_var.isIsInteractionExcluded());
#endif

    std::cout << " formed regression object ...";
    std::cout << " done\n" << std::flush;

    //________________________________________________________________
    //Maksim, 9 Jan, 2009
    std::string outfilename_str(input_var.getOutfilename());
    std::vector<std::ofstream*> outfile;

    //All models output.One file per each model
    if (input_var.getNgpreds() == 2)
    {
        open_files_for_output(outfile, outfilename_str);
        if (input_var.getNohead() != 1)
        {
            create_header_1(outfile, input_var, phd, interaction_cox);
        }
    }
    else //Only additive model. Only one output file
    {
        outfile.push_back(
            new std::ofstream((outfilename_str + "_add.out.txt").c_str()));

        if (!outfile[0]->is_open())
        {
            std::cerr << "Cannot open file for writing: " << outfilename_str
                      << "\n";
            exit(1);
        }
        if (input_var.getNohead() != 1)
        {
            create_header2(outfile, input_var, phd, interaction_cox);
        }
    }

    //________________________________________________________________

    /*
     if (input_var.getAllcov())
     {
     if (score)
     {
     outfile << input_var.getSep() << "beta_mu"; // << input_var.getSep() << "beta_SNP_A1";
     outfile << input_var.getSep() << "sebeta_mu"; // << input_var.getSep() << "sebeta_SNP_A1";
     }
     else
     {
     for (int i =0; i<phd.n_model_terms-1;i++)
     outfile << input_var.getSep() << "beta_" << phd.model_terms[i] << input_var.getSep() << "sebeta_" << phd.model_terms[i];
     }
     if(interactio != 0) outfile << input_var.getSep() << "beta_SNP_" << phd.model_terms[interaction];
     }
     if (input_var.getNgpreds()==2)
     {
        outfile << input_var.getSep() << "beta_SNP_A1A2"
                << input_var.getSep() << "beta_SNP_A1A1"
                << input_var.getSep() << "sebeta_SNP_A1A2"
                << input_var.getSep() << "sebeta_SNP_a1A1"
                << input_var.getSep() << "chi2_SNP_2df"
                << input_var.getSep() << "beta_SNP_addA1"
                << input_var.getSep() << "sebeta_SNP_addA1"
                << input_var.getSep() << "chi2_SNP_addA1"
                << input_var.getSep() << "beta_SNP_domA1"
                << input_var.getSep() << "sebeta_SNP_domA1"
                << input_var.getSep() << "chi2_SNP_domA1"
                << input_var.getSep() << "beta_SNP_recA1"
                << input_var.getSep() << "sebeta_SNP_recA1"
                << input_var.getSep() << "chi2_SNP_recA1"
                << input_var.getSep() << "beta_SNP_odom"
                << input_var.getSep() << "sebeta_SNP_odom"
                << input_var.getSep() << "chi2_SNP_odom\n";
     }
     else
     {
         outfile << input_var.getSep() << "beta_SNP_add"
                 << input_var.getSep() << "sebeta_SNP_add"
                 << input_var.getSep() << "chi2_SNP_add\n";
     }

    */
    //	exit(1);
    //________________________________________________________________
    //Maksim, 9 Jan, 2009
    int maxmod = 5;
    int start_pos, end_pos;

    std::vector<std::ostringstream *> beta_sebeta;
    //Han Chen
    std::vector<std::ostringstream *> covvalue;
    //Oct 26, 2009
    std::vector<std::ostringstream *> chi2;

    for (int i = 0; i < maxmod; i++)
    {
        beta_sebeta.push_back(new std::ostringstream());
        //Han Chen
        covvalue.push_back(new std::ostringstream());
        //Oct 26, 2009
        chi2.push_back(new std::ostringstream());
    }

    for (int csnp = 0; csnp < nsnps; csnp++)
    {
        rgd.update_snp(gtd, csnp);
        double freq = 0.;
        int gcount = 0;
        float snpdata1[gtd.nids];
        float snpdata2[gtd.nids];
        if (input_var.getNgpreds() == 2)
        {
            //freq = ((gtd.G).column_mean(csnp*2)*2. +
            //        (gtd.G).column_mean(csnp*2+1))/2.;
            gtd.get_var(csnp * 2, snpdata1);
            gtd.get_var(csnp * 2 + 1, snpdata2);
            for (unsigned int ii = 0; ii < gtd.nids; ii++)
                if (!isnan(snpdata1[ii]) && !isnan(snpdata2[ii]))
                {
                    gcount++;
                    freq += snpdata1[ii] + snpdata2[ii] * 0.5;
                }
        }
        else
        {
            // freq = (gtd.G).column_mean(csnp)/2.;
            gtd.get_var(csnp, snpdata1);
            for (unsigned int ii = 0; ii < gtd.nids; ii++)
                if (!isnan(snpdata1[ii]))
                {
                    gcount++;
                    freq += snpdata1[ii] * 0.5;
                }
        }
        freq /= static_cast<double>(gcount);
        int poly = 1;
        if (fabs(freq) < 1.e-16 || fabs(1. - freq) < 1.e-16)
            poly = 0;

        if (fabs(mli.Rsq[csnp]) < 1.e-16)
            poly = 0;
        //All models output. One file per each model
        if (input_var.getNgpreds() == 2)
        {
            //Write mlinfo to output:
            for (unsigned int file = 0; file < outfile.size(); file++)
            {
                *outfile[file] << mli.name[csnp]
                               << input_var.getSep() << mli.A1[csnp]
                               << input_var.getSep() << mli.A2[csnp]
                               << input_var.getSep() << mli.Freq1[csnp]
                               << input_var.getSep() << mli.MAF[csnp]
                               << input_var.getSep() << mli.Quality[csnp]
                               << input_var.getSep() << mli.Rsq[csnp]
                               << input_var.getSep() << gcount
                               << input_var.getSep() << freq;
                if (input_var.getChrom() != "-1")
                    *outfile[file] << input_var.getSep()
                                   << input_var.getChrom();
                if (input_var.getMapfilename() != NULL)
                    *outfile[file] << input_var.getSep() << mli.map[csnp];
            }

            for (int model = 0; model < maxmod; model++)
            {
                if (poly) //allel freq is not to rare
                {
#if LOGISTIC
                    logistic_reg rd(rgd);
                    if (input_var.getScore())
                        rd.score(nrd.residuals, rgd, 0, CHOLTOL, model,
                                 input_var.getInteraction(),
                                 input_var.getNgpreds(),
                                 invvarmatrix);
                    else
                    rd.estimate(rgd, 0, MAXITER, EPS, CHOLTOL, model,
                                input_var.getInteraction(),
                                input_var.getNgpreds(),
                                invvarmatrix,
                                input_var.getRobust());
#elif LINEAR
                    linear_reg rd(rgd);
                    if (input_var.getScore())
                        rd.score(nrd.residuals, rgd, 0, CHOLTOL, model,
                                 input_var.getInteraction(),
                                 input_var.getNgpreds(),
                                 invvarmatrix);
                    else
                    {
                        //	rd.mmscore(rgd,0,CHOLTOL,model,input_var.getInteraction(), input_var.getNgpreds(), invvarmatrix);
                        rd.estimate(rgd, 0, CHOLTOL, model,
                                input_var.getInteraction(),
                                input_var.getNgpreds(), invvarmatrix,
                                input_var.getRobust());
                    }
#elif COXPH
                    coxph_reg rd(rgd);
                    rd.estimate(rgd, 0, MAXITER, EPS, CHOLTOL, model,
                                input_var.getInteraction(), true,
                                input_var.getNgpreds());
#endif

                    if (!input_var.getAllcov() && model == 0
                        && input_var.getInteraction() == 0)
                        start_pos = rd.beta.nrow - 2;
                    else if (!input_var.getAllcov() && model == 0
                             && input_var.getInteraction() != 0)
                        start_pos = rd.beta.nrow - 4;
                    else if (!input_var.getAllcov() && model != 0
                             && input_var.getInteraction() == 0)
                        start_pos = rd.beta.nrow - 1;
                    else if (!input_var.getAllcov() && model != 0
                             && input_var.getInteraction() != 0)
                        start_pos = rd.beta.nrow - 2;
                    else
                        start_pos = 0;

                    for (int pos = start_pos; pos < rd.beta.nrow; pos++)
                    {
                        *beta_sebeta[model] << input_var.getSep()
                                            << rd.beta[pos]
                                            << input_var.getSep()
                                            << rd.sebeta[pos];
                        //Han Chen
#if !COXPH
                        if (input_var.getInverseFilename() == NULL
                            && !input_var.getAllcov()
                            && input_var.getInteraction() != 0)
                        {
                            if (pos > start_pos)
                            {
                                if (model == 0)
                                {
                                    if (pos > start_pos + 2)
                                    {
                                        *covvalue[model]
                                            << rd.covariance[pos - 3]
                                            << input_var.getSep()
                                            << rd.covariance[pos - 2];
                                    }
                                }
                                else
                                {
                                    *covvalue[model] << rd.covariance[pos - 1];
                                }
                            }
                        }
#endif
                        //Oct 26, 2009
                    }

                    //calculate chi2
                    //________________________________
                    if (input_var.getScore() == 0)
                    {
                        //*chi2[model] << 2.*(rd.loglik-null_loglik);
                        *chi2[model] << rd.loglik;
                    }
                    else
                    {
                        //*chi2[model] << rd.chi2_score;
                        *chi2[model] << "nan";
                    }
                    //________________________________
                }
                else //beta, sebeta = nan
                {
                    if (!input_var.getAllcov() && model == 0
                        && input_var.getInteraction() == 0)
                        start_pos = rgd.X.ncol - 2;
                    else if (!input_var.getAllcov() && model == 0
                             && input_var.getInteraction() != 0)
                        start_pos = rgd.X.ncol - 4;
                    else if (!input_var.getAllcov() && model != 0
                             && input_var.getInteraction() == 0)
                        start_pos = rgd.X.ncol - 1;
                    else if (!input_var.getAllcov() && model != 0
                             && input_var.getInteraction() != 0)
                        start_pos = rgd.X.ncol - 2;
                    else
                        start_pos = 0;

                    if (model == 0)
                    {
                        end_pos = rgd.X.ncol;
                    }
                    else
                    {
                        end_pos = rgd.X.ncol - 1;
                    }

                    if (input_var.getInteraction() != 0)
                        end_pos++;

                    for (int pos = start_pos; pos < end_pos; pos++)
                    {
                        *beta_sebeta[model] << input_var.getSep() << "nan"
                                            << input_var.getSep() << "nan";
                    }
                    //Han Chen
#if !COXPH
                    if (!input_var.getAllcov()
                        && input_var.getInteraction() != 0)
                    {
                        if (model == 0)
                        {
                            *covvalue[model] << "nan"
                                             << input_var.getSep() << "nan";
                        }
                        else
                        {
                            *covvalue[model] << "nan";
                        }
                    }
#endif
                    //Oct 26, 2009
                    *chi2[model] << "nan";
                }
            } //end of model cycle

            //Han Chen
            *outfile[0] << beta_sebeta[0]->str() << input_var.getSep();
#if !COXPH
            if (!input_var.getAllcov() && input_var.getInteraction() != 0)
            {
                *outfile[0] << covvalue[0]->str() << input_var.getSep();
            }
#endif
            *outfile[0] << chi2[0]->str() << "\n";

            *outfile[1] << beta_sebeta[1]->str() << input_var.getSep();
#if !COXPH
            if (!input_var.getAllcov() && input_var.getInteraction() != 0)
            {
                *outfile[1] << covvalue[1]->str() << input_var.getSep();
            }
#endif
            *outfile[1] << chi2[1]->str() << "\n";

            *outfile[2] << beta_sebeta[2]->str() << input_var.getSep();
#if !COXPH
            if (!input_var.getAllcov() && input_var.getInteraction() != 0)
            {
                *outfile[2] << covvalue[2]->str() << input_var.getSep();
            }
#endif
            *outfile[2] << chi2[2]->str() << "\n";

            *outfile[3] << beta_sebeta[3]->str() << input_var.getSep();
#if !COXPH
            if (!input_var.getAllcov() && input_var.getInteraction() != 0)
            {
                *outfile[3] << covvalue[3]->str() << input_var.getSep();
            }
#endif
            *outfile[3] << chi2[3]->str() << "\n";

            *outfile[4] << beta_sebeta[4]->str() << input_var.getSep();
#if !COXPH
            if (!input_var.getAllcov() && input_var.getInteraction() != 0)
            {
                *outfile[4] << covvalue[4]->str() << input_var.getSep();
            }
#endif
            *outfile[4] << chi2[4]->str() << "\n";
            //Oct 26, 2009
        }
        else //Only additive model. Only one output file
        {
            //Write mlinfo to output:
            *outfile[0] << mli.name[csnp]
                        << input_var.getSep() << mli.A1[csnp]
                        << input_var.getSep() << mli.A2[csnp]
                        << input_var.getSep();
            *outfile[0] << mli.Freq1[csnp]
                        << input_var.getSep() << mli.MAF[csnp]
                        << input_var.getSep() << mli.Quality[csnp]
                        << input_var.getSep() << mli.Rsq[csnp]
                        << input_var.getSep();
            *outfile[0] << gcount << input_var.getSep() << freq;
            if (input_var.getChrom() != "-1")
                *outfile[0] << input_var.getSep() << input_var.getChrom();
            if (input_var.getMapfilename() != NULL)
                *outfile[0] << input_var.getSep() << mli.map[csnp];
            int model = 0;
            if (poly) //allel freq is not to rare
            {
#if LOGISTIC
                logistic_reg rd(rgd);
                if (input_var.getScore())
                    rd.score(nrd.residuals, rgd, 0, CHOLTOL, model,
                             input_var.getInteraction(),
                             input_var.getNgpreds(),
                             invvarmatrix);
                else
                    rd.estimate(rgd, 0, MAXITER, EPS, CHOLTOL, model,
                                input_var.getInteraction(),
                                input_var.getNgpreds(),
                                invvarmatrix,
                                input_var.getRobust());
#elif LINEAR
                //cout << (rgd.get_unmasked_data()).nids << " 1\n";
#if DEBUG
                rgd.X.print();
                rgd.Y.print();
#endif
                linear_reg rd(rgd);
#if DEBUG
                rgd.X.print();
                rgd.Y.print();
#endif
                //cout << (rgd.get_unmasked_data()).nids << " 2\n";
                if (input_var.getScore())
                {
#if DEBUG
                    cout << "input_var.getScore/n";
                    nrd.residuals.print();
                    cout << CHOLTOL << " <-CHOLTOL\n";
                    cout << model << " <-model\n";
                    cout << input_var.getInteraction()
                         << " <-input_var.getInteraction()\n";
                    cout << input_var.getNgpreds()
                         << " <-input_var.getNgpreds()\n";
                    invvarmatrix.print();
#endif
                    rd.score(nrd.residuals, rgd, 0, CHOLTOL, model,
                             input_var.getInteraction(),
                             input_var.getNgpreds(),
                             invvarmatrix);
#if DEBUG
                    rd.beta.print();
                    cout << rd.chi2_score << " <-chi2_scoren\n";
                    rd.covariance.print();
                    rd.residuals.print();
                    rd.sebeta.print();
                    cout << rd.loglik << " <-logliken\n";
                    cout << rd.sigma2 << " <-sigma2\n";
#endif
                }
                else
                {
                    // if(input_var.getInverseFilename()== NULL)
                    // {
                    // cout << (rgd.get_unmasked_data()).nids << " 3\n";
#if DEBUG
                    cout << "rd.estimate\n";
                    cout << CHOLTOL << " <-CHOLTOL\n";
                    cout << model << " <-model\n";
                    cout << input_var.getInteraction()
                         << " <-input_var.getInteraction()\n";
                    cout << input_var.getNgpreds()
                         << " <-input_var.getNgpreds()\n";
                    cout << input_var.getRobust()
                         << " <-input_var.getRobust()\n";
                    cout << "start invarmatrix\n";
                    invvarmatrix.print();
                    cout << "end invarmatrix\n";
                    cout << rgd.is_interaction_excluded
                         << " <-rgd.is_interaction_excluded\n";
#endif
                    rd.estimate(rgd, 0, CHOLTOL, model,
                                input_var.getInteraction(),
                                input_var.getNgpreds(),
                                invvarmatrix,
                                input_var.getRobust());

#if DEBUG
                    cout << "rd.beta\n";
                    rd.beta.print();
                    cout << rd.chi2_score << " <-chi2_scoren\n";
                    cout << "rd.covariance\n";
                    rd.covariance.print();
                    cout << "rd.residuals\n";
                    rd.residuals.print();
                    cout << "rd.sebeta\n";
                    rd.sebeta.print();
                    cout << rd.loglik << " <-logliken\n";
                    cout << rd.sigma2 << " <-sigma2\n";
#endif
                    //cout << (rgd.get_unmasked_data()).nids << " 4\n";
                    //}
                    //else
                    //{
                    //   rd.mmscore(rgd, 0, CHOLTOL, model,
                    //              input_var.getInteraction(),
                    //              input_var.getNgpreds(), invvarmatrix);
                    //}
                }
#elif COXPH
                coxph_reg rd(rgd);
                rd.estimate(rgd, 0, MAXITER, EPS, CHOLTOL, model,
                            input_var.getInteraction(), true,
                            input_var.getNgpreds());
#endif

                if (!input_var.getAllcov() && input_var.getInteraction() == 0)
                {
                    start_pos = rd.beta.nrow - 1;
                }
                else if (!input_var.getAllcov()
                         && input_var.getInteraction() != 0)
                {
                    start_pos = rd.beta.nrow - 2;
                }
                else
                {
                    start_pos = 0;
                }
#if DEBUG
                cout << " start_pos;" << start_pos << "\n";
#endif
                for (int pos = start_pos; pos < rd.beta.nrow; pos++)
                {
                    *beta_sebeta[0] << input_var.getSep() << rd.beta[pos]
                                    << input_var.getSep() << rd.sebeta[pos];
                    //Han Chen
#if !COXPH
                    if (input_var.getInverseFilename() == NULL
                        && !input_var.getAllcov()
                        && input_var.getInteraction() != 0)
                    {
                        if (pos > start_pos)
                        {
                            *covvalue[0] << rd.covariance[pos - 1];
                        }
                    }
#endif
                    //Oct 26, 2009
                }

                //calculate chi2
                //________________________________
                if (input_var.getInverseFilename() == NULL)
                {
#if DEBUG
                    cout << " inverse_filename == NULL" << "\n";
#endif
                    if (input_var.getScore() == 0)
                    {
                        *chi2[0] << rd.loglik; //2.*(rd.loglik-null_loglik);
                    }
                    else
                    {
                        *chi2[0] << "nan"; //rd.chi2_score;
                    }
                }
                //________________________________
            }
            else //beta, sebeta = nan
            {
                if (!input_var.getAllcov() && input_var.getInteraction() == 0)
                    start_pos = rgd.X.ncol - 1;
                else if (!input_var.getAllcov()
                         && input_var.getInteraction() != 0)
                    start_pos = rgd.X.ncol - 2;
                else
                    start_pos = 0;

                end_pos = rgd.X.ncol;
                if (input_var.getInteraction() != 0)
                {
                    end_pos++;
                }
                if (input_var.getInteraction() != 0 && !input_var.getAllcov())
                {
                    start_pos++;
                }

                for (int pos = start_pos; pos < end_pos; pos++)
                {
                    *beta_sebeta[0] << input_var.getSep() << "nan"
                                    << input_var.getSep() << "nan";
                }
                if (input_var.getInverseFilename() == NULL)
                {
                    //Han Chen
#if !COXPH
                    if (!input_var.getAllcov()
                        && input_var.getInteraction() != 0)
                    {
                        *covvalue[0] << "nan";
                    }
#endif
                    //Oct 26, 2009
                    *chi2[0] << "nan";
                }
            }

            if (input_var.getInverseFilename() == NULL)
            {
                //Han Chen
                *outfile[0] << beta_sebeta[0]->str() << input_var.getSep();
#if !COXPH
                if (!input_var.getAllcov() && input_var.getInteraction() != 0)
                {
                    *outfile[0] << covvalue[0]->str() << input_var.getSep();
                }
#endif
                *outfile[0] << chi2[model]->str() << "\n";
                //Oct 26, 2009
            }
            else
            {
                *outfile[0] << beta_sebeta[0]->str() << "\n";
#if DEBUG
                cout << "Se beta" << beta_sebeta[0] << "\n";
#endif
            }
        }
        //clean chi2
        for (int i = 0; i < 5; i++)
        {
            beta_sebeta[i]->str("");
            //Han Chen
            covvalue[i]->str("");
            //Oct 26, 2009
            chi2[i]->str("");
        }
        update_progress_to_cmd_line(csnp, nsnps);
    }

    std::cout << "\b\b\b\b\b\b\b\b\b" << 100.;
    std::cout << "%... done\n";

    //________________________________________________________________
    //Maksim, 9 Jan, 2009

    for (unsigned int i = 0; i < outfile.size(); i++)
    {
        outfile[i]->close();
        delete outfile[i];
    }

    //delete gtd;

    // Clean up a couple of vectors
    std::vector<std::ostringstream *>::iterator it = beta_sebeta.begin();
    while (it != beta_sebeta.end())
    {
        delete *it;
        ++it;
    }
    it = covvalue.begin();
    while (it != covvalue.end())
    {
        delete *it;
        ++it;
    }
    it = chi2.begin();
    while (it != chi2.end())
    {
        delete *it;
        ++it;
    }

    return (0);
}
示例#4
0
//		SENSOR CALIBRATION
//input:
//	s	Sensor structure.
//description:
//	This function stars the sensor's 
//	calibration.
//	First, it allocate in memory the
//	arrays "voltage" and "load", used to
//	store the points for the linear 
//	regression.
//	The code ask to the user to select a
//	sensor, then it calls for the values of
//	each point (load[i],voltage[i]) to be
//	used in the regression, and finaly it
//	computes the linear reg.
//-------------------------------------------	
void sensor_calibration(sensor s)
{
	unsigned int k=0,op=0;

	voltage=(float *)malloc(NKVAL*sizeof(float));	// allocate variables in memory.	
	load=(float *)malloc(NKVAL*sizeof(float));
	if((voltage==NULL) || (load==NULL))	
		goto exit;

intro:	
	glcd_fillScreen(OFF);  				// screen to select a sensor. 
	sprintf(text,"Elegir Sensor");
	glcd_text57(10,0, text,1,ON); 
	sprintf(text,"1-> Siguiente.");
	glcd_text57(10,30, text,1,ON); 
	sprintf(text,"2-> Ejecutar."); 
	glcd_text57(10,40, text,1,ON);
	sprintf(text,"3-> Atras."); 
	glcd_text57(10,50, text,1,ON);
	if(k<NCH){
		sprintf(text,"Sensor %d",k+1);
		glcd_text57(20,15, text,1,ON); 
	}
	else{
		sprintf(text,"Todos");
		glcd_text57(20,15, text,1,ON);
	}
	op=0;

command:						// code to attend the user request. 
#ifdef FAST_GLCD
	glcd_update();
#endif	
	delay_ms(500);
	while(op==0){
		op=swap( PORTB & 0b00110001);		// wait until the user press a button.
	}
	if (op==2)					// checks if the user wants to go out the from the menu.
		goto exit;
	if((op==16)){					// checks which sensor the user wants to calibrate.
		k++;
		if(k>NCH)
			k=0;
		op=0;
		goto intro;
	}
	if((op==1)){					
		switch (k){

			case 0: {	goto s0;
					break;
				}

			case 1: {	goto s1;
					break;
				}

			case 2: {	goto s2;
					break;
				}

			case 3: {	goto s3;
					break;
				}
			case 4: {	goto s0;
					break;
				}
		}
	}

s0:							// option to calibrate sensor one.
	glcd_fillScreen(OFF);   
	sprintf(text,"Sensor # 1");
	glcd_text57(0,0, text,1,ON); 
	sprintf(text,"1-> Incre.");
	glcd_text57(0,35, text,1,ON); 
	sprintf(text,"2-> Decre."); 
	glcd_text57(0,45, text,1,ON);
	sprintf(text,"3-> Acep."); 
	glcd_text57(0,55, text,1,ON);
	set_calib_values(s,0);
	linear_reg(s,0);
	if(k<NCH){
		k=0;
		goto intro;
	}

s1:							// option to calibrate sensor two.
	glcd_fillScreen(OFF);   
	sprintf(text,"Sensor # 2");
	glcd_text57(0,0, text,1,ON); 
	sprintf(text,"1-> Incre.");
	glcd_text57(0,35, text,1,ON); 
	sprintf(text,"2-> Decre."); 
	glcd_text57(0,45, text,1,ON);
	sprintf(text,"3-> Acep."); 
	glcd_text57(0,55, text,1,ON);
	set_calib_values(s,1);				// call the function to set the reg. points.
	linear_reg(s,1);				// call the linear reg. algorithm.
	if(k<NCH){
		k=0;
		goto intro;
	}

s2:							// option to calibrate sensor three.
	glcd_fillScreen(OFF);   
	sprintf(text,"Sensor # 3");
	glcd_text57(0,0, text,1,ON); 
	sprintf(text,"1-> Incre.");
	glcd_text57(0,35, text,1,ON); 
	sprintf(text,"2-> Decre."); 
	glcd_text57(0,45, text,1,ON);
	sprintf(text,"3-> Acep."); 
	glcd_text57(0,55, text,1,ON);
	set_calib_values(s,2);
	linear_reg(s,2);
	if(k<NCH){
		k=0;
		goto intro;
	}

s3:							// option to calibrate sensor four.
	glcd_fillScreen(OFF);   
	sprintf(text,"Sensor # 4");
	glcd_text57(0,0, text,1,ON); 
	sprintf(text,"1-> Incre.");
	glcd_text57(0,35, text,1,ON); 
	sprintf(text,"2-> Decre."); 
	glcd_text57(0,45, text,1,ON);
	sprintf(text,"3-> Acep."); 
	glcd_text57(0,55, text,1,ON);
	set_calib_values(s,3);
	linear_reg(s,3);
	k=0;
	goto intro;
exit:							// end of calibration.
	free(voltage);
	free(load);
}