示例#1
0
static void
queue(struct vc4_compile *c, uint64_t inst)
{
        struct queued_qpu_inst *q = rzalloc(c, struct queued_qpu_inst);
        q->inst = inst;
        list_addtail(&q->link, &c->qpu_inst_list);
}
示例#2
0
void fd_bo_del(struct fd_bo *bo)
{
	struct fd_device *dev = bo->dev;

	if (!atomic_dec_and_test(&bo->refcnt))
		return;

	pthread_mutex_lock(&table_lock);

	if (bo->bo_reuse) {
		struct fd_bo_bucket *bucket = get_bucket(dev, bo->size);

		/* see if we can be green and recycle: */
		if (bucket) {
			struct timespec time;

			clock_gettime(CLOCK_MONOTONIC, &time);

			bo->free_time = time.tv_sec;
			list_addtail(&bo->list, &bucket->list);
			fd_cleanup_bo_cache(dev, time.tv_sec);

			/* bo's in the bucket cache don't have a ref and
			 * don't hold a ref to the dev:
			 */

			goto out;
		}
	}

	bo_del(bo);
out:
	fd_device_del_locked(dev);
	pthread_mutex_unlock(&table_lock);
}
//添加学生的函数
void addstudent()
{
	struct student stu; 
	int flag;
	while(1)
	{
		flag = 0;
		CLEAR_SCREEN();
		struct list *find;
		printf("\033[33m\033[2;50H%s\033[0m","请输入以下信息");
		printf("\033[33m\033[4;50H%s\033[0m","请输入学生的ID:");
		scanf("%s",stu.id);
		find = list_find(list_student, &stu, comp_id_stu);
		if(find  != NULL)
		{
			printf("\033[33m\033[6;50H%s\033[0m","帐号已注册,请按任意键重试。\n");
			getchar();
			getchar();
		}
		else
		{
			
			flag = 1;
		}
		if(flag == 1)
		{
			break;
		}
	}
	printf("\033[33m\033[5;50H%s\033[0m","请输入学生的密码:");
	scanf("%s",stu.pass);
	printf("\033[33m\033[6;50H%s\033[0m","请输入学生的姓名:");
	scanf("%s",stu.name);
	printf("\033[33m\033[7;50H%s\033[0m","请输入学生的年龄:");
	scanf("%d",&stu.age);
	printf("\033[33m\033[8;50H%s\033[0m","请输入学生的班级:");
	scanf("%s",stu.class);
	printf("\033[33m\033[9;50H%s\033[0m","请输入学生的语文成绩:");
	scanf("%d",&stu.grade[0]);
	printf("\033[33m\033[10;50H%s\033[0m","请输入学生的数学成绩:");
	scanf("%d",&stu.grade[1]);
	printf("\033[33m\033[11;50H%s\033[0m","请输入学生的C语言成绩:");
	scanf("%d",&stu.grade[2]);
	stu.average = (stu.grade[0]+stu.grade[1]+stu.grade[2])/3;
	//将stu插到链表中去
	if(list_addtail(list_student,&stu) == 0)
	{
		printf("\033[33m\033[12;50H%s\033[0m","添加学生数据成功!\n");
		getchar();
		getchar();
	}
	else
	{
		
		printf("\033[33m\033[12;50H%s\033[0m","添加学生数据失败!\n");
		getchar();
		getchar();
	}
}
示例#4
0
void ppir_node_add_dep(ppir_node *succ, ppir_node *pred)
{
   /* don't add dep for two nodes from different block */
   if (succ->block != pred->block)
      return;

   /* don't add duplicated dep */
   ppir_node_foreach_pred(succ, dep) {
      if (dep->pred == pred)
         return;
   }

   ppir_dep *dep = ralloc(succ, ppir_dep);
   dep->pred = pred;
   dep->succ = succ;
   list_addtail(&dep->pred_link, &succ->pred_list);
   list_addtail(&dep->succ_link, &pred->succ_list);
}
示例#5
0
static void
pause_query(struct fd_context *ctx, struct fd_hw_query *hq,
		struct fd_ringbuffer *ring)
{
	int idx = pidx(hq->provider->query_type);
	assert(idx >= 0);   /* query never would have been created otherwise */
	assert(hq->period && !hq->period->end);
	assert(ctx->active_providers & (1 << idx));
	hq->period->end = get_sample(ctx, ring, hq->base.type);
	list_addtail(&hq->period->list, &hq->current_periods);
	hq->period = NULL;
}
示例#6
0
void
ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list)
{
	/* remove from existing spot in list: */
	list_delinit(&instr->node);

	/* find where to re-insert instruction: */
	list_for_each_entry (struct ir3_instruction, pos, list, node) {
		if (pos->depth > instr->depth) {
			list_add(&instr->node, &pos->node);
			return;
		}
	}
	/* if we get here, we didn't find an insertion spot: */
	list_addtail(&instr->node, list);
}
示例#7
0
文件: clif_dump.c 项目: chemecse/mesa
struct reloc_worklist_entry *
clif_dump_add_address_to_worklist(struct clif_dump *clif,
                                  enum reloc_worklist_type type,
                                  uint32_t addr)
{
        struct reloc_worklist_entry *entry =
                rzalloc(clif, struct reloc_worklist_entry);
        if (!entry)
                return NULL;

        entry->type = type;
        entry->addr = addr;

        list_addtail(&entry->link, &clif->worklist);

        return entry;
}
示例#8
0
static void
create_object(const char *chipname, const char *featurename,
             const sensors_chip_name *chip, const sensors_feature *feature,
             int mode)
{
   struct sensors_temp_info *sti = CALLOC_STRUCT(sensors_temp_info);

   sti->mode = mode;
   sti->chip = (sensors_chip_name *) chip;
   sti->feature = feature;
   strcpy(sti->chipname, chipname);
   strcpy(sti->featurename, featurename);
   snprintf(sti->name, sizeof(sti->name), "%s.%s", sti->chipname,
      sti->featurename);

   list_addtail(&sti->list, &gsensors_temp_list);
   gsensors_temp_count++;
}
void
etna_resource_used(struct etna_context *ctx, struct pipe_resource *prsc,
                   enum etna_resource_status status)
{
   struct etna_resource *rsc;

   if (!prsc)
      return;

   rsc = etna_resource(prsc);
   rsc->status |= status;

   /* TODO resources can actually be shared across contexts,
    * so I'm not sure a single list-head will do the trick? */
   debug_assert((rsc->pending_ctx == ctx) || !rsc->pending_ctx);
   list_delinit(&rsc->list);
   list_addtail(&rsc->list, &ctx->used_resources);
   rsc->pending_ctx = ctx;
}
示例#10
0
static void virgl_buffer_transfer_flush_region(struct pipe_context *ctx,
                                               struct pipe_transfer *transfer,
                                               const struct pipe_box *box)
{
   struct virgl_context *vctx = virgl_context(ctx);
   struct virgl_buffer *vbuf = virgl_buffer(transfer->resource);

   if (!vbuf->on_list) {
       struct pipe_resource *res = NULL;

       list_addtail(&vbuf->flush_list, &vctx->to_flush_bufs);
       vbuf->on_list = TRUE;
       pipe_resource_reference(&res, &vbuf->base.u.b);
   }

   util_range_add(&vbuf->valid_buffer_range, transfer->box.x + box->x,
                  transfer->box.x + box->x + box->width);

   vbuf->base.clean = FALSE;
}
//学生数据初始化
int init_student()
{
	FILE *fp;
	struct student stu;
	//创建链表用于存放学生的数据
	list_student = list_create(sizeof(struct student));
	if(list_student == NULL)
	{	//分配链表头结点失败
		return -1;
	}
	//读取student.dat文件,然后保存所有的数据到list_student链表里面
	fp = fopen("dat/student.dat","r");
	if(fp == NULL)
	{
	//	printf("没有student.dat文件.\n");
		fp = fopen("dat/student.dat","w+");
		if(fp == NULL)
		{
			list_destroy(&list_student);
			return -1;
		}
	}
	while(1)
	{
		if(fread(&stu, sizeof(stu), 1, fp) != 1)
		{	//读取文件结束
			if(feof(fp) || ferror(fp))
			{
				break;
			}
		}
		if(list_addtail(list_student, &stu) == -1)
		{
			list_destroy(&list_student);
			fclose(fp);
			return -1;
		}	
	}
	fclose(fp);
	return 0;
}
//管理员初始化
int init_manager()
{
	FILE *fp;
	struct manager man = {"admin" , "admin"};
	//创建一个链表用于存放管理员的数据
	list_manager = list_create(sizeof(struct manager));
	if(list_manager == NULL)
	{
		return -1;
	}
	//读取manager.dat文件,然后保存所有的数据到链表里面
	fp = fopen("dat/manager.dat","r");
	if(fp == NULL)		//文件不存在
	{
		fp = fopen("dat/manager.dat", "w+");		//创建该文件
		if(fp == NULL)
		{
			list_destroy(&list_manager);
			return -1;
		}
		fwrite(&man, sizeof(man), 1, fp);
		rewind(fp);
	}
	while(1)
	{
		if(fread(&man, sizeof(man), 1, fp) != 1)
		{	//读取文件结束
			if(feof(fp) || ferror(fp))
				break;
		}
		//把man的信息写道链表里面
		if(list_addtail(list_manager, &man) == -1)
		{
			list_destroy(&list_manager);
			fclose(fp);	
			return -1;
		}
	}
	fclose(fp);
	return 0;
}
示例#13
0
static struct vc4_mem_area_rec *
vc4_add_mem_area_to_list(struct vc4_mem_area_rec *rec)
{
        /* Don't add exact duplicates of memory areas to the list.  We have to
         * be careful to not compare the list pointers, since the new rec
         * won't be in the list.
         */
        struct vc4_mem_area_rec compare_a = *rec;
        memset(&compare_a.link, 0, sizeof(compare_a.link));
        list_for_each_entry(struct vc4_mem_area_rec, list_rec, &dump.mem_areas,
                            link) {
                struct vc4_mem_area_rec compare_b = *list_rec;
                memset(&compare_b.link, 0, sizeof(compare_b.link));
                if (memcmp(&compare_a, &compare_b, sizeof(compare_a)) == 0)
                        return list_rec;
        }

        struct vc4_mem_area_rec *list_rec = malloc(sizeof(*list_rec));
        *list_rec = *rec;
        list_addtail(&list_rec->link, &dump.mem_areas);
        return list_rec;
}
示例#14
0
static void
schedule(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
	debug_assert(ctx->block == instr->block);

	/* maybe there is a better way to handle this than just stuffing
	 * a nop.. ideally we'd know about this constraint in the
	 * scheduling and depth calculation..
	 */
	if (ctx->scheduled && is_sfu_or_mem(ctx->scheduled) && is_sfu_or_mem(instr))
		ir3_NOP(ctx->block);

	/* remove from depth list:
	 */
	list_delinit(&instr->node);

	if (writes_addr(instr)) {
		debug_assert(ctx->addr == NULL);
		ctx->addr = instr;
	}

	if (writes_pred(instr)) {
		debug_assert(ctx->pred == NULL);
		ctx->pred = instr;
	}

	instr->flags |= IR3_INSTR_MARK;

	list_addtail(&instr->node, &instr->block->instr_list);
	ctx->scheduled = instr;

	if (writes_addr(instr) || writes_pred(instr) || is_input(instr)) {
		clear_cache(ctx, NULL);
	} else {
		/* invalidate only the necessary entries.. */
		clear_cache(ctx, instr);
	}
}
示例#15
0
static int vc4_create_rcl_bo(struct drm_device *dev, struct vc4_exec_info *exec,
			     struct vc4_rcl_setup *setup)
{
	struct drm_vc4_submit_cl *args = exec->args;
	bool has_bin = args->bin_cl_size != 0;
	uint8_t min_x_tile = args->min_x_tile;
	uint8_t min_y_tile = args->min_y_tile;
	uint8_t max_x_tile = args->max_x_tile;
	uint8_t max_y_tile = args->max_y_tile;
	uint8_t xtiles = max_x_tile - min_x_tile + 1;
	uint8_t ytiles = max_y_tile - min_y_tile + 1;
	uint8_t x, y;
	uint32_t size, loop_body_size;

	size = VC4_PACKET_TILE_RENDERING_MODE_CONFIG_SIZE;
	loop_body_size = VC4_PACKET_TILE_COORDINATES_SIZE;

	if (args->flags & VC4_SUBMIT_CL_USE_CLEAR_COLOR) {
		size += VC4_PACKET_CLEAR_COLORS_SIZE +
			VC4_PACKET_TILE_COORDINATES_SIZE +
			VC4_PACKET_STORE_TILE_BUFFER_GENERAL_SIZE;
	}

	if (setup->color_read) {
		if (args->color_read.flags &
		    VC4_SUBMIT_RCL_SURFACE_READ_IS_FULL_RES) {
			loop_body_size += VC4_PACKET_LOAD_FULL_RES_TILE_BUFFER_SIZE;
		} else {
			loop_body_size += VC4_PACKET_LOAD_TILE_BUFFER_GENERAL_SIZE;
		}
	}
	if (setup->zs_read) {
		if (args->zs_read.flags &
		    VC4_SUBMIT_RCL_SURFACE_READ_IS_FULL_RES) {
			loop_body_size += VC4_PACKET_LOAD_FULL_RES_TILE_BUFFER_SIZE;
		} else {
			if (setup->color_read &&
			    !(args->color_read.flags &
			      VC4_SUBMIT_RCL_SURFACE_READ_IS_FULL_RES)) {
				loop_body_size += VC4_PACKET_TILE_COORDINATES_SIZE;
				loop_body_size += VC4_PACKET_STORE_TILE_BUFFER_GENERAL_SIZE;
			}
			loop_body_size += VC4_PACKET_LOAD_TILE_BUFFER_GENERAL_SIZE;
		}
	}

	if (has_bin) {
		size += VC4_PACKET_WAIT_ON_SEMAPHORE_SIZE;
		loop_body_size += VC4_PACKET_BRANCH_TO_SUB_LIST_SIZE;
	}

	if (setup->msaa_color_write)
		loop_body_size += VC4_PACKET_STORE_FULL_RES_TILE_BUFFER_SIZE;
	if (setup->msaa_zs_write)
		loop_body_size += VC4_PACKET_STORE_FULL_RES_TILE_BUFFER_SIZE;

	if (setup->zs_write)
		loop_body_size += VC4_PACKET_STORE_TILE_BUFFER_GENERAL_SIZE;
	if (setup->color_write)
		loop_body_size += VC4_PACKET_STORE_MS_TILE_BUFFER_SIZE;

	/* We need a VC4_PACKET_TILE_COORDINATES in between each store. */
	loop_body_size += VC4_PACKET_TILE_COORDINATES_SIZE *
		((setup->msaa_color_write != NULL) +
		 (setup->msaa_zs_write != NULL) +
		 (setup->color_write != NULL) +
		 (setup->zs_write != NULL) - 1);

	size += xtiles * ytiles * loop_body_size;

	setup->rcl = drm_gem_cma_create(dev, size);
	if (!setup->rcl)
		return -ENOMEM;
	list_addtail(&to_vc4_bo(&setup->rcl->base)->unref_head,
		     &exec->unref_list);

	rcl_u8(setup, VC4_PACKET_TILE_RENDERING_MODE_CONFIG);
	rcl_u32(setup,
		(setup->color_write ? (setup->color_write->paddr +
				       args->color_write.offset) :
		 0));
	rcl_u16(setup, args->width);
	rcl_u16(setup, args->height);
	rcl_u16(setup, args->color_write.bits);

	/* The tile buffer gets cleared when the previous tile is stored.  If
	 * the clear values changed between frames, then the tile buffer has
	 * stale clear values in it, so we have to do a store in None mode (no
	 * writes) so that we trigger the tile buffer clear.
	 */
	if (args->flags & VC4_SUBMIT_CL_USE_CLEAR_COLOR) {
		rcl_u8(setup, VC4_PACKET_CLEAR_COLORS);
		rcl_u32(setup, args->clear_color[0]);
		rcl_u32(setup, args->clear_color[1]);
		rcl_u32(setup, args->clear_z);
		rcl_u8(setup, args->clear_s);

		vc4_tile_coordinates(setup, 0, 0);

		rcl_u8(setup, VC4_PACKET_STORE_TILE_BUFFER_GENERAL);
		rcl_u16(setup, VC4_LOADSTORE_TILE_BUFFER_NONE);
		rcl_u32(setup, 0); /* no address, since we're in None mode */
	}

	for (y = min_y_tile; y <= max_y_tile; y++) {
		for (x = min_x_tile; x <= max_x_tile; x++) {
			bool first = (x == min_x_tile && y == min_y_tile);
			bool last = (x == max_x_tile && y == max_y_tile);

			emit_tile(exec, setup, x, y, first, last);
		}
	}

	BUG_ON(setup->next_offset != size);
	exec->ct1ca = setup->rcl->paddr;
	exec->ct1ea = setup->rcl->paddr + setup->next_offset;

	return 0;
}
示例#16
0
int
iris_bo_busy(struct iris_bo *bo)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;
   struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };

   int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
   if (ret == 0) {
      bo->idle = !busy.busy;
      return busy.busy;
   }
   return false;
}

int
iris_bo_madvise(struct iris_bo *bo, int state)
{
   struct drm_i915_gem_madvise madv = {
      .handle = bo->gem_handle,
      .madv = state,
      .retained = 1,
   };

   drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);

   return madv.retained;
}

/* drop the oldest entries that have been purged by the kernel */
static void
iris_bo_cache_purge_bucket(struct iris_bufmgr *bufmgr,
                          struct bo_cache_bucket *bucket)
{
   list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
      if (iris_bo_madvise(bo, I915_MADV_DONTNEED))
         break;

      list_del(&bo->head);
      bo_free(bo);
   }
}

static struct iris_bo *
bo_calloc(void)
{
   struct iris_bo *bo = calloc(1, sizeof(*bo));
   if (bo) {
      bo->hash = _mesa_hash_pointer(bo);
   }
   return bo;
}

static struct iris_bo *
bo_alloc_internal(struct iris_bufmgr *bufmgr,
                  const char *name,
                  uint64_t size,
                  enum iris_memory_zone memzone,
                  unsigned flags,
                  uint32_t tiling_mode,
                  uint32_t stride)
{
   struct iris_bo *bo;
   unsigned int page_size = getpagesize();
   int ret;
   struct bo_cache_bucket *bucket;
   bool alloc_from_cache;
   uint64_t bo_size;
   bool zeroed = false;

   if (flags & BO_ALLOC_ZEROED)
      zeroed = true;

   if ((flags & BO_ALLOC_COHERENT) && !bufmgr->has_llc) {
      bo_size = MAX2(ALIGN(size, page_size), page_size);
      bucket = NULL;
      goto skip_cache;
   }

   /* Round the allocated size up to a power of two number of pages. */
   bucket = bucket_for_size(bufmgr, size);

   /* If we don't have caching at this size, don't actually round the
    * allocation up.
    */
   if (bucket == NULL) {
      bo_size = MAX2(ALIGN(size, page_size), page_size);
   } else {
      bo_size = bucket->size;
   }

   mtx_lock(&bufmgr->lock);
   /* Get a buffer out of the cache if available */
retry:
   alloc_from_cache = false;
   if (bucket != NULL && !list_empty(&bucket->head)) {
      /* If the last BO in the cache is idle, then reuse it.  Otherwise,
       * allocate a fresh buffer to avoid stalling.
       */
      bo = LIST_ENTRY(struct iris_bo, bucket->head.next, head);
      if (!iris_bo_busy(bo)) {
         alloc_from_cache = true;
         list_del(&bo->head);
      }

      if (alloc_from_cache) {
         if (!iris_bo_madvise(bo, I915_MADV_WILLNEED)) {
            bo_free(bo);
            iris_bo_cache_purge_bucket(bufmgr, bucket);
            goto retry;
         }

         if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
            bo_free(bo);
            goto retry;
         }

         if (zeroed) {
            void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
            if (!map) {
               bo_free(bo);
               goto retry;
            }
            memset(map, 0, bo_size);
         }
      }
   }

   if (alloc_from_cache) {
      /* If the cached BO isn't in the right memory zone, free the old
       * memory and assign it a new address.
       */
      if (memzone != iris_memzone_for_address(bo->gtt_offset)) {
         vma_free(bufmgr, bo->gtt_offset, bo->size);
         bo->gtt_offset = 0ull;
      }
   } else {
skip_cache:
      bo = bo_calloc();
      if (!bo)
         goto err;

      bo->size = bo_size;
      bo->idle = true;

      struct drm_i915_gem_create create = { .size = bo_size };

      /* All new BOs we get from the kernel are zeroed, so we don't need to
       * worry about that here.
       */
      ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
      if (ret != 0) {
         free(bo);
         goto err;
      }

      bo->gem_handle = create.handle;

      bo->bufmgr = bufmgr;

      bo->tiling_mode = I915_TILING_NONE;
      bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
      bo->stride = 0;

      if (bo_set_tiling_internal(bo, tiling_mode, stride))
         goto err_free;

      /* Calling set_domain() will allocate pages for the BO outside of the
       * struct mutex lock in the kernel, which is more efficient than waiting
       * to create them during the first execbuf that uses the BO.
       */
      struct drm_i915_gem_set_domain sd = {
         .handle = bo->gem_handle,
         .read_domains = I915_GEM_DOMAIN_CPU,
         .write_domain = 0,
      };

      if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
         goto err_free;
   }

   bo->name = name;
   p_atomic_set(&bo->refcount, 1);
   bo->reusable = bucket && bufmgr->bo_reuse;
   bo->cache_coherent = bufmgr->has_llc;
   bo->index = -1;
   bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;

   /* By default, capture all driver-internal buffers like shader kernels,
    * surface states, dynamic states, border colors, and so on.
    */
   if (memzone < IRIS_MEMZONE_OTHER)
      bo->kflags |= EXEC_OBJECT_CAPTURE;

   if (bo->gtt_offset == 0ull) {
      bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1);

      if (bo->gtt_offset == 0ull)
         goto err_free;
   }

   mtx_unlock(&bufmgr->lock);

   if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
      struct drm_i915_gem_caching arg = {
         .handle = bo->gem_handle,
         .caching = 1,
      };
      if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
         bo->cache_coherent = true;
         bo->reusable = false;
      }
   }

   DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle,
       bo->name, memzone_name(memzone), (unsigned long long) size);

   return bo;

err_free:
   bo_free(bo);
err:
   mtx_unlock(&bufmgr->lock);
   return NULL;
}

struct iris_bo *
iris_bo_alloc(struct iris_bufmgr *bufmgr,
              const char *name,
              uint64_t size,
              enum iris_memory_zone memzone)
{
   return bo_alloc_internal(bufmgr, name, size, memzone,
                            0, I915_TILING_NONE, 0);
}

struct iris_bo *
iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
                    uint64_t size, enum iris_memory_zone memzone,
                    uint32_t tiling_mode, uint32_t pitch, unsigned flags)
{
   return bo_alloc_internal(bufmgr, name, size, memzone,
                            flags, tiling_mode, pitch);
}

struct iris_bo *
iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
                       void *ptr, size_t size,
                       enum iris_memory_zone memzone)
{
   struct iris_bo *bo;

   bo = bo_calloc();
   if (!bo)
      return NULL;

   struct drm_i915_gem_userptr arg = {
      .user_ptr = (uintptr_t)ptr,
      .user_size = size,
   };
   if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
      goto err_free;
   bo->gem_handle = arg.handle;

   /* Check the buffer for validity before we try and use it in a batch */
   struct drm_i915_gem_set_domain sd = {
      .handle = bo->gem_handle,
      .read_domains = I915_GEM_DOMAIN_CPU,
   };
   if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
      goto err_close;

   bo->name = name;
   bo->size = size;
   bo->map_cpu = ptr;

   bo->bufmgr = bufmgr;
   bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
   bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
   if (bo->gtt_offset == 0ull)
      goto err_close;

   p_atomic_set(&bo->refcount, 1);
   bo->userptr = true;
   bo->cache_coherent = true;
   bo->index = -1;
   bo->idle = true;

   return bo;

err_close:
   drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
err_free:
   free(bo);
   return NULL;
}

/**
 * Returns a iris_bo wrapping the given buffer object handle.
 *
 * This can be used when one application needs to pass a buffer object
 * to another.
 */
struct iris_bo *
iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
                             const char *name, unsigned int handle)
{
   struct iris_bo *bo;

   /* At the moment most applications only have a few named bo.
    * For instance, in a DRI client only the render buffers passed
    * between X and the client are named. And since X returns the
    * alternating names for the front/back buffer a linear search
    * provides a sufficiently fast match.
    */
   mtx_lock(&bufmgr->lock);
   bo = hash_find_bo(bufmgr->name_table, handle);
   if (bo) {
      iris_bo_reference(bo);
      goto out;
   }

   struct drm_gem_open open_arg = { .name = handle };
   int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
   if (ret != 0) {
      DBG("Couldn't reference %s handle 0x%08x: %s\n",
          name, handle, strerror(errno));
      bo = NULL;
      goto out;
   }
   /* Now see if someone has used a prime handle to get this
    * object from the kernel before by looking through the list
    * again for a matching gem_handle
    */
   bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
   if (bo) {
      iris_bo_reference(bo);
      goto out;
   }

   bo = bo_calloc();
   if (!bo)
      goto out;

   p_atomic_set(&bo->refcount, 1);

   bo->size = open_arg.size;
   bo->gtt_offset = 0;
   bo->bufmgr = bufmgr;
   bo->gem_handle = open_arg.handle;
   bo->name = name;
   bo->global_name = handle;
   bo->reusable = false;
   bo->external = true;
   bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
   bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);

   _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
   _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);

   struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
   ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
   if (ret != 0)
      goto err_unref;

   bo->tiling_mode = get_tiling.tiling_mode;
   bo->swizzle_mode = get_tiling.swizzle_mode;
   /* XXX stride is unknown */
   DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);

out:
   mtx_unlock(&bufmgr->lock);
   return bo;

err_unref:
   bo_free(bo);
   mtx_unlock(&bufmgr->lock);
   return NULL;
}

static void
bo_free(struct iris_bo *bo)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   if (bo->map_cpu && !bo->userptr) {
      VG_NOACCESS(bo->map_cpu, bo->size);
      munmap(bo->map_cpu, bo->size);
   }
   if (bo->map_wc) {
      VG_NOACCESS(bo->map_wc, bo->size);
      munmap(bo->map_wc, bo->size);
   }
   if (bo->map_gtt) {
      VG_NOACCESS(bo->map_gtt, bo->size);
      munmap(bo->map_gtt, bo->size);
   }

   if (bo->external) {
      struct hash_entry *entry;

      if (bo->global_name) {
         entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
         _mesa_hash_table_remove(bufmgr->name_table, entry);
      }

      entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
      _mesa_hash_table_remove(bufmgr->handle_table, entry);
   }

   /* Close this object */
   struct drm_gem_close close = { .handle = bo->gem_handle };
   int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
   if (ret != 0) {
      DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
          bo->gem_handle, bo->name, strerror(errno));
   }

   vma_free(bo->bufmgr, bo->gtt_offset, bo->size);

   free(bo);
}

/** Frees all cached buffers significantly older than @time. */
static void
cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
{
   int i;

   if (bufmgr->time == time)
      return;

   for (i = 0; i < bufmgr->num_buckets; i++) {
      struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];

      list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
         if (time - bo->free_time <= 1)
            break;

         list_del(&bo->head);

         bo_free(bo);
      }
   }

   bufmgr->time = time;
}

static void
bo_unreference_final(struct iris_bo *bo, time_t time)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;
   struct bo_cache_bucket *bucket;

   DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);

   bucket = NULL;
   if (bo->reusable)
      bucket = bucket_for_size(bufmgr, bo->size);
   /* Put the buffer into our internal cache for reuse if we can. */
   if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
      bo->free_time = time;
      bo->name = NULL;

      list_addtail(&bo->head, &bucket->head);
   } else {
      bo_free(bo);
   }
}

void
iris_bo_unreference(struct iris_bo *bo)
{
   if (bo == NULL)
      return;

   assert(p_atomic_read(&bo->refcount) > 0);

   if (atomic_add_unless(&bo->refcount, -1, 1)) {
      struct iris_bufmgr *bufmgr = bo->bufmgr;
      struct timespec time;

      clock_gettime(CLOCK_MONOTONIC, &time);

      mtx_lock(&bufmgr->lock);

      if (p_atomic_dec_zero(&bo->refcount)) {
         bo_unreference_final(bo, time.tv_sec);
         cleanup_bo_cache(bufmgr, time.tv_sec);
      }

      mtx_unlock(&bufmgr->lock);
   }
}

static void
bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
                           struct iris_bo *bo,
                           const char *action)
{
   bool busy = dbg && !bo->idle;
   double elapsed = unlikely(busy) ? -get_time() : 0.0;

   iris_bo_wait_rendering(bo);

   if (unlikely(busy)) {
      elapsed += get_time();
      if (elapsed > 1e-5) /* 0.01ms */ {
         perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
                    action, bo->name, elapsed * 1000);
      }
   }
}

static void
print_flags(unsigned flags)
{
   if (flags & MAP_READ)
      DBG("READ ");
   if (flags & MAP_WRITE)
      DBG("WRITE ");
   if (flags & MAP_ASYNC)
      DBG("ASYNC ");
   if (flags & MAP_PERSISTENT)
      DBG("PERSISTENT ");
   if (flags & MAP_COHERENT)
      DBG("COHERENT ");
   if (flags & MAP_RAW)
      DBG("RAW ");
   DBG("\n");
}

static void *
iris_bo_map_cpu(struct pipe_debug_callback *dbg,
                struct iris_bo *bo, unsigned flags)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   /* We disallow CPU maps for writing to non-coherent buffers, as the
    * CPU map can become invalidated when a batch is flushed out, which
    * can happen at unpredictable times.  You should use WC maps instead.
    */
   assert(bo->cache_coherent || !(flags & MAP_WRITE));

   if (!bo->map_cpu) {
      DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);

      struct drm_i915_gem_mmap mmap_arg = {
         .handle = bo->gem_handle,
         .size = bo->size,
      };
      int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
      if (ret != 0) {
         DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
             __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
         return NULL;
      }
      void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
      VG_DEFINED(map, bo->size);

      if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
         VG_NOACCESS(map, bo->size);
         munmap(map, bo->size);
      }
   }
   assert(bo->map_cpu);

   DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
       bo->map_cpu);
   print_flags(flags);

   if (!(flags & MAP_ASYNC)) {
      bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
   }

   if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
      /* If we're reusing an existing CPU mapping, the CPU caches may
       * contain stale data from the last time we read from that mapping.
       * (With the BO cache, it might even be data from a previous buffer!)
       * Even if it's a brand new mapping, the kernel may have zeroed the
       * buffer via CPU writes.
       *
       * We need to invalidate those cachelines so that we see the latest
       * contents, and so long as we only read from the CPU mmap we do not
       * need to write those cachelines back afterwards.
       *
       * On LLC, the emprical evidence suggests that writes from the GPU
       * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
       * cachelines. (Other reads, such as the display engine, bypass the
       * LLC entirely requiring us to keep dirty pixels for the scanout
       * out of any cache.)
       */
      gen_invalidate_range(bo->map_cpu, bo->size);
   }

   return bo->map_cpu;
}

static void *
iris_bo_map_wc(struct pipe_debug_callback *dbg,
               struct iris_bo *bo, unsigned flags)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   if (!bo->map_wc) {
      DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);

      struct drm_i915_gem_mmap mmap_arg = {
         .handle = bo->gem_handle,
         .size = bo->size,
         .flags = I915_MMAP_WC,
      };
      int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
      if (ret != 0) {
         DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
             __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
         return NULL;
      }

      void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
      VG_DEFINED(map, bo->size);

      if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
         VG_NOACCESS(map, bo->size);
         munmap(map, bo->size);
      }
   }
   assert(bo->map_wc);

   DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
   print_flags(flags);

   if (!(flags & MAP_ASYNC)) {
      bo_wait_with_stall_warning(dbg, bo, "WC mapping");
   }

   return bo->map_wc;
}

/**
 * Perform an uncached mapping via the GTT.
 *
 * Write access through the GTT is not quite fully coherent. On low power
 * systems especially, like modern Atoms, we can observe reads from RAM before
 * the write via GTT has landed. A write memory barrier that flushes the Write
 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
 * read after the write as the GTT write suffers a small delay through the GTT
 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
 * flushes prior to execbuf submission. However, if we are not informing the
 * kernel about our GTT writes, it will not flush before earlier access, such
 * as when using the cmdparser. Similarly, we need to be careful if we should
 * ever issue a CPU read immediately following a GTT write.
 *
 * Telling the kernel about write access also has one more important
 * side-effect. Upon receiving notification about the write, it cancels any
 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
 * tracking is handled on the buffer exchange instead.
 */
static void *
iris_bo_map_gtt(struct pipe_debug_callback *dbg,
                struct iris_bo *bo, unsigned flags)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   /* Get a mapping of the buffer if we haven't before. */
   if (bo->map_gtt == NULL) {
      DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);

      struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };

      /* Get the fake offset back... */
      int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
      if (ret != 0) {
         DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
             __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
         return NULL;
      }

      /* and mmap it. */
      void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE,
                       MAP_SHARED, bufmgr->fd, mmap_arg.offset);
      if (map == MAP_FAILED) {
         DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
             __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
         return NULL;
      }

      /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
       * already intercept this mmap call. However, for consistency between
       * all the mmap paths, we mark the pointer as defined now and mark it
       * as inaccessible afterwards.
       */
      VG_DEFINED(map, bo->size);

      if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
         VG_NOACCESS(map, bo->size);
         munmap(map, bo->size);
      }
   }
   assert(bo->map_gtt);

   DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
   print_flags(flags);

   if (!(flags & MAP_ASYNC)) {
      bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
   }

   return bo->map_gtt;
}

static bool
can_map_cpu(struct iris_bo *bo, unsigned flags)
{
   if (bo->cache_coherent)
      return true;

   /* Even if the buffer itself is not cache-coherent (such as a scanout), on
    * an LLC platform reads always are coherent (as they are performed via the
    * central system agent). It is just the writes that we need to take special
    * care to ensure that land in main memory and not stick in the CPU cache.
    */
   if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
      return true;

   /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
    * across batch flushes where the kernel will change cache domains of the
    * bo, invalidating continued access to the CPU mmap on non-LLC device.
    *
    * Similarly, ASYNC typically means that the buffer will be accessed via
    * both the CPU and the GPU simultaneously.  Batches may be executed that
    * use the BO even while it is mapped.  While OpenGL technically disallows
    * most drawing while non-persistent mappings are active, we may still use
    * the GPU for blits or other operations, causing batches to happen at
    * inconvenient times.
    *
    * If RAW is set, we expect the caller to be able to handle a WC buffer
    * more efficiently than the involuntary clflushes.
    */
   if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
      return false;

   return !(flags & MAP_WRITE);
}

void *
iris_bo_map(struct pipe_debug_callback *dbg,
            struct iris_bo *bo, unsigned flags)
{
   if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
      return iris_bo_map_gtt(dbg, bo, flags);

   void *map;

   if (can_map_cpu(bo, flags))
      map = iris_bo_map_cpu(dbg, bo, flags);
   else
      map = iris_bo_map_wc(dbg, bo, flags);

   /* Allow the attempt to fail by falling back to the GTT where necessary.
    *
    * Not every buffer can be mmaped directly using the CPU (or WC), for
    * example buffers that wrap stolen memory or are imported from other
    * devices. For those, we have little choice but to use a GTT mmapping.
    * However, if we use a slow GTT mmapping for reads where we expected fast
    * access, that order of magnitude difference in throughput will be clearly
    * expressed by angry users.
    *
    * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
    */
   if (!map && !(flags & MAP_RAW)) {
      perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
                 bo->name, flags);
      map = iris_bo_map_gtt(dbg, bo, flags);
   }

   return map;
}

/** Waits for all GPU rendering with the object to have completed. */
void
iris_bo_wait_rendering(struct iris_bo *bo)
{
   /* We require a kernel recent enough for WAIT_IOCTL support.
    * See intel_init_bufmgr()
    */
   iris_bo_wait(bo, -1);
}

/**
 * Waits on a BO for the given amount of time.
 *
 * @bo: buffer object to wait for
 * @timeout_ns: amount of time to wait in nanoseconds.
 *   If value is less than 0, an infinite wait will occur.
 *
 * Returns 0 if the wait was successful ie. the last batch referencing the
 * object has completed within the allotted time. Otherwise some negative return
 * value describes the error. Of particular interest is -ETIME when the wait has
 * failed to yield the desired result.
 *
 * Similar to iris_bo_wait_rendering except a timeout parameter allows
 * the operation to give up after a certain amount of time. Another subtle
 * difference is the internal locking semantics are different (this variant does
 * not hold the lock for the duration of the wait). This makes the wait subject
 * to a larger userspace race window.
 *
 * The implementation shall wait until the object is no longer actively
 * referenced within a batch buffer at the time of the call. The wait will
 * not guarantee that the buffer is re-issued via another thread, or an flinked
 * handle. Userspace must make sure this race does not occur if such precision
 * is important.
 *
 * Note that some kernels have broken the inifite wait for negative values
 * promise, upgrade to latest stable kernels if this is the case.
 */
int
iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   /* If we know it's idle, don't bother with the kernel round trip */
   if (bo->idle && !bo->external)
      return 0;

   struct drm_i915_gem_wait wait = {
      .bo_handle = bo->gem_handle,
      .timeout_ns = timeout_ns,
   };
   int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
   if (ret != 0)
      return -errno;

   bo->idle = true;

   return ret;
}

void
iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
{
   mtx_destroy(&bufmgr->lock);

   /* Free any cached buffer objects we were going to reuse */
   for (int i = 0; i < bufmgr->num_buckets; i++) {
      struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];

      list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
         list_del(&bo->head);

         bo_free(bo);
      }
   }

   _mesa_hash_table_destroy(bufmgr->name_table, NULL);
   _mesa_hash_table_destroy(bufmgr->handle_table, NULL);

   for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
      if (z != IRIS_MEMZONE_BINDER)
         util_vma_heap_finish(&bufmgr->vma_allocator[z]);
   }

   free(bufmgr);
}

static int
bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
                       uint32_t stride)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;
   struct drm_i915_gem_set_tiling set_tiling;
   int ret;

   if (bo->global_name == 0 &&
       tiling_mode == bo->tiling_mode && stride == bo->stride)
      return 0;

   memset(&set_tiling, 0, sizeof(set_tiling));
   do {
      /* set_tiling is slightly broken and overwrites the
       * input on the error path, so we have to open code
       * drm_ioctl.
       */
      set_tiling.handle = bo->gem_handle;
      set_tiling.tiling_mode = tiling_mode;
      set_tiling.stride = stride;

      ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
   } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
   if (ret == -1)
      return -errno;

   bo->tiling_mode = set_tiling.tiling_mode;
   bo->swizzle_mode = set_tiling.swizzle_mode;
   bo->stride = set_tiling.stride;
   return 0;
}

int
iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
                  uint32_t *swizzle_mode)
{
   *tiling_mode = bo->tiling_mode;
   *swizzle_mode = bo->swizzle_mode;
   return 0;
}

struct iris_bo *
iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
{
   uint32_t handle;
   struct iris_bo *bo;

   mtx_lock(&bufmgr->lock);
   int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
   if (ret) {
      DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
          strerror(errno));
      mtx_unlock(&bufmgr->lock);
      return NULL;
   }

   /*
    * See if the kernel has already returned this buffer to us. Just as
    * for named buffers, we must not create two bo's pointing at the same
    * kernel object
    */
   bo = hash_find_bo(bufmgr->handle_table, handle);
   if (bo) {
      iris_bo_reference(bo);
      goto out;
   }

   bo = bo_calloc();
   if (!bo)
      goto out;

   p_atomic_set(&bo->refcount, 1);

   /* Determine size of bo.  The fd-to-handle ioctl really should
    * return the size, but it doesn't.  If we have kernel 3.12 or
    * later, we can lseek on the prime fd to get the size.  Older
    * kernels will just fail, in which case we fall back to the
    * provided (estimated or guess size). */
   ret = lseek(prime_fd, 0, SEEK_END);
   if (ret != -1)
      bo->size = ret;

   bo->bufmgr = bufmgr;

   bo->gem_handle = handle;
   _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);

   bo->name = "prime";
   bo->reusable = false;
   bo->external = true;
   bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
   bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);

   struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
   if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
      goto err;

   bo->tiling_mode = get_tiling.tiling_mode;
   bo->swizzle_mode = get_tiling.swizzle_mode;
   /* XXX stride is unknown */

out:
   mtx_unlock(&bufmgr->lock);
   return bo;

err:
   bo_free(bo);
   mtx_unlock(&bufmgr->lock);
   return NULL;
}

static void
iris_bo_make_external_locked(struct iris_bo *bo)
{
   if (!bo->external) {
      _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
      bo->external = true;
   }
}

static void
iris_bo_make_external(struct iris_bo *bo)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   if (bo->external)
      return;

   mtx_lock(&bufmgr->lock);
   iris_bo_make_external_locked(bo);
   mtx_unlock(&bufmgr->lock);
}

int
iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   iris_bo_make_external(bo);

   if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
                          DRM_CLOEXEC, prime_fd) != 0)
      return -errno;

   bo->reusable = false;

   return 0;
}

uint32_t
iris_bo_export_gem_handle(struct iris_bo *bo)
{
   iris_bo_make_external(bo);

   return bo->gem_handle;
}

int
iris_bo_flink(struct iris_bo *bo, uint32_t *name)
{
   struct iris_bufmgr *bufmgr = bo->bufmgr;

   if (!bo->global_name) {
      struct drm_gem_flink flink = { .handle = bo->gem_handle };

      if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
         return -errno;

      mtx_lock(&bufmgr->lock);
      if (!bo->global_name) {
         iris_bo_make_external_locked(bo);
         bo->global_name = flink.name;
         _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
      }
      mtx_unlock(&bufmgr->lock);

      bo->reusable = false;
   }

   *name = bo->global_name;
   return 0;
}

static void
add_bucket(struct iris_bufmgr *bufmgr, int size)
{
   unsigned int i = bufmgr->num_buckets;

   assert(i < ARRAY_SIZE(bufmgr->cache_bucket));

   list_inithead(&bufmgr->cache_bucket[i].head);
   bufmgr->cache_bucket[i].size = size;
   bufmgr->num_buckets++;

   assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
   assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
   assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
}

static void
init_cache_buckets(struct iris_bufmgr *bufmgr)
{
   uint64_t size, cache_max_size = 64 * 1024 * 1024;

   /* OK, so power of two buckets was too wasteful of memory.
    * Give 3 other sizes between each power of two, to hopefully
    * cover things accurately enough.  (The alternative is
    * probably to just go for exact matching of sizes, and assume
    * that for things like composited window resize the tiled
    * width/height alignment and rounding of sizes to pages will
    * get us useful cache hit rates anyway)
    */
   add_bucket(bufmgr, PAGE_SIZE);
   add_bucket(bufmgr, PAGE_SIZE * 2);
   add_bucket(bufmgr, PAGE_SIZE * 3);

   /* Initialize the linked lists for BO reuse cache. */
   for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
      add_bucket(bufmgr, size);

      add_bucket(bufmgr, size + size * 1 / 4);
      add_bucket(bufmgr, size + size * 2 / 4);
      add_bucket(bufmgr, size + size * 3 / 4);
   }
}
示例#17
0
文件: vc4_gem.c 项目: Distrotech/Mesa
/*
 * Copies in the user's binning command list and generates the validated bin
 * CL, along with associated data (shader records, uniforms).
 */
static int
vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
{
	struct drm_vc4_submit_cl *args = exec->args;
	void *temp = NULL;
	void *bin;
	int ret = 0;
	uint32_t bin_offset = 0;
	uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
					     16);
	uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
	uint32_t exec_size = uniforms_offset + args->uniforms_size;
	uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
					  args->shader_rec_count);

	if (uniforms_offset < shader_rec_offset ||
	    exec_size < uniforms_offset ||
	    args->shader_rec_count >= (UINT_MAX /
					  sizeof(struct vc4_shader_state)) ||
	    temp_size < exec_size) {
		DRM_ERROR("overflow in exec arguments\n");
		goto fail;
	}

	/* Allocate space where we'll store the copied in user command lists
	 * and shader records.
	 *
	 * We don't just copy directly into the BOs because we need to
	 * read the contents back for validation, and I think the
	 * bo->vaddr is uncached access.
	 */
	temp = kmalloc(temp_size, GFP_KERNEL);
	if (!temp) {
		DRM_ERROR("Failed to allocate storage for copying "
			  "in bin/render CLs.\n");
		ret = -ENOMEM;
		goto fail;
	}
	bin = temp + bin_offset;
	exec->shader_rec_u = temp + shader_rec_offset;
	exec->uniforms_u = temp + uniforms_offset;
	exec->shader_state = temp + exec_size;
	exec->shader_state_size = args->shader_rec_count;

	ret = copy_from_user(bin,
			     (void __user *)(uintptr_t)args->bin_cl,
			     args->bin_cl_size);
	if (ret) {
		DRM_ERROR("Failed to copy in bin cl\n");
		goto fail;
	}

	ret = copy_from_user(exec->shader_rec_u,
			     (void __user *)(uintptr_t)args->shader_rec,
			     args->shader_rec_size);
	if (ret) {
		DRM_ERROR("Failed to copy in shader recs\n");
		goto fail;
	}

	ret = copy_from_user(exec->uniforms_u,
			     (void __user *)(uintptr_t)args->uniforms,
			     args->uniforms_size);
	if (ret) {
		DRM_ERROR("Failed to copy in uniforms cl\n");
		goto fail;
	}

	exec->exec_bo = drm_gem_cma_create(dev, exec_size);
#if 0
	if (IS_ERR(exec->exec_bo)) {
		DRM_ERROR("Couldn't allocate BO for exec\n");
		ret = PTR_ERR(exec->exec_bo);
		exec->exec_bo = NULL;
		goto fail;
	}
#endif

	list_addtail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
		     &exec->unref_list);

	exec->ct0ca = exec->exec_bo->paddr + bin_offset;

	exec->bin_u = bin;

	exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
	exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
	exec->shader_rec_size = args->shader_rec_size;

	exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
	exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
	exec->uniforms_size = args->uniforms_size;

	ret = vc4_validate_bin_cl(dev,
				  exec->exec_bo->vaddr + bin_offset,
				  bin,
				  exec);
	if (ret)
		goto fail;

	ret = vc4_validate_shader_recs(dev, exec);

fail:
	kfree(temp);
	return ret;
}
示例#18
0
void ppir_node_replace_pred(ppir_dep *dep, ppir_node *new_pred)
{
   list_del(&dep->succ_link);
   dep->pred = new_pred;
   list_addtail(&dep->succ_link, &new_pred->succ_list);
}