示例#1
0
void Entity::updateParentRotation(glm::quat& parent) {
	mParentRotation = parent;
	glm::quat localRotation(mParentRotation * mRotation);
	for (auto& it : mChildren) {
		it->updateParentRotation(localRotation);
	}
	mRefreshExternal = GL_TRUE;
}
示例#2
0
    // TODO model update gets jitter if camera is thrown (i.e animated)
    void updateNode()
    {
        if (!dirty || !modelNode.valid()) {
            return;
        }
        dirty = false;

        osgEarth::GeoPoint geoPoint = osgQtQuick::toGeoPoint(position);
        if (clampToTerrain) {
            osgEarth::MapNode *mapNode = osgEarth::MapNode::findMapNode(sceneData->node());
            if (mapNode) {
                intoTerrain = clampGeoPoint(geoPoint, offset, mapNode);
            } else {
                qWarning() << "OSGModelNode::updateNode - scene data does not contain a map node";
            }
        }
        modelNode->setPosition(geoPoint);
        modelNode->setLocalRotation(localRotation());
    }
void CustomControlledBallAndSocket::SubmitConstraints (dFloat timestep, int threadIndex)
{
	dMatrix matrix0;
	dMatrix matrix1;

	// calculate the position of the pivot point and the Jacobian direction vectors, in global space. 
	CalculateGlobalMatrix (matrix0, matrix1);

	// Restrict the movement on the pivot point along all tree orthonormal direction
	NewtonUserJointAddLinearRow (m_joint, &matrix0.m_posit[0], &matrix1.m_posit[0], &matrix1.m_front[0]);
	NewtonUserJointAddLinearRow (m_joint, &matrix0.m_posit[0], &matrix1.m_posit[0], &matrix1.m_up[0]);
	NewtonUserJointAddLinearRow (m_joint, &matrix0.m_posit[0], &matrix1.m_posit[0], &matrix1.m_right[0]);

#if 0
	dVector euler0;
	dVector euler1;
	dMatrix localMatrix (matrix0 * matrix1.Inverse());
	localMatrix.GetEulerAngles(euler0, euler1);

	AngularIntegration pitchStep0 (AngularIntegration (euler0.m_x) - m_pitch);
	AngularIntegration pitchStep1 (AngularIntegration (euler1.m_x) - m_pitch);
	if (dAbs (pitchStep0.GetAngle()) > dAbs (pitchStep1.GetAngle())) {
		euler0 = euler1;
	}
	dVector euler (m_pitch.Update (euler0.m_x), m_yaw.Update (euler0.m_y), m_roll.Update (euler0.m_z), 0.0f);
	for (int i = 0; i < 3; i ++) {
		dFloat error = m_targetAngles[i] - euler[i];
		if (dAbs (error) > (0.125f * 3.14159213f / 180.0f) ) {
			dFloat angularStep = dSign(error) * m_angulaSpeed * timestep;
			if (angularStep > 0.0f) {
				if (angularStep > error) {
					angularStep = error * 0.5f;
				}
			} else {
				if (angularStep < error) {
					angularStep = error * 0.5f;
				}
			}
			euler[i] = euler[i] + angularStep;
		}
	}
	
	dMatrix p0y0r0 (dPitchMatrix(euler[0]) * dYawMatrix(euler[1]) * dRollMatrix(euler[2]));
	dMatrix baseMatrix (p0y0r0 * matrix1);
	dMatrix rotation (matrix0.Inverse() * baseMatrix);

	dQuaternion quat (rotation);
	if (quat.m_q0 > dFloat (0.99995f)) {
		dVector euler0;
		dVector euler1;
		rotation.GetEulerAngles(euler0, euler1);
		NewtonUserJointAddAngularRow(m_joint, euler0[0], &rotation[0][0]);
		NewtonUserJointAddAngularRow(m_joint, euler0[1], &rotation[1][0]);
		NewtonUserJointAddAngularRow(m_joint, euler0[2], &rotation[2][0]);
	} else {
		dMatrix basis (dGrammSchmidt (dVector (quat.m_q1, quat.m_q2, quat.m_q3, 0.0f)));
		NewtonUserJointAddAngularRow (m_joint, 2.0f * dAcos (quat.m_q0), &basis[0][0]);
		NewtonUserJointAddAngularRow (m_joint, 0.0f, &basis[1][0]); 
		NewtonUserJointAddAngularRow (m_joint, 0.0f, &basis[2][0]); 
	}
#else

	matrix1 = m_targetRotation * matrix1;

	dQuaternion localRotation(matrix1 * matrix0.Inverse());
	if (localRotation.DotProduct(m_targetRotation) < 0.0f) {
		localRotation.Scale(-1.0f);
	}

	dFloat angle = 2.0f * dAcos(localRotation.m_q0);
	dFloat angleStep = m_angulaSpeed * timestep;
	if (angleStep < angle) {
		dVector axis(dVector(localRotation.m_q1, localRotation.m_q2, localRotation.m_q3, 0.0f));
		axis = axis.Scale(1.0f / dSqrt(axis % axis));
//		localRotation = dQuaternion(axis, angleStep);
	}

	dVector axis (matrix1.m_front * matrix1.m_front);
	dVector axis1 (matrix1.m_front * matrix1.m_front);
//dFloat sinAngle;
//dFloat cosAngle;
//CalculatePitchAngle (matrix0, matrix1, sinAngle, cosAngle);
//float xxxx = dAtan2(sinAngle, cosAngle);
//float xxxx1 = dAtan2(sinAngle, cosAngle);

	dQuaternion quat(localRotation);
	if (quat.m_q0 > dFloat(0.99995f)) {
//		dAssert (0);
/*
		dVector euler0;
		dVector euler1;
		rotation.GetEulerAngles(euler0, euler1);
		NewtonUserJointAddAngularRow(m_joint, euler0[0], &rotation[0][0]);
		NewtonUserJointAddAngularRow(m_joint, euler0[1], &rotation[1][0]);
		NewtonUserJointAddAngularRow(m_joint, euler0[2], &rotation[2][0]);
*/
	} else {
		dMatrix basis(dGrammSchmidt(dVector(quat.m_q1, quat.m_q2, quat.m_q3, 0.0f)));
		NewtonUserJointAddAngularRow(m_joint, -2.0f * dAcos(quat.m_q0), &basis[0][0]);
		NewtonUserJointAddAngularRow(m_joint, 0.0f, &basis[1][0]);
		NewtonUserJointAddAngularRow(m_joint, 0.0f, &basis[2][0]);
	}

#endif
}