/* function: icmp6_to_icmp_code * Maps ICMPv6 codes to ICMP codes. Partial implementation of RFC 6145, section 5.2. * type - the ICMPv6 type * code - the ICMPv6 code */ uint8_t icmp6_to_icmp_code(uint8_t type, uint8_t code) { switch (type) { case ICMP6_ECHO_REQUEST: case ICMP6_ECHO_REPLY: case ICMP6_TIME_EXCEEDED: return code; case ICMP6_DST_UNREACH: switch (code) { case ICMP6_DST_UNREACH_NOROUTE: return ICMP_UNREACH_HOST; case ICMP6_DST_UNREACH_ADMIN: return ICMP_UNREACH_HOST_PROHIB; case ICMP6_DST_UNREACH_BEYONDSCOPE: return ICMP_UNREACH_HOST; case ICMP6_DST_UNREACH_ADDR: return ICMP_HOST_UNREACH; case ICMP6_DST_UNREACH_NOPORT: return ICMP_UNREACH_PORT; // Otherwise, we don't understand this ICMPv6 type/code combination. Fall through. } } logmsg_dbg(ANDROID_LOG_DEBUG, "icmp6_to_icmp_code: unhandled ICMP type/code %d/%d", type, code); return 0; }
/* function: icmp_to_icmp6_code * Maps ICMP codes to ICMPv6 codes. Partial implementation of RFC 6145, section 4.2. * type - the ICMP type * code - the ICMP code */ uint8_t icmp_to_icmp6_code(uint8_t type, uint8_t code) { switch (type) { case ICMP_ECHO: case ICMP_ECHOREPLY: return 0; case ICMP_TIME_EXCEEDED: return code; case ICMP_DEST_UNREACH: switch (code) { case ICMP_UNREACH_NET: case ICMP_UNREACH_HOST: return ICMP6_DST_UNREACH_NOROUTE; case ICMP_UNREACH_PORT: return ICMP6_DST_UNREACH_NOPORT; case ICMP_UNREACH_NET_PROHIB: case ICMP_UNREACH_HOST_PROHIB: case ICMP_UNREACH_FILTER_PROHIB: case ICMP_UNREACH_PRECEDENCE_CUTOFF: return ICMP6_DST_UNREACH_ADMIN; // Otherwise, we don't understand this ICMP type/code combination. Fall through. } } logmsg_dbg(ANDROID_LOG_DEBUG, "icmp_to_icmp6_code: unhandled ICMP type/code %d/%d", type, code); return 0; }
void log_bad_address(const char *fmt, const struct in6_addr *src, const struct in6_addr *dst) { char srcstr[INET6_ADDRSTRLEN]; char dststr[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, src, srcstr, sizeof(srcstr)); inet_ntop(AF_INET6, dst, dststr, sizeof(dststr)); logmsg_dbg(ANDROID_LOG_ERROR, fmt, srcstr, dststr); }
/* function: icmp_packet * translates an icmp packet * out - output packet * icmp - pointer to icmp header in packet * checksum - pseudo-header checksum * len - size of ip payload * returns: the highest position in the output clat_packet that's filled in */ int icmp_packet(clat_packet out, int pos, const struct icmphdr *icmp, uint32_t checksum, size_t len) { const char *payload; size_t payload_size; if(len < sizeof(struct icmphdr)) { logmsg_dbg(ANDROID_LOG_ERROR, "icmp_packet/(too small)"); return 0; } payload = (const char *) (icmp + 1); payload_size = len - sizeof(struct icmphdr); return icmp_to_icmp6(out, pos, icmp, checksum, payload, payload_size); }
/* function: icmp6_packet * takes an icmp6 packet and sets it up for translation * out - output packet * icmp6 - pointer to icmp6 header in packet * checksum - pseudo-header checksum (unused) * len - size of ip payload * returns: the highest position in the output clat_packet that's filled in */ int icmp6_packet(clat_packet out, clat_packet_index pos, const struct icmp6_hdr *icmp6, size_t len) { const uint8_t *payload; size_t payload_size; if(len < sizeof(struct icmp6_hdr)) { logmsg_dbg(ANDROID_LOG_ERROR, "icmp6_packet/(too small)"); return 0; } payload = (const uint8_t *) (icmp6 + 1); payload_size = len - sizeof(struct icmp6_hdr); return icmp6_to_icmp(out, pos, icmp6, payload, payload_size); }
/* function: icmp6_to_icmp_type * Maps ICMPv6 types to ICMP types. Partial implementation of RFC 6145, section 5.2. * type - the ICMP type */ uint8_t icmp6_to_icmp_type(uint8_t type, uint8_t code) { switch (type) { case ICMP6_ECHO_REQUEST: return ICMP_ECHO; case ICMP6_ECHO_REPLY: return ICMP_ECHOREPLY; case ICMP6_DST_UNREACH: return ICMP_DEST_UNREACH; case ICMP6_TIME_EXCEEDED: return ICMP_TIME_EXCEEDED; } // We don't understand this ICMP type. Return parameter problem so the caller will bail out. logmsg_dbg(ANDROID_LOG_DEBUG, "icmp6_to_icmp_type: unhandled ICMP type %d", type); return ICMP_PARAMETERPROB; }
/* function: icmp_to_icmp6_type * Maps ICMP types to ICMPv6 types. Partial implementation of RFC 6145, section 4.2. * type - the ICMPv6 type */ uint8_t icmp_to_icmp6_type(uint8_t type, uint8_t code) { switch (type) { case ICMP_ECHO: return ICMP6_ECHO_REQUEST; case ICMP_ECHOREPLY: return ICMP6_ECHO_REPLY; case ICMP_TIME_EXCEEDED: return ICMP6_TIME_EXCEEDED; case ICMP_DEST_UNREACH: // These two types need special translation which we don't support yet. if (code != ICMP_UNREACH_PROTOCOL && code != ICMP_UNREACH_NEEDFRAG) { return ICMP6_DST_UNREACH; } } // We don't understand this ICMP type. Return parameter problem so the caller will bail out. logmsg_dbg(ANDROID_LOG_DEBUG, "icmp_to_icmp6_type: unhandled ICMP type %d", type); return ICMP6_PARAM_PROB; }
/* function: ipv4_packet * translates an ipv4 packet * out - output packet * packet - packet data * len - size of packet * returns: the highest position in the output clat_packet that's filled in */ int ipv4_packet(clat_packet out, int pos, const char *packet, size_t len) { const struct iphdr *header = (struct iphdr *) packet; struct ip6_hdr *ip6_targ = (struct ip6_hdr *) out[pos].iov_base; uint16_t frag_flags; uint8_t nxthdr; const char *next_header; size_t len_left; uint32_t checksum; int iov_len; if(len < sizeof(struct iphdr)) { logmsg_dbg(ANDROID_LOG_ERROR, "ip_packet/too short for an ip header"); return 0; } frag_flags = ntohs(header->frag_off); if(frag_flags & IP_MF) { // this could theoretically be supported, but isn't logmsg_dbg(ANDROID_LOG_ERROR, "ip_packet/more fragments set, dropping"); return 0; } if(header->ihl < 5) { logmsg_dbg(ANDROID_LOG_ERROR, "ip_packet/ip header length set to less than 5: %x", header->ihl); return 0; } if((size_t) header->ihl * 4 > len) { // ip header length larger than entire packet logmsg_dbg(ANDROID_LOG_ERROR, "ip_packet/ip header length set too large: %x", header->ihl); return 0; } if(header->version != 4) { logmsg_dbg(ANDROID_LOG_ERROR, "ip_packet/ip header version not 4: %x", header->version); return 0; } /* rfc6145 - If any IPv4 options are present in the IPv4 packet, they MUST be * ignored and the packet translated normally; there is no attempt to * translate the options. */ next_header = packet + header->ihl*4; len_left = len - header->ihl * 4; nxthdr = header->protocol; if (nxthdr == IPPROTO_ICMP) { // ICMP and ICMPv6 have different protocol numbers. nxthdr = IPPROTO_ICMPV6; } /* Fill in the IPv6 header. We need to do this before we translate the packet because TCP and * UDP include parts of the IP header in the checksum. Set the length to zero because we don't * know it yet. */ fill_ip6_header(ip6_targ, 0, nxthdr, header); out[pos].iov_len = sizeof(struct ip6_hdr); // Calculate the pseudo-header checksum. checksum = ipv6_pseudo_header_checksum(0, ip6_targ, len_left); if (nxthdr == IPPROTO_ICMPV6) { iov_len = icmp_packet(out, pos + 1, (const struct icmphdr *) next_header, checksum, len_left); } else if (nxthdr == IPPROTO_TCP) { iov_len = tcp_packet(out, pos + 1, (const struct tcphdr *) next_header, checksum, len_left); } else if (nxthdr == IPPROTO_UDP) { iov_len = udp_packet(out, pos + 1, (const struct udphdr *) next_header, checksum, len_left); } else if (nxthdr == IPPROTO_GRE) { iov_len = generic_packet(out, pos + 1, next_header, len_left); } else { #if CLAT_DEBUG logmsg_dbg(ANDROID_LOG_ERROR, "ip_packet/unknown protocol: %x",header->protocol); logcat_hexdump("ipv4/protocol", packet, len); #endif return 0; } // Set the length. ip6_targ->ip6_plen = htons(packet_length(out, pos)); return iov_len; }
/* function: ipv6_packet * takes an ipv6 packet and hands it off to the layer 4 protocol function * out - output packet * packet - packet data * len - size of packet * returns: the highest position in the output clat_packet that's filled in */ int ipv6_packet(clat_packet out, clat_packet_index pos, const uint8_t *packet, size_t len) { const struct ip6_hdr *ip6 = (struct ip6_hdr *) packet; struct iphdr *ip_targ = (struct iphdr *) out[pos].iov_base; struct ip6_frag *frag_hdr = NULL; uint8_t protocol; const uint8_t *next_header; size_t len_left; uint32_t old_sum, new_sum; int iov_len; if(len < sizeof(struct ip6_hdr)) { logmsg_dbg(ANDROID_LOG_ERROR, "ipv6_packet/too short for an ip6 header: %d", len); return 0; } if(IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { log_bad_address("ipv6_packet/multicast %s->%s", &ip6->ip6_src, &ip6->ip6_dst); return 0; // silently ignore } // If the packet is not from the plat subnet to the local subnet, or vice versa, drop it, unless // it's an ICMP packet (which can come from anywhere). We do not send IPv6 packets from the plat // subnet to the local subnet, but these can appear as inner packets in ICMP errors, so we need // to translate them. We accept third-party ICMPv6 errors, even though their source addresses // cannot be translated, so that things like unreachables and traceroute will work. fill_ip_header // takes care of faking a source address for them. if (!(is_in_plat_subnet(&ip6->ip6_src) && IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &Global_Clatd_Config.ipv6_local_subnet)) && !(is_in_plat_subnet(&ip6->ip6_dst) && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &Global_Clatd_Config.ipv6_local_subnet)) && ip6->ip6_nxt != IPPROTO_ICMPV6) { log_bad_address("ipv6_packet/wrong source address: %s->%s", &ip6->ip6_src, &ip6->ip6_dst); return 0; } next_header = packet + sizeof(struct ip6_hdr); len_left = len - sizeof(struct ip6_hdr); protocol = ip6->ip6_nxt; /* Fill in the IPv4 header. We need to do this before we translate the packet because TCP and * UDP include parts of the IP header in the checksum. Set the length to zero because we don't * know it yet. */ fill_ip_header(ip_targ, 0, protocol, ip6); out[pos].iov_len = sizeof(struct iphdr); // If there's a Fragment header, parse it and decide what the next header is. // Do this before calculating the pseudo-header checksum because it updates the next header value. if (protocol == IPPROTO_FRAGMENT) { frag_hdr = (struct ip6_frag *) next_header; if (len_left < sizeof(*frag_hdr)) { logmsg_dbg(ANDROID_LOG_ERROR, "ipv6_packet/too short for fragment header: %d", len); return 0; } next_header += sizeof(*frag_hdr); len_left -= sizeof(*frag_hdr); protocol = parse_frag_header(frag_hdr, ip_targ); } // ICMP and ICMPv6 have different protocol numbers. if (protocol == IPPROTO_ICMPV6) { protocol = IPPROTO_ICMP; ip_targ->protocol = IPPROTO_ICMP; } /* Calculate the pseudo-header checksum. * Technically, the length that is used in the pseudo-header checksum is the transport layer * length, which is not the same as len_left in the case of fragmented packets. But since * translation does not change the transport layer length, the checksum is unaffected. */ old_sum = ipv6_pseudo_header_checksum(ip6, len_left, protocol); new_sum = ipv4_pseudo_header_checksum(ip_targ, len_left); // Does not support IPv6 extension headers except Fragment. if (frag_hdr && (frag_hdr->ip6f_offlg & IP6F_OFF_MASK)) { iov_len = generic_packet(out, pos + 2, next_header, len_left); } else if (protocol == IPPROTO_ICMP) { iov_len = icmp6_packet(out, pos + 2, (const struct icmp6_hdr *) next_header, len_left); } else if (protocol == IPPROTO_TCP) { iov_len = tcp_packet(out, pos + 2, (const struct tcphdr *) next_header, old_sum, new_sum, len_left); } else if (protocol == IPPROTO_UDP) { iov_len = udp_packet(out, pos + 2, (const struct udphdr *) next_header, old_sum, new_sum, len_left); } else if (protocol == IPPROTO_GRE) { iov_len = generic_packet(out, pos + 2, next_header, len_left); } else { #if CLAT_DEBUG logmsg(ANDROID_LOG_ERROR, "ipv6_packet/unknown next header type: %x", ip6->ip6_nxt); logcat_hexdump("ipv6/nxthdr", packet, len); #endif return 0; } // Set the length and calculate the checksum. ip_targ->tot_len = htons(ntohs(ip_targ->tot_len) + packet_length(out, pos)); ip_targ->check = ip_checksum(ip_targ, sizeof(struct iphdr)); return iov_len; }