static void calc_offsets(struct lp_build_context *coeff_bld, unsigned quad_start_index, LLVMValueRef *pixoffx, LLVMValueRef *pixoffy) { unsigned i; unsigned num_pix = coeff_bld->type.length; struct gallivm_state *gallivm = coeff_bld->gallivm; LLVMBuilderRef builder = coeff_bld->gallivm->builder; LLVMValueRef nr, pixxf, pixyf; *pixoffx = coeff_bld->undef; *pixoffy = coeff_bld->undef; for (i = 0; i < num_pix; i++) { nr = lp_build_const_int32(gallivm, i); pixxf = lp_build_const_float(gallivm, quad_offset_x[i % num_pix] + (quad_start_index & 1) * 2); pixyf = lp_build_const_float(gallivm, quad_offset_y[i % num_pix] + (quad_start_index & 2)); *pixoffx = LLVMBuildInsertElement(builder, *pixoffx, pixxf, nr, ""); *pixoffy = LLVMBuildInsertElement(builder, *pixoffy, pixyf, nr, ""); } }
static void kill_if_fetch_args(struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data) { const struct tgsi_full_instruction *inst = emit_data->inst; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMBuilderRef builder = gallivm->builder; unsigned i; LLVMValueRef conds[TGSI_NUM_CHANNELS]; for (i = 0; i < TGSI_NUM_CHANNELS; i++) { LLVMValueRef value = lp_build_emit_fetch(bld_base, inst, 0, i); conds[i] = LLVMBuildFCmp(builder, LLVMRealOLT, value, bld_base->base.zero, ""); } /* Or the conditions together */ for (i = TGSI_NUM_CHANNELS - 1; i > 0; i--) { conds[i - 1] = LLVMBuildOr(builder, conds[i], conds[i - 1], ""); } emit_data->dst_type = LLVMVoidTypeInContext(gallivm->context); emit_data->arg_count = 1; emit_data->args[0] = LLVMBuildSelect(builder, conds[0], lp_build_const_float(gallivm, -1.0f), bld_base->base.zero, ""); }
static LLVMValueRef llvm_face_select_helper( struct radeon_llvm_context * ctx, const char *intrinsic, unsigned face_register, unsigned frontcolor_register, unsigned backcolor_regiser) { LLVMValueRef backcolor = llvm_load_input_helper( ctx, intrinsic, backcolor_regiser); LLVMValueRef front_color = llvm_load_input_helper( ctx, intrinsic, frontcolor_register); LLVMValueRef face = llvm_load_input_helper( ctx, "llvm.R600.load.input", face_register); LLVMValueRef is_face_positive = LLVMBuildFCmp( ctx->soa.bld_base.base.gallivm->builder, LLVMRealUGT, face, lp_build_const_float(ctx->soa.bld_base.base.gallivm, 0.0f), ""); return LLVMBuildSelect( ctx->soa.bld_base.base.gallivm->builder, is_face_positive, front_color, backcolor, ""); }
static LLVMValueRef llvm_face_select_helper( struct radeon_llvm_context * ctx, LLVMValueRef face, LLVMValueRef front_color, LLVMValueRef back_color) { const struct lp_build_context * bb = &ctx->soa.bld_base.base; LLVMValueRef is_front = LLVMBuildFCmp( bb->gallivm->builder, LLVMRealUGT, face, lp_build_const_float(bb->gallivm, 0.0f), ""); return LLVMBuildSelect(bb->gallivm->builder, is_front, front_color, back_color, ""); }
static void emit_cndlt( const struct lp_build_tgsi_action * action, struct lp_build_tgsi_context * bld_base, struct lp_build_emit_data * emit_data) { LLVMBuilderRef builder = bld_base->base.gallivm->builder; LLVMValueRef float_zero = lp_build_const_float( bld_base->base.gallivm, 0.0f); LLVMValueRef cmp = LLVMBuildFCmp( builder, LLVMRealULT, emit_data->args[0], float_zero, ""); emit_data->output[emit_data->chan] = LLVMBuildSelect(builder, cmp, emit_data->args[1], emit_data->args[2], ""); }
LLVMValueRef lp_build_zero(struct gallivm_state *gallivm, struct lp_type type) { if (type.length == 1) { if (type.floating) return lp_build_const_float(gallivm, 0.0); else return LLVMConstInt(LLVMIntTypeInContext(gallivm->context, type.width), 0, 0); } else { LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type); return LLVMConstNull(vec_type); } }
static void llvm_load_input( struct radeon_llvm_context * ctx, unsigned input_index, const struct tgsi_full_declaration *decl) { const struct r600_shader_io * input = &ctx->r600_inputs[input_index]; unsigned chan; int two_side = (ctx->two_side && input->name == TGSI_SEMANTIC_COLOR); LLVMValueRef v; boolean require_interp_intrinsic = ctx->chip_class >= EVERGREEN && ctx->type == TGSI_PROCESSOR_FRAGMENT; if (require_interp_intrinsic && input->spi_sid) { v = llvm_load_input_vector(ctx, input->lds_pos, input->ij_index, (input->interpolate > 0)); } else v = LLVMGetParam(ctx->main_fn, input->gpr); if (two_side) { struct r600_shader_io * back_input = &ctx->r600_inputs[input->back_color_input]; LLVMValueRef v2; LLVMValueRef face = LLVMGetParam(ctx->main_fn, ctx->face_gpr); face = LLVMBuildExtractElement(ctx->gallivm.builder, face, lp_build_const_int32(&(ctx->gallivm), 0), ""); if (require_interp_intrinsic && back_input->spi_sid) v2 = llvm_load_input_vector(ctx, back_input->lds_pos, back_input->ij_index, (back_input->interpolate > 0)); else v2 = LLVMGetParam(ctx->main_fn, back_input->gpr); v = llvm_face_select_helper(ctx, face, v, v2); } for (chan = 0; chan < 4; chan++) { unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); ctx->inputs[soa_index] = LLVMBuildExtractElement(ctx->gallivm.builder, v, lp_build_const_int32(&(ctx->gallivm), chan), ""); if (input->name == TGSI_SEMANTIC_POSITION && ctx->type == TGSI_PROCESSOR_FRAGMENT && chan == 3) { /* RCP for fragcoord.w */ ctx->inputs[soa_index] = LLVMBuildFDiv(ctx->gallivm.builder, lp_build_const_float(&(ctx->gallivm), 1.0f), ctx->inputs[soa_index], ""); } } }
/** * Pack a single pixel. * * @param rgba 4 float vector with the unpacked components. * * XXX: This is mostly for reference and testing -- operating a single pixel at * a time is rarely if ever needed. */ LLVMValueRef lp_build_pack_rgba_aos(struct gallivm_state *gallivm, const struct util_format_description *desc, LLVMValueRef rgba) { LLVMBuilderRef builder = gallivm->builder; LLVMTypeRef type; LLVMValueRef packed = NULL; LLVMValueRef swizzles[4]; LLVMValueRef shifted, casted, scaled, unswizzled; LLVMValueRef shifts[4]; LLVMValueRef scales[4]; boolean normalized; unsigned shift; unsigned i, j; assert(desc->layout == UTIL_FORMAT_LAYOUT_PLAIN); assert(desc->block.width == 1); assert(desc->block.height == 1); type = LLVMIntTypeInContext(gallivm->context, desc->block.bits); /* Unswizzle the color components into the source vector. */ for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { if (desc->swizzle[j] == i) break; } if (j < 4) swizzles[i] = lp_build_const_int32(gallivm, j); else swizzles[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); } unswizzled = LLVMBuildShuffleVector(builder, rgba, LLVMGetUndef(LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4)), LLVMConstVector(swizzles, 4), ""); normalized = FALSE; shift = 0; for (i = 0; i < 4; ++i) { unsigned bits = desc->channel[i].size; if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID) { shifts[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); scales[i] = LLVMGetUndef(LLVMFloatTypeInContext(gallivm->context)); } else { unsigned mask = (1 << bits) - 1; assert(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED); assert(bits < 32); shifts[i] = lp_build_const_int32(gallivm, shift); if (desc->channel[i].normalized) { scales[i] = lp_build_const_float(gallivm, mask); normalized = TRUE; } else scales[i] = lp_build_const_float(gallivm, 1.0); } shift += bits; } if (normalized) scaled = LLVMBuildFMul(builder, unswizzled, LLVMConstVector(scales, 4), ""); else scaled = unswizzled; casted = LLVMBuildFPToSI(builder, scaled, LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4), ""); shifted = LLVMBuildShl(builder, casted, LLVMConstVector(shifts, 4), ""); /* Bitwise or all components */ for (i = 0; i < 4; ++i) { if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) { LLVMValueRef component = LLVMBuildExtractElement(builder, shifted, lp_build_const_int32(gallivm, i), ""); if (packed) packed = LLVMBuildOr(builder, packed, component, ""); else packed = component; } } if (!packed) packed = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); if (desc->block.bits < 32) packed = LLVMBuildTrunc(builder, packed, type, ""); return packed; }
/** * Unpack a single pixel into its RGBA components. * * @param desc the pixel format for the packed pixel value * @param packed integer pixel in a format such as PIPE_FORMAT_B8G8R8A8_UNORM * * @return RGBA in a float[4] or ubyte[4] or ushort[4] vector. */ static INLINE LLVMValueRef lp_build_unpack_arith_rgba_aos(struct gallivm_state *gallivm, const struct util_format_description *desc, LLVMValueRef packed) { LLVMBuilderRef builder = gallivm->builder; LLVMValueRef shifted, casted, scaled, masked; LLVMValueRef shifts[4]; LLVMValueRef masks[4]; LLVMValueRef scales[4]; boolean normalized; boolean needs_uitofp; unsigned shift; unsigned i; /* TODO: Support more formats */ assert(desc->layout == UTIL_FORMAT_LAYOUT_PLAIN); assert(desc->block.width == 1); assert(desc->block.height == 1); assert(desc->block.bits <= 32); /* Do the intermediate integer computations with 32bit integers since it * matches floating point size */ assert (LLVMTypeOf(packed) == LLVMInt32TypeInContext(gallivm->context)); /* Broadcast the packed value to all four channels * before: packed = BGRA * after: packed = {BGRA, BGRA, BGRA, BGRA} */ packed = LLVMBuildInsertElement(builder, LLVMGetUndef(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)), packed, LLVMConstNull(LLVMInt32TypeInContext(gallivm->context)), ""); packed = LLVMBuildShuffleVector(builder, packed, LLVMGetUndef(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)), LLVMConstNull(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)), ""); /* Initialize vector constants */ normalized = FALSE; needs_uitofp = FALSE; shift = 0; /* Loop over 4 color components */ for (i = 0; i < 4; ++i) { unsigned bits = desc->channel[i].size; if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID) { shifts[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); masks[i] = LLVMConstNull(LLVMInt32TypeInContext(gallivm->context)); scales[i] = LLVMConstNull(LLVMFloatTypeInContext(gallivm->context)); } else { unsigned long long mask = (1ULL << bits) - 1; assert(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED); if (bits == 32) { needs_uitofp = TRUE; } shifts[i] = lp_build_const_int32(gallivm, shift); masks[i] = lp_build_const_int32(gallivm, mask); if (desc->channel[i].normalized) { scales[i] = lp_build_const_float(gallivm, 1.0 / mask); normalized = TRUE; } else scales[i] = lp_build_const_float(gallivm, 1.0); } shift += bits; } /* Ex: convert packed = {BGRA, BGRA, BGRA, BGRA} * into masked = {B, G, R, A} */ shifted = LLVMBuildLShr(builder, packed, LLVMConstVector(shifts, 4), ""); masked = LLVMBuildAnd(builder, shifted, LLVMConstVector(masks, 4), ""); if (!needs_uitofp) { /* UIToFP can't be expressed in SSE2 */ casted = LLVMBuildSIToFP(builder, masked, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4), ""); } else { casted = LLVMBuildUIToFP(builder, masked, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4), ""); } /* At this point 'casted' may be a vector of floats such as * {255.0, 255.0, 255.0, 255.0}. Next, if the pixel values are normalized * we'll scale this to {1.0, 1.0, 1.0, 1.0}. */ if (normalized) scaled = LLVMBuildFMul(builder, casted, LLVMConstVector(scales, 4), ""); else scaled = casted; return scaled; }
static void llvm_emit_epilogue(struct lp_build_tgsi_context * bld_base) { struct radeon_llvm_context * ctx = radeon_llvm_context(bld_base); struct lp_build_context * base = &bld_base->base; struct pipe_stream_output_info * so = ctx->stream_outputs; unsigned i; unsigned next_pos = 60; unsigned next_param = 0; unsigned color_count = 0; boolean has_color = false; if (ctx->type == TGSI_PROCESSOR_VERTEX && so->num_outputs) { for (i = 0; i < so->num_outputs; i++) { unsigned register_index = so->output[i].register_index; unsigned start_component = so->output[i].start_component; unsigned num_components = so->output[i].num_components; unsigned dst_offset = so->output[i].dst_offset; unsigned chan; LLVMValueRef elements[4]; if (dst_offset < start_component) { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { elements[chan] = LLVMBuildLoad(base->gallivm->builder, ctx->soa.outputs[register_index][(chan + start_component) % TGSI_NUM_CHANNELS], ""); } start_component = 0; } else { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { elements[chan] = LLVMBuildLoad(base->gallivm->builder, ctx->soa.outputs[register_index][chan], ""); } } LLVMValueRef output = lp_build_gather_values(base->gallivm, elements, 4); LLVMValueRef args[4]; args[0] = output; args[1] = lp_build_const_int32(base->gallivm, dst_offset - start_component); args[2] = lp_build_const_int32(base->gallivm, so->output[i].output_buffer); args[3] = lp_build_const_int32(base->gallivm, ((1 << num_components) - 1) << start_component); lp_build_intrinsic(base->gallivm->builder, "llvm.R600.store.stream.output", LLVMVoidTypeInContext(base->gallivm->context), args, 4); } } /* Add the necessary export instructions */ for (i = 0; i < ctx->output_reg_count; i++) { unsigned chan; LLVMValueRef elements[4]; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { elements[chan] = LLVMBuildLoad(base->gallivm->builder, ctx->soa.outputs[i][chan], ""); } if (ctx->alpha_to_one && ctx->type == TGSI_PROCESSOR_FRAGMENT && ctx->r600_outputs[i].name == TGSI_SEMANTIC_COLOR) elements[3] = lp_build_const_float(base->gallivm, 1.0f); LLVMValueRef output = lp_build_gather_values(base->gallivm, elements, 4); if (ctx->type == TGSI_PROCESSOR_VERTEX) { switch (ctx->r600_outputs[i].name) { case TGSI_SEMANTIC_POSITION: case TGSI_SEMANTIC_PSIZE: { LLVMValueRef args[3]; args[0] = output; args[1] = lp_build_const_int32(base->gallivm, next_pos++); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); break; } case TGSI_SEMANTIC_CLIPVERTEX: { LLVMValueRef args[3]; unsigned reg_index; unsigned base_vector_chan; LLVMValueRef adjusted_elements[4]; for (reg_index = 0; reg_index < 2; reg_index ++) { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef offset = lp_build_const_int32(bld_base->base.gallivm, reg_index * 4 + chan); LLVMValueRef base_vector = llvm_load_const_buffer(bld_base, offset, CONSTANT_BUFFER_1_ADDR_SPACE); args[0] = output; args[1] = base_vector; adjusted_elements[chan] = build_intrinsic(base->gallivm->builder, "llvm.AMDGPU.dp4", bld_base->base.elem_type, args, 2, LLVMReadNoneAttribute); } args[0] = lp_build_gather_values(base->gallivm, adjusted_elements, 4); args[1] = lp_build_const_int32(base->gallivm, next_pos++); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); } break; } case TGSI_SEMANTIC_CLIPDIST : { LLVMValueRef args[3]; args[0] = output; args[1] = lp_build_const_int32(base->gallivm, next_pos++); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); args[1] = lp_build_const_int32(base->gallivm, next_param++); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); break; } case TGSI_SEMANTIC_FOG: { elements[0] = LLVMBuildLoad(base->gallivm->builder, ctx->soa.outputs[i][0], ""); elements[1] = elements[2] = lp_build_const_float(base->gallivm, 0.0f); elements[3] = lp_build_const_float(base->gallivm, 1.0f); LLVMValueRef args[3]; args[0] = lp_build_gather_values(base->gallivm, elements, 4); args[1] = lp_build_const_int32(base->gallivm, next_param++); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); break; } default: { LLVMValueRef args[3]; args[0] = output; args[1] = lp_build_const_int32(base->gallivm, next_param++); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); break; } } } else if (ctx->type == TGSI_PROCESSOR_FRAGMENT) { switch (ctx->r600_outputs[i].name) { case TGSI_SEMANTIC_COLOR: has_color = true; if ( color_count < ctx->color_buffer_count) { LLVMValueRef args[3]; args[0] = output; if (ctx->fs_color_all) { for (unsigned j = 0; j < ctx->color_buffer_count; j++) { args[1] = lp_build_const_int32(base->gallivm, j); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); } } else { args[1] = lp_build_const_int32(base->gallivm, color_count++); args[2] = lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL); build_intrinsic( base->gallivm->builder, "llvm.R600.store.swizzle", LLVMVoidTypeInContext(base->gallivm->context), args, 3, 0); } } break; case TGSI_SEMANTIC_POSITION: lp_build_intrinsic_unary( base->gallivm->builder, "llvm.R600.store.pixel.depth", LLVMVoidTypeInContext(base->gallivm->context), LLVMBuildLoad(base->gallivm->builder, ctx->soa.outputs[i][2], "")); break; case TGSI_SEMANTIC_STENCIL: lp_build_intrinsic_unary( base->gallivm->builder, "llvm.R600.store.pixel.stencil", LLVMVoidTypeInContext(base->gallivm->context), LLVMBuildLoad(base->gallivm->builder, ctx->soa.outputs[i][1], "")); break; } } } // Add dummy exports if (ctx->type == TGSI_PROCESSOR_VERTEX) { if (!next_param) { lp_build_intrinsic_unary(base->gallivm->builder, "llvm.R600.store.dummy", LLVMVoidTypeInContext(base->gallivm->context), lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM)); } if (!(next_pos-60)) { lp_build_intrinsic_unary(base->gallivm->builder, "llvm.R600.store.dummy", LLVMVoidTypeInContext(base->gallivm->context), lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS)); } } if (ctx->type == TGSI_PROCESSOR_FRAGMENT) { if (!has_color) { lp_build_intrinsic_unary(base->gallivm->builder, "llvm.R600.store.dummy", LLVMVoidTypeInContext(base->gallivm->context), lp_build_const_int32(base->gallivm, V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL)); } } }
/** * Generate code to do cube face selection and compute per-face texcoords. */ void lp_build_cube_lookup(struct lp_build_sample_context *bld, LLVMValueRef s, LLVMValueRef t, LLVMValueRef r, LLVMValueRef *face, LLVMValueRef *face_s, LLVMValueRef *face_t) { struct lp_build_context *float_bld = &bld->float_bld; struct lp_build_context *coord_bld = &bld->coord_bld; LLVMBuilderRef builder = bld->gallivm->builder; LLVMValueRef rx, ry, rz; LLVMValueRef arx, ary, arz; LLVMValueRef c25 = lp_build_const_float(bld->gallivm, 0.25); LLVMValueRef arx_ge_ary, arx_ge_arz; LLVMValueRef ary_ge_arx, ary_ge_arz; LLVMValueRef arx_ge_ary_arz, ary_ge_arx_arz; assert(bld->coord_bld.type.length == 4); /* * Use the average of the four pixel's texcoords to choose the face. */ rx = lp_build_mul(float_bld, c25, lp_build_sum_vector(&bld->coord_bld, s)); ry = lp_build_mul(float_bld, c25, lp_build_sum_vector(&bld->coord_bld, t)); rz = lp_build_mul(float_bld, c25, lp_build_sum_vector(&bld->coord_bld, r)); arx = lp_build_abs(float_bld, rx); ary = lp_build_abs(float_bld, ry); arz = lp_build_abs(float_bld, rz); /* * Compare sign/magnitude of rx,ry,rz to determine face */ arx_ge_ary = LLVMBuildFCmp(builder, LLVMRealUGE, arx, ary, ""); arx_ge_arz = LLVMBuildFCmp(builder, LLVMRealUGE, arx, arz, ""); ary_ge_arx = LLVMBuildFCmp(builder, LLVMRealUGE, ary, arx, ""); ary_ge_arz = LLVMBuildFCmp(builder, LLVMRealUGE, ary, arz, ""); arx_ge_ary_arz = LLVMBuildAnd(builder, arx_ge_ary, arx_ge_arz, ""); ary_ge_arx_arz = LLVMBuildAnd(builder, ary_ge_arx, ary_ge_arz, ""); { struct lp_build_if_state if_ctx; LLVMValueRef face_s_var; LLVMValueRef face_t_var; LLVMValueRef face_var; face_s_var = lp_build_alloca(bld->gallivm, bld->coord_bld.vec_type, "face_s_var"); face_t_var = lp_build_alloca(bld->gallivm, bld->coord_bld.vec_type, "face_t_var"); face_var = lp_build_alloca(bld->gallivm, bld->int_bld.vec_type, "face_var"); lp_build_if(&if_ctx, bld->gallivm, arx_ge_ary_arz); { /* +/- X face */ LLVMValueRef sign = lp_build_sgn(float_bld, rx); LLVMValueRef ima = lp_build_cube_ima(coord_bld, s); *face_s = lp_build_cube_coord(coord_bld, sign, +1, r, ima); *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima); *face = lp_build_cube_face(bld, rx, PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X); LLVMBuildStore(builder, *face_s, face_s_var); LLVMBuildStore(builder, *face_t, face_t_var); LLVMBuildStore(builder, *face, face_var); } lp_build_else(&if_ctx); { struct lp_build_if_state if_ctx2; lp_build_if(&if_ctx2, bld->gallivm, ary_ge_arx_arz); { /* +/- Y face */ LLVMValueRef sign = lp_build_sgn(float_bld, ry); LLVMValueRef ima = lp_build_cube_ima(coord_bld, t); *face_s = lp_build_cube_coord(coord_bld, NULL, -1, s, ima); *face_t = lp_build_cube_coord(coord_bld, sign, -1, r, ima); *face = lp_build_cube_face(bld, ry, PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y); LLVMBuildStore(builder, *face_s, face_s_var); LLVMBuildStore(builder, *face_t, face_t_var); LLVMBuildStore(builder, *face, face_var); } lp_build_else(&if_ctx2); { /* +/- Z face */ LLVMValueRef sign = lp_build_sgn(float_bld, rz); LLVMValueRef ima = lp_build_cube_ima(coord_bld, r); *face_s = lp_build_cube_coord(coord_bld, sign, -1, s, ima); *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima); *face = lp_build_cube_face(bld, rz, PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z); LLVMBuildStore(builder, *face_s, face_s_var); LLVMBuildStore(builder, *face_t, face_t_var); LLVMBuildStore(builder, *face, face_var); } lp_build_endif(&if_ctx2); } lp_build_endif(&if_ctx); *face_s = LLVMBuildLoad(builder, face_s_var, "face_s"); *face_t = LLVMBuildLoad(builder, face_t_var, "face_t"); *face = LLVMBuildLoad(builder, face_var, "face"); } }
/** * Initialize the bld->a, dadq fields. This involves fetching * those values from the arrays which are passed into the JIT function. */ static void coeffs_init(struct lp_build_interp_soa_context *bld, LLVMValueRef a0_ptr, LLVMValueRef dadx_ptr, LLVMValueRef dady_ptr) { struct lp_build_context *coeff_bld = &bld->coeff_bld; struct lp_build_context *setup_bld = &bld->setup_bld; struct gallivm_state *gallivm = coeff_bld->gallivm; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef pixoffx, pixoffy; unsigned attrib; unsigned chan; unsigned i; pixoffx = coeff_bld->undef; pixoffy = coeff_bld->undef; for (i = 0; i < coeff_bld->type.length; i++) { LLVMValueRef nr = lp_build_const_int32(gallivm, i); LLVMValueRef pixxf = lp_build_const_float(gallivm, quad_offset_x[i]); LLVMValueRef pixyf = lp_build_const_float(gallivm, quad_offset_y[i]); pixoffx = LLVMBuildInsertElement(builder, pixoffx, pixxf, nr, ""); pixoffy = LLVMBuildInsertElement(builder, pixoffy, pixyf, nr, ""); } for (attrib = 0; attrib < bld->num_attribs; ++attrib) { const unsigned mask = bld->mask[attrib]; const unsigned interp = bld->interp[attrib]; LLVMValueRef index = lp_build_const_int32(gallivm, attrib * TGSI_NUM_CHANNELS); LLVMValueRef ptr; LLVMValueRef dadxaos = setup_bld->zero; LLVMValueRef dadyaos = setup_bld->zero; LLVMValueRef a0aos = setup_bld->zero; /* always fetch all 4 values for performance/simplicity */ switch (interp) { case LP_INTERP_PERSPECTIVE: /* fall-through */ case LP_INTERP_LINEAR: ptr = LLVMBuildGEP(builder, dadx_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); dadxaos = LLVMBuildLoad(builder, ptr, ""); ptr = LLVMBuildGEP(builder, dady_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); dadyaos = LLVMBuildLoad(builder, ptr, ""); attrib_name(dadxaos, attrib, 0, ".dadxaos"); attrib_name(dadyaos, attrib, 0, ".dadyaos"); /* fall-through */ case LP_INTERP_CONSTANT: case LP_INTERP_FACING: ptr = LLVMBuildGEP(builder, a0_ptr, &index, 1, ""); ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(setup_bld->vec_type, 0), ""); a0aos = LLVMBuildLoad(builder, ptr, ""); attrib_name(a0aos, attrib, 0, ".a0aos"); break; case LP_INTERP_POSITION: /* Nothing to do as the position coeffs are already setup in slot 0 */ continue; default: assert(0); break; } /* * a = a0 + (x * dadx + y * dady) * a0aos is the attrib value at top left corner of stamp */ if (interp != LP_INTERP_CONSTANT && interp != LP_INTERP_FACING) { LLVMValueRef x = lp_build_broadcast_scalar(setup_bld, bld->x); LLVMValueRef y = lp_build_broadcast_scalar(setup_bld, bld->y); a0aos = lp_build_fmuladd(builder, x, dadxaos, a0aos); a0aos = lp_build_fmuladd(builder, y, dadyaos, a0aos); } /* * dadq = {0, dadx, dady, dadx + dady} * for two quads (side by side) this is: * {0, dadx, dady, dadx+dady, 2*dadx, 2*dadx+dady, 3*dadx+dady} */ for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { /* this generates a CRAPLOAD of shuffles... */ if (mask & (1 << chan)) { LLVMValueRef dadx, dady; LLVMValueRef dadq, dadq2; LLVMValueRef a; LLVMValueRef chan_index = lp_build_const_int32(gallivm, chan); if (attrib == 0 && chan == 0) { a = bld->x; if (bld->pos_offset) { a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), ""); } a = lp_build_broadcast_scalar(coeff_bld, a); dadx = coeff_bld->one; dady = coeff_bld->zero; } else if (attrib == 0 && chan == 1) { a = bld->y; if (bld->pos_offset) { a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), ""); } a = lp_build_broadcast_scalar(coeff_bld, a); dady = coeff_bld->one; dadx = coeff_bld->zero; } else { dadx = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, dadxaos, chan_index); dady = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, dadyaos, chan_index); /* * a = {a, a, a, a} */ a = lp_build_extract_broadcast(gallivm, setup_bld->type, coeff_bld->type, a0aos, chan_index); } dadx = LLVMBuildFMul(builder, dadx, pixoffx, ""); dady = LLVMBuildFMul(builder, dady, pixoffy, ""); dadq = LLVMBuildFAdd(builder, dadx, dady, ""); /* * Compute the attrib values on the upper-left corner of each * group of quads. * Note that if we process 2 quads at once this doesn't * really exactly to what we want. * We need to access elem 0 and 2 respectively later if we process * 2 quads at once. */ if (interp != LP_INTERP_CONSTANT && interp != LP_INTERP_FACING) { dadq2 = LLVMBuildFAdd(builder, dadq, dadq, ""); a = LLVMBuildFAdd(builder, a, dadq2, ""); } #if PERSPECTIVE_DIVIDE_PER_QUAD /* * a *= 1 / w */ /* * XXX since we're only going to access elements 0,2 out of 8 * if we have 8-wide vectors we should do the division only 4-wide. * a is really a 2-elements in a 4-wide vector disguised as 8-wide * in this case. */ if (interp == LP_INTERP_PERSPECTIVE) { LLVMValueRef w = bld->a[0][3]; assert(attrib != 0); assert(bld->mask[0] & TGSI_WRITEMASK_W); if (!bld->oow) { bld->oow = lp_build_rcp(coeff_bld, w); lp_build_name(bld->oow, "oow"); } a = lp_build_mul(coeff_bld, a, bld->oow); } #endif attrib_name(a, attrib, chan, ".a"); attrib_name(dadq, attrib, chan, ".dadq"); bld->a[attrib][chan] = lp_build_alloca(gallivm, LLVMTypeOf(a), ""); LLVMBuildStore(builder, a, bld->a[attrib][chan]); bld->dadq[attrib][chan] = dadq; } } } }
void si_prepare_cube_coords(struct lp_build_tgsi_context *bld_base, struct lp_build_emit_data *emit_data, LLVMValueRef *coords_arg, LLVMValueRef *derivs_arg) { unsigned target = emit_data->inst->Texture.Texture; unsigned opcode = emit_data->inst->Instruction.Opcode; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef coords[4]; unsigned i; si_llvm_cube_to_2d_coords(bld_base, coords_arg, coords); if (opcode == TGSI_OPCODE_TXD && derivs_arg) { LLVMValueRef derivs[4]; int axis; /* Convert cube derivatives to 2D derivatives. */ for (axis = 0; axis < 2; axis++) { LLVMValueRef shifted_cube_coords[4], shifted_coords[4]; /* Shift the cube coordinates by the derivatives to get * the cube coordinates of the "neighboring pixel". */ for (i = 0; i < 3; i++) shifted_cube_coords[i] = LLVMBuildFAdd(builder, coords_arg[i], derivs_arg[axis*3+i], ""); shifted_cube_coords[3] = LLVMGetUndef(bld_base->base.elem_type); /* Project the shifted cube coordinates onto the face. */ si_llvm_cube_to_2d_coords(bld_base, shifted_cube_coords, shifted_coords); /* Subtract both sets of 2D coordinates to get 2D derivatives. * This won't work if the shifted coordinates ended up * in a different face. */ for (i = 0; i < 2; i++) derivs[axis * 2 + i] = LLVMBuildFSub(builder, shifted_coords[i], coords[i], ""); } memcpy(derivs_arg, derivs, sizeof(derivs)); } if (target == TGSI_TEXTURE_CUBE_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) { /* for cube arrays coord.z = coord.w(array_index) * 8 + face */ /* coords_arg.w component - array_index for cube arrays */ coords[2] = lp_build_emit_llvm_ternary(bld_base, TGSI_OPCODE_MAD, coords_arg[3], lp_build_const_float(gallivm, 8.0), coords[2]); } /* Preserve compare/lod/bias. Put it in coords.w. */ if (opcode == TGSI_OPCODE_TEX2 || opcode == TGSI_OPCODE_TXB2 || opcode == TGSI_OPCODE_TXL2) { coords[3] = coords_arg[4]; } else if (opcode == TGSI_OPCODE_TXB || opcode == TGSI_OPCODE_TXL || target == TGSI_TEXTURE_SHADOWCUBE) { coords[3] = coords_arg[3]; } memcpy(coords_arg, coords, sizeof(coords)); }
/** * Sample the texture/mipmap using given image filter and mip filter. * data0_ptr and data1_ptr point to the two mipmap levels to sample * from. width0/1_vec, height0/1_vec, depth0/1_vec indicate their sizes. * If we're using nearest miplevel sampling the '1' values will be null/unused. */ static void lp_build_sample_mipmap(struct lp_build_sample_context *bld, unsigned img_filter, unsigned mip_filter, LLVMValueRef s, LLVMValueRef t, LLVMValueRef r, LLVMValueRef ilevel0, LLVMValueRef ilevel1, LLVMValueRef lod_fpart, LLVMValueRef colors_lo_var, LLVMValueRef colors_hi_var) { LLVMBuilderRef builder = bld->gallivm->builder; LLVMValueRef size0; LLVMValueRef size1; LLVMValueRef row_stride0_vec; LLVMValueRef row_stride1_vec; LLVMValueRef img_stride0_vec; LLVMValueRef img_stride1_vec; LLVMValueRef data_ptr0; LLVMValueRef data_ptr1; LLVMValueRef colors0_lo, colors0_hi; LLVMValueRef colors1_lo, colors1_hi; /* sample the first mipmap level */ lp_build_mipmap_level_sizes(bld, ilevel0, &size0, &row_stride0_vec, &img_stride0_vec); data_ptr0 = lp_build_get_mipmap_level(bld, ilevel0); if (img_filter == PIPE_TEX_FILTER_NEAREST) { lp_build_sample_image_nearest(bld, size0, row_stride0_vec, img_stride0_vec, data_ptr0, s, t, r, &colors0_lo, &colors0_hi); } else { assert(img_filter == PIPE_TEX_FILTER_LINEAR); lp_build_sample_image_linear(bld, size0, row_stride0_vec, img_stride0_vec, data_ptr0, s, t, r, &colors0_lo, &colors0_hi); } /* Store the first level's colors in the output variables */ LLVMBuildStore(builder, colors0_lo, colors_lo_var); LLVMBuildStore(builder, colors0_hi, colors_hi_var); if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) { LLVMValueRef h16_scale = lp_build_const_float(bld->gallivm, 256.0); LLVMTypeRef i32_type = LLVMIntTypeInContext(bld->gallivm->context, 32); struct lp_build_if_state if_ctx; LLVMValueRef need_lerp; lod_fpart = LLVMBuildFMul(builder, lod_fpart, h16_scale, ""); lod_fpart = LLVMBuildFPToSI(builder, lod_fpart, i32_type, "lod_fpart.fixed16"); /* need_lerp = lod_fpart > 0 */ need_lerp = LLVMBuildICmp(builder, LLVMIntSGT, lod_fpart, LLVMConstNull(i32_type), "need_lerp"); lp_build_if(&if_ctx, bld->gallivm, need_lerp); { struct lp_build_context h16_bld; lp_build_context_init(&h16_bld, bld->gallivm, lp_type_ufixed(16)); /* sample the second mipmap level */ lp_build_mipmap_level_sizes(bld, ilevel1, &size1, &row_stride1_vec, &img_stride1_vec); data_ptr1 = lp_build_get_mipmap_level(bld, ilevel1); if (img_filter == PIPE_TEX_FILTER_NEAREST) { lp_build_sample_image_nearest(bld, size1, row_stride1_vec, img_stride1_vec, data_ptr1, s, t, r, &colors1_lo, &colors1_hi); } else { lp_build_sample_image_linear(bld, size1, row_stride1_vec, img_stride1_vec, data_ptr1, s, t, r, &colors1_lo, &colors1_hi); } /* interpolate samples from the two mipmap levels */ lod_fpart = LLVMBuildTrunc(builder, lod_fpart, h16_bld.elem_type, ""); lod_fpart = lp_build_broadcast_scalar(&h16_bld, lod_fpart); #if HAVE_LLVM == 0x208 /* This is a work-around for a bug in LLVM 2.8. * Evidently, something goes wrong in the construction of the * lod_fpart short[8] vector. Adding this no-effect shuffle seems * to force the vector to be properly constructed. * Tested with mesa-demos/src/tests/mipmap_limits.c (press t, f). */ { LLVMValueRef shuffles[8], shuffle; int i; assert(h16_bld.type.length <= Elements(shuffles)); for (i = 0; i < h16_bld.type.length; i++) shuffles[i] = lp_build_const_int32(bld->gallivm, 2 * (i & 1)); shuffle = LLVMConstVector(shuffles, h16_bld.type.length); lod_fpart = LLVMBuildShuffleVector(builder, lod_fpart, lod_fpart, shuffle, ""); } #endif colors0_lo = lp_build_lerp(&h16_bld, lod_fpart, colors0_lo, colors1_lo); colors0_hi = lp_build_lerp(&h16_bld, lod_fpart, colors0_hi, colors1_hi); LLVMBuildStore(builder, colors0_lo, colors_lo_var); LLVMBuildStore(builder, colors0_hi, colors_hi_var); } lp_build_endif(&if_ctx); } }
static void declare_input_fs( struct si_shader_context * si_shader_ctx, unsigned input_index, const struct tgsi_full_declaration *decl) { struct si_shader *shader = &si_shader_ctx->shader->shader; struct lp_build_context * base = &si_shader_ctx->radeon_bld.soa.bld_base.base; struct gallivm_state * gallivm = base->gallivm; LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context); LLVMValueRef main_fn = si_shader_ctx->radeon_bld.main_fn; LLVMValueRef interp_param; const char * intr_name; /* This value is: * [15:0] NewPrimMask (Bit mask for each quad. It is set it the * quad begins a new primitive. Bit 0 always needs * to be unset) * [32:16] ParamOffset * */ LLVMValueRef params = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_PRIM_MASK); LLVMValueRef attr_number; unsigned chan; if (decl->Semantic.Name == TGSI_SEMANTIC_POSITION) { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); si_shader_ctx->radeon_bld.inputs[soa_index] = LLVMGetParam(main_fn, SI_PARAM_POS_X_FLOAT + chan); if (chan == 3) /* RCP for fragcoord.w */ si_shader_ctx->radeon_bld.inputs[soa_index] = LLVMBuildFDiv(gallivm->builder, lp_build_const_float(gallivm, 1.0f), si_shader_ctx->radeon_bld.inputs[soa_index], ""); } return; } if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) { LLVMValueRef face, is_face_positive; face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE); is_face_positive = LLVMBuildFCmp(gallivm->builder, LLVMRealUGT, face, lp_build_const_float(gallivm, 0.0f), ""); si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 0)] = LLVMBuildSelect(gallivm->builder, is_face_positive, lp_build_const_float(gallivm, 1.0f), lp_build_const_float(gallivm, 0.0f), ""); si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 1)] = si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 2)] = lp_build_const_float(gallivm, 0.0f); si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 3)] = lp_build_const_float(gallivm, 1.0f); return; } shader->input[input_index].param_offset = shader->ninterp++; attr_number = lp_build_const_int32(gallivm, shader->input[input_index].param_offset); /* XXX: Handle all possible interpolation modes */ switch (decl->Interp.Interpolate) { case TGSI_INTERPOLATE_COLOR: if (si_shader_ctx->shader->key.ps.flatshade) { interp_param = 0; } else { if (decl->Interp.Centroid) interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTROID); else interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTER); } break; case TGSI_INTERPOLATE_CONSTANT: interp_param = 0; break; case TGSI_INTERPOLATE_LINEAR: if (decl->Interp.Centroid) interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTROID); else interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTER); break; case TGSI_INTERPOLATE_PERSPECTIVE: if (decl->Interp.Centroid) interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTROID); else interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTER); break; default: fprintf(stderr, "Warning: Unhandled interpolation mode.\n"); return; } intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant"; /* XXX: Could there be more than TGSI_NUM_CHANNELS (4) ? */ if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR && si_shader_ctx->shader->key.ps.color_two_side) { LLVMValueRef args[4]; LLVMValueRef face, is_face_positive; LLVMValueRef back_attr_number = lp_build_const_int32(gallivm, shader->input[input_index].param_offset + 1); face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE); is_face_positive = LLVMBuildFCmp(gallivm->builder, LLVMRealUGT, face, lp_build_const_float(gallivm, 0.0f), ""); args[2] = params; args[3] = interp_param; for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); LLVMValueRef front, back; args[0] = llvm_chan; args[1] = attr_number; front = build_intrinsic(base->gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); args[1] = back_attr_number; back = build_intrinsic(base->gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); si_shader_ctx->radeon_bld.inputs[soa_index] = LLVMBuildSelect(gallivm->builder, is_face_positive, front, back, ""); } shader->ninterp++; } else { for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) { LLVMValueRef args[4]; LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan); unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); args[0] = llvm_chan; args[1] = attr_number; args[2] = params; args[3] = interp_param; si_shader_ctx->radeon_bld.inputs[soa_index] = build_intrinsic(base->gallivm->builder, intr_name, input_type, args, args[3] ? 4 : 3, LLVMReadNoneAttribute | LLVMNoUnwindAttribute); } } }
static void llvm_load_input( struct radeon_llvm_context * ctx, unsigned input_index, const struct tgsi_full_declaration *decl) { unsigned chan; const char *intrinsics = "llvm.R600.load.input"; unsigned offset = 4 * ctx->reserved_reg_count; if (ctx->type == TGSI_PROCESSOR_FRAGMENT && ctx->chip_class >= EVERGREEN) { switch (decl->Interp.Interpolate) { case TGSI_INTERPOLATE_COLOR: case TGSI_INTERPOLATE_PERSPECTIVE: offset = 0; intrinsics = "llvm.R600.load.input.perspective"; break; case TGSI_INTERPOLATE_LINEAR: offset = 0; intrinsics = "llvm.R600.load.input.linear"; break; case TGSI_INTERPOLATE_CONSTANT: offset = 0; intrinsics = "llvm.R600.load.input.constant"; break; default: assert(0 && "Unknow Interpolate mode"); } } for (chan = 0; chan < 4; chan++) { unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan); switch (decl->Semantic.Name) { case TGSI_SEMANTIC_FACE: ctx->inputs[soa_index] = llvm_load_input_helper(ctx, "llvm.R600.load.input", 4 * ctx->face_input); break; case TGSI_SEMANTIC_POSITION: if (ctx->type != TGSI_PROCESSOR_FRAGMENT || chan != 3) { ctx->inputs[soa_index] = llvm_load_input_helper(ctx, "llvm.R600.load.input", soa_index + (ctx->reserved_reg_count * 4)); } else { LLVMValueRef w_coord = llvm_load_input_helper(ctx, "llvm.R600.load.input", soa_index + (ctx->reserved_reg_count * 4)); ctx->inputs[soa_index] = LLVMBuildFDiv(ctx->gallivm.builder, lp_build_const_float(&(ctx->gallivm), 1.0f), w_coord, ""); } break; case TGSI_SEMANTIC_COLOR: if (ctx->two_side) { unsigned front_location, back_location; unsigned back_reg = ctx->r600_inputs[input_index] .potential_back_facing_reg; if (ctx->chip_class >= EVERGREEN) { front_location = 4 * ctx->r600_inputs[input_index].lds_pos + chan; back_location = 4 * ctx->r600_inputs[back_reg].lds_pos + chan; } else { front_location = soa_index + 4 * ctx->reserved_reg_count; back_location = radeon_llvm_reg_index_soa( ctx->r600_inputs[back_reg].gpr, chan); } ctx->inputs[soa_index] = llvm_face_select_helper(ctx, intrinsics, 4 * ctx->face_input, front_location, back_location); break; } default: { unsigned location; if (ctx->chip_class >= EVERGREEN) { location = 4 * ctx->r600_inputs[input_index].lds_pos + chan; } else { location = soa_index + 4 * ctx->reserved_reg_count; } /* The * 4 is assuming that we are in soa mode. */ ctx->inputs[soa_index] = llvm_load_input_helper(ctx, intrinsics, location); break; } } } }