void lpx_eval_b_dual(LPX *lp, double row_dual[], double col_dual[]) { int i, j, k, m, n, len, *ind; double dj, *cB, *pi, *val; if (!lpx_is_b_avail(lp)) xfault("lpx_eval_b_dual: LP basis is not available\n"); m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); /* store zero reduced costs of basic auxiliary and structural variables and build the vector cB of objective coefficients at basic variables */ cB = xcalloc(1+m, sizeof(double)); for (i = 1; i <= m; i++) { k = lpx_get_b_info(lp, i); /* xB[i] is k-th original variable */ xassert(1 <= k && k <= m+n); if (k <= m) { row_dual[k] = 0.0; cB[i] = 0.0; } else { col_dual[k-m] = 0.0; cB[i] = lpx_get_obj_coef(lp, k-m); } } /* solve the system B'*pi = cB to compute the vector pi */ pi = cB, lpx_btran(lp, pi); /* compute reduced costs of non-basic auxiliary variables */ for (i = 1; i <= m; i++) { if (lpx_get_row_stat(lp, i) != LPX_BS) row_dual[i] = - pi[i]; } /* compute reduced costs of non-basic structural variables */ ind = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { if (lpx_get_col_stat(lp, j) != LPX_BS) { dj = lpx_get_obj_coef(lp, j); len = lpx_get_mat_col(lp, j, ind, val); for (k = 1; k <= len; k++) dj += val[k] * pi[ind[k]]; col_dual[j] = dj; } } xfree(ind); xfree(val); xfree(cB); return; }
int lpx_write_cpxlp(LPX *lp, const char *fname) { /* write problem data in CPLEX LP format */ FILE *fp; int nrows, ncols, i, j, t, len, typx, flag, kind, *ind; double lb, ub, temp, *val; char line[1023+1], term[1023+1], rname[255+1], cname[255+1]; print("lpx_write_cpxlp: writing problem data to `%s'...", fname); /* open the output text file */ fp = xfopen(fname, "w"); if (fp == NULL) { print("lpx_write_cpxlp: unable to create `%s' - %s", fname, strerror(errno)); goto fail; } /* determine the number of rows and columns */ nrows = lpx_get_num_rows(lp); ncols = lpx_get_num_cols(lp); /* the problem should contain at least one row and one column */ if (!(nrows > 0 && ncols > 0)) fault("lpx_write_cpxlp: problem has no rows/columns"); /* write problem name */ { const char *name = lpx_get_prob_name(lp); if (name == NULL) name = "Unknown"; fprintf(fp, "\\* Problem: %s *\\\n", name); fprintf(fp, "\n"); } /* allocate working arrays */ ind = xcalloc(1+ncols, sizeof(int)); val = xcalloc(1+ncols, sizeof(double)); /* write the objective function definition and the constraints section */ for (i = 0; i <= nrows; i++) { if (i == 0) { switch (lpx_get_obj_dir(lp)) { case LPX_MIN: fprintf(fp, "Minimize\n"); break; case LPX_MAX: fprintf(fp, "Maximize\n"); break; default: xassert(lp != lp); } } else if (i == 1) { temp = lpx_get_obj_coef(lp, 0); if (temp != 0.0) fprintf(fp, "\\* constant term = %.*g *\\\n", DBL_DIG, temp); fprintf(fp, "\n"); fprintf(fp, "Subject To\n"); } row_name(lp, i, rname); if (i == 0) { len = 0; for (j = 1; j <= ncols; j++) { temp = lpx_get_obj_coef(lp, j); if (temp != 0.0) len++, ind[len] = j, val[len] = temp; } } else { lpx_get_row_bnds(lp, i, &typx, &lb, &ub); if (typx == LPX_FR) continue; len = lpx_get_mat_row(lp, i, ind, val); } flag = 0; more: if (!flag) sprintf(line, " %s:", rname); else sprintf(line, " %*s ", strlen(rname), ""); for (t = 1; t <= len; t++) { col_name(lp, ind[t], cname); if (val[t] == +1.0) sprintf(term, " + %s", cname); else if (val[t] == -1.0) sprintf(term, " - %s", cname); else if (val[t] > 0.0) sprintf(term, " + %.*g %s", DBL_DIG, +val[t], cname); else if (val[t] < 0.0) sprintf(term, " - %.*g %s", DBL_DIG, -val[t], cname); else xassert(lp != lp); if (strlen(line) + strlen(term) > 72) fprintf(fp, "%s\n", line), line[0] = '\0'; strcat(line, term); } if (len == 0) { /* empty row */ sprintf(term, " 0 %s", col_name(lp, 1, cname)); strcat(line, term); } if (i > 0) { switch (typx) { case LPX_LO: case LPX_DB: sprintf(term, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: sprintf(term, " <= %.*g", DBL_DIG, ub); break; case LPX_FX: sprintf(term, " = %.*g", DBL_DIG, lb); break; default: xassert(typx != typx); } if (strlen(line) + strlen(term) > 72) fprintf(fp, "%s\n", line), line[0] = '\0'; strcat(line, term); } fprintf(fp, "%s\n", line); if (i > 0 && typx == LPX_DB) { /* double-bounded row needs a copy for its upper bound */ flag = 1; typx = LPX_UP; goto more; } } /* free working arrays */ xfree(ind); xfree(val); /* write the bounds section */ flag = 0; for (j = 1; j <= ncols; j++) { col_name(lp, j, cname); lpx_get_col_bnds(lp, j, &typx, &lb, &ub); if (typx == LPX_LO && lb == 0.0) continue; if (!flag) { fprintf(fp, "\n"); fprintf(fp, "Bounds\n"); flag = 1; } switch (typx) { case LPX_FR: fprintf(fp, " %s free\n", cname); break; case LPX_LO: fprintf(fp, " %s >= %.*g\n", cname, DBL_DIG, lb); break; case LPX_UP: fprintf(fp, " %s <= %.*g\n", cname, DBL_DIG, ub); break; case LPX_DB: fprintf(fp, " %.*g <= %s <= %.*g\n", DBL_DIG, lb, cname, DBL_DIG, ub); break; case LPX_FX: fprintf(fp, " %s = %.*g\n", cname, DBL_DIG, lb); break; default: xassert(typx != typx); } } /* write the general section */ if (lpx_get_class(lp) == LPX_MIP) { flag = 0; for (j = 1; j <= ncols; j++) { kind = lpx_get_col_kind(lp, j); if (kind == LPX_CV) continue; xassert(kind == LPX_IV); if (!flag) { fprintf(fp, "\n"); fprintf(fp, "Generals\n"); flag = 1; } fprintf(fp, " %s\n", col_name(lp, j, cname)); } } /* write the end keyword */ fprintf(fp, "\n"); fprintf(fp, "End\n"); /* close the output text file */ fflush(fp); if (ferror(fp)) { print("lpx_write_cpxlp: write error on `%s' - %s", fname, strerror(errno)); goto fail; } xfclose(fp); /* return to the calling program */ return 0; fail: /* the operation failed */ if (fp != NULL) xfclose(fp); return 1; }
int lpx_print_prob(LPX *lp, const char *fname) { XFILE *fp; int m, n, mip, i, j, len, t, type, *ndx; double coef, lb, ub, *val; char *str, name[255+1]; xprintf("lpx_write_prob: writing problem data to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_write_prob: unable to create `%s' - %s\n", fname, strerror(errno)); goto fail; } m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); mip = (lpx_get_class(lp) == LPX_MIP); str = (void *)lpx_get_prob_name(lp); xfprintf(fp, "Problem: %s\n", str == NULL ? "(unnamed)" : str); xfprintf(fp, "Class: %s\n", !mip ? "LP" : "MIP"); xfprintf(fp, "Rows: %d\n", m); if (!mip) xfprintf(fp, "Columns: %d\n", n); else xfprintf(fp, "Columns: %d (%d integer, %d binary)\n", n, lpx_get_num_int(lp), lpx_get_num_bin(lp)); xfprintf(fp, "Non-zeros: %d\n", lpx_get_num_nz(lp)); xfprintf(fp, "\n"); xfprintf(fp, "*** OBJECTIVE FUNCTION ***\n"); xfprintf(fp, "\n"); switch (lpx_get_obj_dir(lp)) { case LPX_MIN: xfprintf(fp, "Minimize:"); break; case LPX_MAX: xfprintf(fp, "Maximize:"); break; default: xassert(lp != lp); } str = (void *)lpx_get_obj_name(lp); xfprintf(fp, " %s\n", str == NULL ? "(unnamed)" : str); coef = lpx_get_obj_coef(lp, 0); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(constant term)"); for (i = 1; i <= m; i++) #if 0 { coef = lpx_get_row_coef(lp, i); #else { coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, row_name(lp, i, name)); } for (j = 1; j <= n; j++) { coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, col_name(lp, j, name)); } xfprintf(fp, "\n"); xfprintf(fp, "*** ROWS (CONSTRAINTS) ***\n"); ndx = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { xfprintf(fp, "\n"); xfprintf(fp, "Row %d: %s", i, row_name(lp, i, name)); lpx_get_row_bnds(lp, i, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); #if 0 coef = lpx_get_row_coef(lp, i); #else coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_row(lp, i, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], col_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "*** COLUMNS (VARIABLES) ***\n"); ndx = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { xfprintf(fp, "\n"); xfprintf(fp, "Col %d: %s", j, col_name(lp, j, name)); if (mip) { switch (lpx_get_col_kind(lp, j)) { case LPX_CV: break; case LPX_IV: xfprintf(fp, " integer"); break; default: xassert(lp != lp); } } lpx_get_col_bnds(lp, j, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_col(lp, j, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], row_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_write_prob: write error on `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; } #undef row_name #undef col_name /*---------------------------------------------------------------------- -- lpx_print_sol - write LP problem solution in printable format. -- -- *Synopsis* -- -- #include "glplpx.h" -- int lpx_print_sol(LPX *lp, char *fname); -- -- *Description* -- -- The routine lpx_print_sol writes the current basic solution of an LP -- problem, which is specified by the pointer lp, to a text file, whose -- name is the character string fname, in printable format. -- -- Information reported by the routine lpx_print_sol is intended mainly -- for visual analysis. -- -- *Returns* -- -- If the operation was successful, the routine returns zero. Otherwise -- the routine prints an error message and returns non-zero. */ int lpx_print_sol(LPX *lp, const char *fname) { XFILE *fp; int what, round; xprintf( "lpx_print_sol: writing LP problem solution to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_print_sol: can't create `%s' - %s\n", fname, strerror(errno)); goto fail; } /* problem name */ { const char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; xfprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); xfprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); xfprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); xfprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); xfprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* objective function */ { char *name; int dir; double obj; name = (void *)lpx_get_obj_name(lp); dir = lpx_get_obj_dir(lp); obj = lpx_get_obj_val(lp); xfprintf(fp, "%-12s%s%s%.10g %s\n", "Objective:", name == NULL ? "" : name, name == NULL ? "" : " = ", obj, dir == LPX_MIN ? "(MINimum)" : dir == LPX_MAX ? "(MAXimum)" : "(" "???" ")"); } /* main sheet */ for (what = 1; what <= 2; what++) { int mn, ij; xfprintf(fp, "\n"); xfprintf(fp, " No. %-12s St Activity Lower bound Upp" "er bound Marginal\n", what == 1 ? " Row name" : "Column name"); xfprintf(fp, "------ ------------ -- ------------- -----------" "-- ------------- -------------\n"); mn = (what == 1 ? lpx_get_num_rows(lp) : lpx_get_num_cols(lp)); for (ij = 1; ij <= mn; ij++) { const char *name; int typx, tagx; double lb, ub, vx, dx; if (what == 1) { name = lpx_get_row_name(lp, ij); if (name == NULL) name = ""; lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_row_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } else { name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } /* row/column ordinal number */ xfprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) xfprintf(fp, "%-12s ", name); else xfprintf(fp, "%s\n%20s", name, ""); /* row/column status */ xfprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* row/column primal activity */ xfprintf(fp, "%13.6g ", vx); /* row/column lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) xfprintf(fp, "%13.6g ", lb); else xfprintf(fp, "%13s ", ""); /* row/column upper bound */ if (typx == LPX_UP || typx == LPX_DB) xfprintf(fp, "%13.6g ", ub); else if (typx == LPX_FX) xfprintf(fp, "%13s ", "="); else xfprintf(fp, "%13s ", ""); /* row/column dual activity */ if (tagx != LPX_BS) { if (dx == 0.0) xfprintf(fp, "%13s", "< eps"); else xfprintf(fp, "%13.6g", dx); } /* end of line */ xfprintf(fp, "\n"); } } xfprintf(fp, "\n"); #if 1 if (lpx_get_prim_stat(lp) != LPX_P_UNDEF && lpx_get_dual_stat(lp) != LPX_D_UNDEF) { int m = lpx_get_num_rows(lp); LPXKKT kkt; xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n\n"); lpx_check_kkt(lp, 1, &kkt); xfprintf(fp, "KKT.PE: max.abs.err. = %.2e on row %d\n", kkt.pe_ae_max, kkt.pe_ae_row); xfprintf(fp, " max.rel.err. = %.2e on row %d\n", kkt.pe_re_max, kkt.pe_re_row); switch (kkt.pe_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.PB: max.abs.err. = %.2e on %s %d\n", kkt.pb_ae_max, kkt.pb_ae_ind <= m ? "row" : "column", kkt.pb_ae_ind <= m ? kkt.pb_ae_ind : kkt.pb_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.pb_re_max, kkt.pb_re_ind <= m ? "row" : "column", kkt.pb_re_ind <= m ? kkt.pb_re_ind : kkt.pb_re_ind - m); switch (kkt.pb_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DE: max.abs.err. = %.2e on column %d\n", kkt.de_ae_max, kkt.de_ae_col); xfprintf(fp, " max.rel.err. = %.2e on column %d\n", kkt.de_re_max, kkt.de_re_col); switch (kkt.de_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DB: max.abs.err. = %.2e on %s %d\n", kkt.db_ae_max, kkt.db_ae_ind <= m ? "row" : "column", kkt.db_ae_ind <= m ? kkt.db_ae_ind : kkt.db_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.db_re_max, kkt.db_re_ind <= m ? "row" : "column", kkt.db_re_ind <= m ? kkt.db_re_ind : kkt.db_re_ind - m); switch (kkt.db_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); } #endif #if 1 if (lpx_get_status(lp) == LPX_UNBND) { int m = lpx_get_num_rows(lp); int k = lpx_get_ray_info(lp); xfprintf(fp, "Unbounded ray: %s %d\n", k <= m ? "row" : "column", k <= m ? k : k - m); xfprintf(fp, "\n"); } #endif xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_print_sol: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; }
static void restore(struct dsa *dsa, double row_pval[], double row_dval[], double col_pval[], double col_dval[]) { /* restore solution of original LP */ LPX *lp = dsa->lp; int orig_m = dsa->orig_m; int orig_n = dsa->orig_n; int *ref = dsa->ref; int m = dsa->m; double *x = dsa->x; double *y = dsa->y; int dir = lpx_get_obj_dir(lp); int i, j, k, type, t, len, *ind; double lb, ub, rii, sjj, temp, *val; /* compute primal values of structural variables */ for (k = 1; k <= orig_n; k++) { j = ref[orig_m+k]; type = lpx_get_col_type(lp, k); sjj = lpx_get_sjj(lp, k); lb = lpx_get_col_lb(lp, k) / sjj; ub = lpx_get_col_ub(lp, k) / sjj; switch (type) { case LPX_FR: /* source: -inf < x < +inf */ /* result: x = x' - x'', x' >= 0, x'' >= 0 */ col_pval[k] = x[j] - x[j+1]; break; case LPX_LO: /* source: lb <= x < +inf */ /* result: x = lb + x', x' >= 0 */ col_pval[k] = lb + x[j]; break; case LPX_UP: /* source: -inf < x <= ub */ /* result: x = ub - x', x' >= 0 */ col_pval[k] = ub - x[j]; break; case LPX_DB: /* source: lb <= x <= ub */ /* result: x = lb + x', x' + x'' = ub - lb */ col_pval[k] = lb + x[j]; break; case LPX_FX: /* source: x = lb */ /* result: just substitute */ col_pval[k] = lb; break; default: insist(type != type); } } /* compute primal values of auxiliary variables */ /* xR = A * xS */ ind = ucalloc(1+orig_n, sizeof(int)); val = ucalloc(1+orig_n, sizeof(double)); for (k = 1; k <= orig_m; k++) { rii = lpx_get_rii(lp, k); temp = 0.0; len = lpx_get_mat_row(lp, k, ind, val); for (t = 1; t <= len; t++) { sjj = lpx_get_sjj(lp, ind[t]); temp += (rii * val[t] * sjj) * col_pval[ind[t]]; } row_pval[k] = temp; } ufree(ind); ufree(val); /* compute dual values of auxiliary variables */ for (k = 1; k <= orig_m; k++) { type = lpx_get_row_type(lp, k); i = ref[k]; switch (type) { case LPX_FR: insist(i == 0); row_dval[k] = 0.0; break; case LPX_LO: case LPX_UP: case LPX_DB: case LPX_FX: insist(1 <= i && i <= m); row_dval[k] = (dir == LPX_MIN ? +1.0 : -1.0) * y[i]; break; default: insist(type != type); } } /* compute dual values of structural variables */ /* dS = cS - A' * (dR - cR) */ ind = ucalloc(1+orig_m, sizeof(int)); val = ucalloc(1+orig_m, sizeof(double)); for (k = 1; k <= orig_n; k++) { sjj = lpx_get_sjj(lp, k); temp = lpx_get_obj_coef(lp, k) / sjj; len = lpx_get_mat_col(lp, k, ind, val); for (t = 1; t <= len; t++) { rii = lpx_get_rii(lp, ind[t]); temp -= (rii * val[t] * sjj) * row_dval[ind[t]]; } col_dval[k] = temp; } ufree(ind); ufree(val); /* unscale solution of original LP */ for (i = 1; i <= orig_m; i++) { rii = lpx_get_rii(lp, i); row_pval[i] /= rii; row_dval[i] *= rii; } for (j = 1; j <= orig_n; j++) { sjj = lpx_get_sjj(lp, j); col_pval[j] *= sjj; col_dval[j] /= sjj; } return; }
static void transform(struct dsa *dsa) { /* transform original LP to standard formulation */ LPX *lp = dsa->lp; int orig_m = dsa->orig_m; int orig_n = dsa->orig_n; int *ref = dsa->ref; int m = dsa->m; int n = dsa->n; double *b = dsa->b; double *c = dsa->c; int i, j, k, type, t, ii, len, *ind; double lb, ub, coef, rii, sjj, *val; /* initialize components of transformed LP */ dsa->ne = 0; for (i = 1; i <= m; i++) b[i] = 0.0; c[0] = lpx_get_obj_coef(lp, 0); for (j = 1; j <= n; j++) c[j] = 0.0; /* i and j are, respectively, ordinal number of current row and ordinal number of current column in transformed LP */ i = j = 0; /* transform rows (auxiliary variables) */ for (k = 1; k <= orig_m; k++) { type = lpx_get_row_type(lp, k); rii = lpx_get_rii(lp, k); lb = lpx_get_row_lb(lp, k) * rii; ub = lpx_get_row_ub(lp, k) * rii; switch (type) { case LPX_FR: /* source: -inf < (L.F.) < +inf */ /* result: ignore free row */ ref[k] = 0; break; case LPX_LO: /* source: lb <= (L.F.) < +inf */ /* result: (L.F.) - x' = lb, x' >= 0 */ i++; j++; ref[k] = i; new_coef(dsa, i, j, -1.0); b[i] = lb; break; case LPX_UP: /* source: -inf < (L.F.) <= ub */ /* result: (L.F.) + x' = ub, x' >= 0 */ i++; j++; ref[k] = i; new_coef(dsa, i, j, +1.0); b[i] = ub; break; case LPX_DB: /* source: lb <= (L.F.) <= ub */ /* result: (L.F.) - x' = lb, x' + x'' = ub - lb */ i++; j++; ref[k] = i; new_coef(dsa, i, j, -1.0); b[i] = lb; i++; new_coef(dsa, i, j, +1.0); j++; new_coef(dsa, i, j, +1.0); b[i] = ub - lb; break; case LPX_FX: /* source: (L.F.) = lb */ /* result: (L.F.) = lb */ i++; ref[k] = i; b[i] = lb; break; default: insist(type != type); } } /* transform columns (structural variables) */ ind = ucalloc(1+orig_m, sizeof(int)); val = ucalloc(1+orig_m, sizeof(double)); for (k = 1; k <= orig_n; k++) { type = lpx_get_col_type(lp, k); sjj = lpx_get_sjj(lp, k); lb = lpx_get_col_lb(lp, k) / sjj; ub = lpx_get_col_ub(lp, k) / sjj; coef = lpx_get_obj_coef(lp, k) * sjj; len = lpx_get_mat_col(lp, k, ind, val); for (t = 1; t <= len; t++) val[t] *= (lpx_get_rii(lp, ind[t]) * sjj); switch (type) { case LPX_FR: /* source: -inf < x < +inf */ /* result: x = x' - x'', x' >= 0, x'' >= 0 */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) new_coef(dsa, ii, j, +val[t]); } c[j] = +coef; j++; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) new_coef(dsa, ii, j, -val[t]); } c[j] = -coef; break; case LPX_LO: /* source: lb <= x < +inf */ /* result: x = lb + x', x' >= 0 */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) { new_coef(dsa, ii, j, val[t]); b[ii] -= val[t] * lb; } } c[j] = +coef; c[0] += c[j] * lb; break; case LPX_UP: /* source: -inf < x <= ub */ /* result: x = ub - x', x' >= 0 */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) { new_coef(dsa, ii, j, -val[t]); b[ii] -= val[t] * ub; } } c[j] = -coef; c[0] -= c[j] * ub; break; case LPX_DB: /* source: lb <= x <= ub */ /* result: x = lb + x', x' + x'' = ub - lb */ j++; ref[orig_m+k] = j; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) { new_coef(dsa, ii, j, val[t]); b[ii] -= val[t] * lb; } } c[j] = +coef; c[0] += c[j] * lb; i++; new_coef(dsa, i, j, +1.0); j++; new_coef(dsa, i, j, +1.0); b[i] = ub - lb; break; case LPX_FX: /* source: x = lb */ /* result: just substitute */ ref[orig_m+k] = 0; for (t = 1; t <= len; t++) { ii = ref[ind[t]]; if (ii != 0) b[ii] -= val[t] * lb; } c[0] += coef * lb; break; default: insist(type != type); } } ufree(ind); ufree(val); /* end of transformation */ insist(i == m && j == n); /* change the objective sign in case of maximization */ if (lpx_get_obj_dir(lp) == LPX_MAX) for (j = 0; j <= n; j++) c[j] = -c[j]; return; }
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt) { int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); #if 0 /* 21/XII-2003 */ int *typx = lp->typx; double *lb = lp->lb; double *ub = lp->ub; double *rs = lp->rs; #else int typx, tagx; double lb, ub; #endif int dir = lpx_get_obj_dir(lp); #if 0 /* 21/XII-2003 */ double *coef = lp->coef; #endif #if 0 /* 22/XII-2003 */ int *A_ptr = lp->A->ptr; int *A_len = lp->A->len; int *A_ndx = lp->A->ndx; double *A_val = lp->A->val; #endif int *A_ndx; double *A_val; #if 0 /* 21/XII-2003 */ int *tagx = lp->tagx; int *posx = lp->posx; int *indx = lp->indx; double *bbar = lp->bbar; double *cbar = lp->cbar; #endif int beg, end, i, j, k, t; double cR_i, cS_j, c_k, xR_i, xS_j, x_k, dR_i, dS_j, d_k; double g_i, h_k, u_j, v_k, temp, rii, sjj; if (lpx_get_prim_stat(lp) == LPX_P_UNDEF) xfault("lpx_check_kkt: primal basic solution is undefined\n"); if (lpx_get_dual_stat(lp) == LPX_D_UNDEF) xfault("lpx_check_kkt: dual basic solution is undefined\n"); /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding row indices for the condition (KKT.PE) */ kkt->pe_ae_max = 0.0, kkt->pe_ae_row = 0; kkt->pe_re_max = 0.0, kkt->pe_re_row = 0; A_ndx = xcalloc(1+n, sizeof(int)); A_val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { /* determine xR[i] */ #if 0 /* 21/XII-2003 */ if (tagx[i] == LPX_BS) xR_i = bbar[posx[i]]; else xR_i = spx_eval_xn_j(lp, posx[i] - m); #else lpx_get_row_info(lp, i, NULL, &xR_i, NULL); xR_i *= lpx_get_rii(lp, i); #endif /* g[i] := xR[i] */ g_i = xR_i; /* g[i] := g[i] - (i-th row of A) * xS */ beg = 1; end = lpx_get_mat_row(lp, i, A_ndx, A_val); for (t = beg; t <= end; t++) { j = m + A_ndx[t]; /* a[i,j] != 0 */ /* determine xS[j] */ #if 0 /* 21/XII-2003 */ if (tagx[j] == LPX_BS) xS_j = bbar[posx[j]]; else xS_j = spx_eval_xn_j(lp, posx[j] - m); #else lpx_get_col_info(lp, j-m, NULL, &xS_j, NULL); xS_j /= lpx_get_sjj(lp, j-m); #endif /* g[i] := g[i] - a[i,j] * xS[j] */ rii = lpx_get_rii(lp, i); sjj = lpx_get_sjj(lp, j-m); g_i -= (rii * A_val[t] * sjj) * xS_j; } /* unscale xR[i] and g[i] (if required) */ if (!scaled) { rii = lpx_get_rii(lp, i); xR_i /= rii, g_i /= rii; } /* determine absolute error */ temp = fabs(g_i); if (kkt->pe_ae_max < temp) kkt->pe_ae_max = temp, kkt->pe_ae_row = i; /* determine relative error */ temp /= (1.0 + fabs(xR_i)); if (kkt->pe_re_max < temp) kkt->pe_re_max = temp, kkt->pe_re_row = i; } xfree(A_ndx); xfree(A_val); /* estimate the solution quality */ if (kkt->pe_re_max <= 1e-9) kkt->pe_quality = 'H'; else if (kkt->pe_re_max <= 1e-6) kkt->pe_quality = 'M'; else if (kkt->pe_re_max <= 1e-3) kkt->pe_quality = 'L'; else kkt->pe_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding variable indices for the condition (KKT.PB) */ kkt->pb_ae_max = 0.0, kkt->pb_ae_ind = 0; kkt->pb_re_max = 0.0, kkt->pb_re_ind = 0; for (k = 1; k <= m+n; k++) { /* determine x[k] */ if (k <= m) { lpx_get_row_bnds(lp, k, &typx, &lb, &ub); rii = lpx_get_rii(lp, k); lb *= rii; ub *= rii; lpx_get_row_info(lp, k, &tagx, &x_k, NULL); x_k *= rii; } else { lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub); sjj = lpx_get_sjj(lp, k-m); lb /= sjj; ub /= sjj; lpx_get_col_info(lp, k-m, &tagx, &x_k, NULL); x_k /= sjj; } /* skip non-basic variable */ if (tagx != LPX_BS) continue; /* compute h[k] */ h_k = 0.0; switch (typx) { case LPX_FR: break; case LPX_LO: if (x_k < lb) h_k = x_k - lb; break; case LPX_UP: if (x_k > ub) h_k = x_k - ub; break; case LPX_DB: case LPX_FX: if (x_k < lb) h_k = x_k - lb; if (x_k > ub) h_k = x_k - ub; break; default: xassert(typx != typx); } /* unscale x[k] and h[k] (if required) */ if (!scaled) { if (k <= m) { rii = lpx_get_rii(lp, k); x_k /= rii, h_k /= rii; } else { sjj = lpx_get_sjj(lp, k-m); x_k *= sjj, h_k *= sjj; } } /* determine absolute error */ temp = fabs(h_k); if (kkt->pb_ae_max < temp) kkt->pb_ae_max = temp, kkt->pb_ae_ind = k; /* determine relative error */ temp /= (1.0 + fabs(x_k)); if (kkt->pb_re_max < temp) kkt->pb_re_max = temp, kkt->pb_re_ind = k; } /* estimate the solution quality */ if (kkt->pb_re_max <= 1e-9) kkt->pb_quality = 'H'; else if (kkt->pb_re_max <= 1e-6) kkt->pb_quality = 'M'; else if (kkt->pb_re_max <= 1e-3) kkt->pb_quality = 'L'; else kkt->pb_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding column indices for the condition (KKT.DE) */ kkt->de_ae_max = 0.0, kkt->de_ae_col = 0; kkt->de_re_max = 0.0, kkt->de_re_col = 0; A_ndx = xcalloc(1+m, sizeof(int)); A_val = xcalloc(1+m, sizeof(double)); for (j = m+1; j <= m+n; j++) { /* determine cS[j] */ #if 0 /* 21/XII-2003 */ cS_j = coef[j]; #else sjj = lpx_get_sjj(lp, j-m); cS_j = lpx_get_obj_coef(lp, j-m) * sjj; #endif /* determine dS[j] */ #if 0 /* 21/XII-2003 */ if (tagx[j] == LPX_BS) dS_j = 0.0; else dS_j = cbar[posx[j] - m]; #else lpx_get_col_info(lp, j-m, NULL, NULL, &dS_j); dS_j *= sjj; #endif /* u[j] := dS[j] - cS[j] */ u_j = dS_j - cS_j; /* u[j] := u[j] + (j-th column of A) * (dR - cR) */ beg = 1; end = lpx_get_mat_col(lp, j-m, A_ndx, A_val); for (t = beg; t <= end; t++) { i = A_ndx[t]; /* a[i,j] != 0 */ /* determine cR[i] */ #if 0 /* 21/XII-2003 */ cR_i = coef[i]; #else cR_i = 0.0; #endif /* determine dR[i] */ #if 0 /* 21/XII-2003 */ if (tagx[i] == LPX_BS) dR_i = 0.0; else dR_i = cbar[posx[i] - m]; #else lpx_get_row_info(lp, i, NULL, NULL, &dR_i); rii = lpx_get_rii(lp, i); dR_i /= rii; #endif /* u[j] := u[j] + a[i,j] * (dR[i] - cR[i]) */ rii = lpx_get_rii(lp, i); sjj = lpx_get_sjj(lp, j-m); u_j += (rii * A_val[t] * sjj) * (dR_i - cR_i); } /* unscale cS[j], dS[j], and u[j] (if required) */ if (!scaled) { sjj = lpx_get_sjj(lp, j-m); cS_j /= sjj, dS_j /= sjj, u_j /= sjj; } /* determine absolute error */ temp = fabs(u_j); if (kkt->de_ae_max < temp) kkt->de_ae_max = temp, kkt->de_ae_col = j - m; /* determine relative error */ temp /= (1.0 + fabs(dS_j - cS_j)); if (kkt->de_re_max < temp) kkt->de_re_max = temp, kkt->de_re_col = j - m; } xfree(A_ndx); xfree(A_val); /* estimate the solution quality */ if (kkt->de_re_max <= 1e-9) kkt->de_quality = 'H'; else if (kkt->de_re_max <= 1e-6) kkt->de_quality = 'M'; else if (kkt->de_re_max <= 1e-3) kkt->de_quality = 'L'; else kkt->de_quality = '?'; /*--------------------------------------------------------------*/ /* compute largest absolute and relative errors and corresponding variable indices for the condition (KKT.DB) */ kkt->db_ae_max = 0.0, kkt->db_ae_ind = 0; kkt->db_re_max = 0.0, kkt->db_re_ind = 0; for (k = 1; k <= m+n; k++) { /* determine c[k] */ #if 0 /* 21/XII-2003 */ c_k = coef[k]; #else if (k <= m) c_k = 0.0; else { sjj = lpx_get_sjj(lp, k-m); c_k = lpx_get_obj_coef(lp, k-m) / sjj; } #endif /* determine d[k] */ #if 0 /* 21/XII-2003 */ d_k = cbar[j-m]; #else if (k <= m) { lpx_get_row_info(lp, k, &tagx, NULL, &d_k); rii = lpx_get_rii(lp, k); d_k /= rii; } else { lpx_get_col_info(lp, k-m, &tagx, NULL, &d_k); sjj = lpx_get_sjj(lp, k-m); d_k *= sjj; } #endif /* skip basic variable */ if (tagx == LPX_BS) continue; /* compute v[k] */ v_k = 0.0; switch (tagx) { case LPX_NL: switch (dir) { case LPX_MIN: if (d_k < 0.0) v_k = d_k; break; case LPX_MAX: if (d_k > 0.0) v_k = d_k; break; default: xassert(dir != dir); } break; case LPX_NU: switch (dir) { case LPX_MIN: if (d_k > 0.0) v_k = d_k; break; case LPX_MAX: if (d_k < 0.0) v_k = d_k; break; default: xassert(dir != dir); } break; case LPX_NF: v_k = d_k; break; case LPX_NS: break; default: xassert(tagx != tagx); } /* unscale c[k], d[k], and v[k] (if required) */ if (!scaled) { if (k <= m) { rii = lpx_get_rii(lp, k); c_k *= rii, d_k *= rii, v_k *= rii; } else { sjj = lpx_get_sjj(lp, k-m); c_k /= sjj, d_k /= sjj, v_k /= sjj; } } /* determine absolute error */ temp = fabs(v_k); if (kkt->db_ae_max < temp) kkt->db_ae_max = temp, kkt->db_ae_ind = k; /* determine relative error */ temp /= (1.0 + fabs(d_k - c_k)); if (kkt->db_re_max < temp) kkt->db_re_max = temp, kkt->db_re_ind = k; } /* estimate the solution quality */ if (kkt->db_re_max <= 1e-9) kkt->db_quality = 'H'; else if (kkt->db_re_max <= 1e-6) kkt->db_quality = 'M'; else if (kkt->db_re_max <= 1e-3) kkt->db_quality = 'L'; else kkt->db_quality = '?'; /* complementary slackness is always satisfied by definition for any basic solution, so not checked */ kkt->cs_ae_max = 0.0, kkt->cs_ae_ind = 0; kkt->cs_re_max = 0.0, kkt->cs_re_ind = 0; kkt->cs_quality = 'H'; return; }
int lpx_integer(LPX *mip) { int m = lpx_get_num_rows(mip); int n = lpx_get_num_cols(mip); MIPTREE *tree; LPX *lp; int ret, i, j, stat, type, len, *ind; double lb, ub, coef, *val; #if 0 /* the problem must be of MIP class */ if (lpx_get_class(mip) != LPX_MIP) { print("lpx_integer: problem is not of MIP class"); ret = LPX_E_FAULT; goto done; } #endif /* an optimal solution of LP relaxation must be known */ if (lpx_get_status(mip) != LPX_OPT) { print("lpx_integer: optimal solution of LP relaxation required" ); ret = LPX_E_FAULT; goto done; } /* bounds of all integer variables must be integral */ for (j = 1; j <= n; j++) { if (lpx_get_col_kind(mip, j) != LPX_IV) continue; type = lpx_get_col_type(mip, j); if (type == LPX_LO || type == LPX_DB || type == LPX_FX) { lb = lpx_get_col_lb(mip, j); if (lb != floor(lb)) { print("lpx_integer: integer column %d has non-integer lo" "wer bound or fixed value %g", j, lb); ret = LPX_E_FAULT; goto done; } } if (type == LPX_UP || type == LPX_DB) { ub = lpx_get_col_ub(mip, j); if (ub != floor(ub)) { print("lpx_integer: integer column %d has non-integer up" "per bound %g", j, ub); ret = LPX_E_FAULT; goto done; } } } /* it seems all is ok */ if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2) print("Integer optimization begins..."); /* create the branch-and-bound tree */ tree = mip_create_tree(m, n, lpx_get_obj_dir(mip)); /* set up column kinds */ for (j = 1; j <= n; j++) tree->int_col[j] = (lpx_get_col_kind(mip, j) == LPX_IV); /* access the LP relaxation template */ lp = tree->lp; /* set up the objective function */ tree->int_obj = 1; for (j = 0; j <= tree->n; j++) { coef = lpx_get_obj_coef(mip, j); lpx_set_obj_coef(lp, j, coef); if (coef != 0.0 && !(tree->int_col[j] && coef == floor(coef))) tree->int_obj = 0; } if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2 && tree->int_obj) print("Objective function is integral"); /* set up the constraint matrix */ ind = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { len = lpx_get_mat_row(mip, i, ind, val); lpx_set_mat_row(lp, i, len, ind, val); } xfree(ind); xfree(val); /* set up scaling matrices */ for (i = 1; i <= m; i++) lpx_set_rii(lp, i, lpx_get_rii(mip, i)); for (j = 1; j <= n; j++) lpx_set_sjj(lp, j, lpx_get_sjj(mip, j)); /* revive the root subproblem */ mip_revive_node(tree, 1); /* set up row attributes for the root subproblem */ for (i = 1; i <= m; i++) { type = lpx_get_row_type(mip, i); lb = lpx_get_row_lb(mip, i); ub = lpx_get_row_ub(mip, i); stat = lpx_get_row_stat(mip, i); lpx_set_row_bnds(lp, i, type, lb, ub); lpx_set_row_stat(lp, i, stat); } /* set up column attributes for the root subproblem */ for (j = 1; j <= n; j++) { type = lpx_get_col_type(mip, j); lb = lpx_get_col_lb(mip, j); ub = lpx_get_col_ub(mip, j); stat = lpx_get_col_stat(mip, j); lpx_set_col_bnds(lp, j, type, lb, ub); lpx_set_col_stat(lp, j, stat); } /* freeze the root subproblem */ mip_freeze_node(tree); /* inherit some control parameters and statistics */ tree->msg_lev = lpx_get_int_parm(mip, LPX_K_MSGLEV); if (tree->msg_lev > 2) tree->msg_lev = 2; tree->branch = lpx_get_int_parm(mip, LPX_K_BRANCH); tree->btrack = lpx_get_int_parm(mip, LPX_K_BTRACK); tree->tol_int = lpx_get_real_parm(mip, LPX_K_TOLINT); tree->tol_obj = lpx_get_real_parm(mip, LPX_K_TOLOBJ); tree->tm_lim = lpx_get_real_parm(mip, LPX_K_TMLIM); lpx_set_int_parm(lp, LPX_K_BFTYPE, lpx_get_int_parm(mip, LPX_K_BFTYPE)); lpx_set_int_parm(lp, LPX_K_PRICE, lpx_get_int_parm(mip, LPX_K_PRICE)); lpx_set_real_parm(lp, LPX_K_RELAX, lpx_get_real_parm(mip, LPX_K_RELAX)); lpx_set_real_parm(lp, LPX_K_TOLBND, lpx_get_real_parm(mip, LPX_K_TOLBND)); lpx_set_real_parm(lp, LPX_K_TOLDJ, lpx_get_real_parm(mip, LPX_K_TOLDJ)); lpx_set_real_parm(lp, LPX_K_TOLPIV, lpx_get_real_parm(mip, LPX_K_TOLPIV)); lpx_set_int_parm(lp, LPX_K_ITLIM, lpx_get_int_parm(mip, LPX_K_ITLIM)); lpx_set_int_parm(lp, LPX_K_ITCNT, lpx_get_int_parm(mip, LPX_K_ITCNT)); /* reset the status of MIP solution */ lpx_put_mip_soln(mip, LPX_I_UNDEF, NULL, NULL); /* try solving the problem */ ret = mip_driver(tree); /* if an integer feasible solution has been found, copy it to the MIP problem object */ if (tree->found) lpx_put_mip_soln(mip, LPX_I_FEAS, &tree->mipx[0], &tree->mipx[m]); /* copy back statistics about spent resources */ lpx_set_real_parm(mip, LPX_K_TMLIM, tree->tm_lim); lpx_set_int_parm(mip, LPX_K_ITLIM, lpx_get_int_parm(lp, LPX_K_ITLIM)); lpx_set_int_parm(mip, LPX_K_ITCNT, lpx_get_int_parm(lp, LPX_K_ITCNT)); /* analyze exit code reported by the mip driver */ switch (ret) { case MIP_E_OK: if (tree->found) { if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("INTEGER OPTIMAL SOLUTION FOUND"); lpx_put_mip_soln(mip, LPX_I_OPT, NULL, NULL); } else { if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION"); lpx_put_mip_soln(mip, LPX_I_NOFEAS, NULL, NULL); } ret = LPX_E_OK; break; case MIP_E_ITLIM: if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED"); ret = LPX_E_ITLIM; break; case MIP_E_TMLIM: if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("TIME LIMIT EXCEEDED; SEARCH TERMINATED"); ret = LPX_E_TMLIM; break; case MIP_E_ERROR: if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 1) print("lpx_integer: cannot solve current LP relaxation"); ret = LPX_E_SING; break; default: xassert(ret != ret); } /* delete the branch-and-bound tree */ mip_delete_tree(tree); done: /* return to the application program */ return ret; }
void ipp_load_orig(IPP *ipp, LPX *orig) { IPPROW **row; IPPCOL *col; int i, j, k, type, len, *ind; double lb, ub, *val; /* save some information about the original problem */ ipp->orig_m = lpx_get_num_rows(orig); ipp->orig_n = lpx_get_num_cols(orig); ipp->orig_nnz = lpx_get_num_nz(orig); ipp->orig_dir = lpx_get_obj_dir(orig); /* allocate working arrays */ row = xcalloc(1+ipp->orig_m, sizeof(IPPROW *)); ind = xcalloc(1+ipp->orig_m, sizeof(int)); val = xcalloc(1+ipp->orig_m, sizeof(double)); /* copy rows of the original problem into the workspace */ for (i = 1; i <= ipp->orig_m; i++) { type = lpx_get_row_type(orig, i); if (type == LPX_FR || type == LPX_UP) lb = -DBL_MAX; else lb = lpx_get_row_lb(orig, i); if (type == LPX_FR || type == LPX_LO) ub = +DBL_MAX; else ub = lpx_get_row_ub(orig, i); row[i] = ipp_add_row(ipp, lb, ub); } /* copy columns of the original problem into the workspace; each column created in the workspace is assigned a reference number which is its ordinal number in the original problem */ for (j = 1; j <= ipp->orig_n; j++) { type = lpx_get_col_type(orig, j); if (type == LPX_FR || type == LPX_UP) lb = -DBL_MAX; else lb = lpx_get_col_lb(orig, j); if (type == LPX_FR || type == LPX_LO) ub = +DBL_MAX; else ub = lpx_get_col_ub(orig, j); col = ipp_add_col(ipp, lpx_get_col_kind(orig, j) == LPX_IV, lb, ub, lpx_get_obj_coef(orig, j)); len = lpx_get_mat_col(orig, j, ind, val); for (k = 1; k <= len; k++) ipp_add_aij(ipp, row[ind[k]], col, val[k]); } /* copy the constant term of the original objective function */ ipp->c0 = lpx_get_obj_coef(orig, 0); /* if the original problem is maximization, change the sign of the objective function, because the transformed problem to be processed by the presolver must be minimization */ if (ipp->orig_dir == LPX_MAX) { for (col = ipp->col_ptr; col != NULL; col = col->next) col->c = - col->c; ipp->c0 = - ipp->c0; } /* free working arrays */ xfree(row); xfree(ind); xfree(val); return; }
int lpx_warm_up(LPX *lp) { int m, n, j, k, ret, type, stat, p_stat, d_stat; double lb, ub, prim, dual, tol_bnd, tol_dj, dir; double *row_prim, *row_dual, *col_prim, *col_dual, sum; m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); /* reinvert the basis matrix, if necessary */ if (lpx_is_b_avail(lp)) ret = LPX_E_OK; else { if (m == 0 || n == 0) { ret = LPX_E_EMPTY; goto done; } #if 0 ret = lpx_invert(lp); switch (ret) { case 0: ret = LPX_E_OK; break; case 1: case 2: ret = LPX_E_SING; goto done; case 3: ret = LPX_E_BADB; goto done; default: xassert(ret != ret); } #else switch (glp_factorize(lp)) { case 0: ret = LPX_E_OK; break; case GLP_EBADB: ret = LPX_E_BADB; goto done; case GLP_ESING: case GLP_ECOND: ret = LPX_E_SING; goto done; default: xassert(lp != lp); } #endif } /* allocate working arrays */ row_prim = xcalloc(1+m, sizeof(double)); row_dual = xcalloc(1+m, sizeof(double)); col_prim = xcalloc(1+n, sizeof(double)); col_dual = xcalloc(1+n, sizeof(double)); /* compute primal basic solution components */ lpx_eval_b_prim(lp, row_prim, col_prim); /* determine primal status of basic solution */ tol_bnd = 3.0 * lpx_get_real_parm(lp, LPX_K_TOLBND); p_stat = LPX_P_FEAS; for (k = 1; k <= m+n; k++) { if (k <= m) { type = lpx_get_row_type(lp, k); lb = lpx_get_row_lb(lp, k); ub = lpx_get_row_ub(lp, k); prim = row_prim[k]; } else { type = lpx_get_col_type(lp, k-m); lb = lpx_get_col_lb(lp, k-m); ub = lpx_get_col_ub(lp, k-m); prim = col_prim[k-m]; } if (type == LPX_LO || type == LPX_DB || type == LPX_FX) { /* variable x[k] has lower bound */ if (prim < lb - tol_bnd * (1.0 + fabs(lb))) { p_stat = LPX_P_INFEAS; break; } } if (type == LPX_UP || type == LPX_DB || type == LPX_FX) { /* variable x[k] has upper bound */ if (prim > ub + tol_bnd * (1.0 + fabs(ub))) { p_stat = LPX_P_INFEAS; break; } } } /* compute dual basic solution components */ lpx_eval_b_dual(lp, row_dual, col_dual); /* determine dual status of basic solution */ tol_dj = 3.0 * lpx_get_real_parm(lp, LPX_K_TOLDJ); dir = (lpx_get_obj_dir(lp) == LPX_MIN ? +1.0 : -1.0); d_stat = LPX_D_FEAS; for (k = 1; k <= m+n; k++) { if (k <= m) { stat = lpx_get_row_stat(lp, k); dual = row_dual[k]; } else { stat = lpx_get_col_stat(lp, k-m); dual = col_dual[k-m]; } if (stat == LPX_BS || stat == LPX_NL || stat == LPX_NF) { /* reduced cost of x[k] must be non-negative (minimization) or non-positive (maximization) */ if (dir * dual < - tol_dj) { d_stat = LPX_D_INFEAS; break; } } if (stat == LPX_BS || stat == LPX_NU || stat == LPX_NF) { /* reduced cost of x[k] must be non-positive (minimization) or non-negative (maximization) */ if (dir * dual > + tol_dj) { d_stat = LPX_D_INFEAS; break; } } } /* store basic solution components */ p_stat = p_stat - LPX_P_UNDEF + GLP_UNDEF; d_stat = d_stat - LPX_D_UNDEF + GLP_UNDEF; sum = lpx_get_obj_coef(lp, 0); for (j = 1; j <= n; j++) sum += lpx_get_obj_coef(lp, j) * col_prim[j]; glp_put_solution(lp, 0, &p_stat, &d_stat, &sum, NULL, row_prim, row_dual, NULL, col_prim, col_dual); xassert(lpx_is_b_avail(lp)); /* free working arrays */ xfree(row_prim); xfree(row_dual); xfree(col_prim); xfree(col_dual); done: /* return to the calling program */ return ret; }
int lpx_print_sens_bnds(LPX *lp, char *fname) { FILE *fp = NULL; int what, round; print("lpx_print_sens_bnds: writing LP problem solution bounds to" " `%s'...", fname); #if 1 /* added by mao */ /* this routine needs factorization of the current basis matrix which, however, does not exist if the basic solution was obtained by the lp presolver; therefore we should warm up the basis to be sure that the factorization is valid (note that if the factorization exists, lpx_warm_up does nothing) */ lpx_warm_up(lp); #endif #if 0 /* 21/XII-2003 by mao */ if (lp->b_stat == LPX_B_UNDEF) #else if (!lpx_is_b_avail(lp)) #endif { print("lpx_print_sens_bnds: basis information not available (m" "ay be a presolve issue)"); goto fail; } fp = ufopen(fname, "w"); if (fp == NULL) { print("lpx_print_sens_bnds: can't create `%s' - %s", fname, strerror(errno)); goto fail; } /* problem name */ { char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; fprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); fprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); fprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); fprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); fprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* explanation/warning */ { fprintf(fp, "\nExplanation: This file presents amounts by whi" "ch objective coefficients,\n"); fprintf(fp, "constraint bounds, and variable bounds may be cha" "nged in the original problem\n"); fprintf(fp, "while the optimal basis remains the same. Note t" "hat the optimal solution\n"); fprintf(fp, "and objective value may change even though the ba" "sis remains the same.\n"); fprintf(fp, "These bounds assume that all parameters remain fi" "xed except the one in\n"); fprintf(fp, "question. If more than one parameter is changed," " it is possible for the\n"); fprintf(fp, "optimal basis to change even though each paramete" "r stays within its bounds.\n"); fprintf(fp, "For more details, consult a text on linear progra" "mming.\n"); } /* Sensitivity ranges if solution was optimal */ { int status; status = lpx_get_status(lp); if (status == LPX_OPT) { int i,j,k,m,n; int dir; double max_inc, max_dec; int *index; double *val; fprintf(fp, "\nObjective Coefficient Analysis\n"); fprintf(fp, " No. Column name St Value Max incr" "ease Max decrease\n"); fprintf(fp, "------ ------------ -- ------------- ---------" "---- ------------- \n"); n = lpx_get_num_cols(lp); m = lpx_get_num_rows(lp); dir = lpx_get_obj_dir(lp); /* allocate memory for index and val arrays */ index = ucalloc(1+n+m, sizeof(int)); val = ucalloc(1+n+m, sizeof(double)); for (j = 1; j <= n; j++) { char *name; int typx, tagx; double lb, ub, vx, dx; name = lpx_get_col_name(lp, j); if (name == NULL) name = ""; lpx_get_col_bnds(lp, j, &typx, &lb, &ub); #if 0 /* 21/XII-2003 by mao */ round = lp->round, lp->round = 1; lpx_get_col_info(lp, j, &tagx, &vx, &dx); lp->round = round; #else round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, j, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); #endif /* row/column ordinal number */ fprintf(fp, "%6d ", j); /* row column/name */ if (strlen(name) <= 12) fprintf(fp, "%-12s ", name); else fprintf(fp, "%s\n%20s", name, ""); /* row/column status */ fprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* objective coefficient */ fprintf(fp, "%13.6g ", lpx_get_obj_coef(lp, j)); if (tagx == LPX_NL) { if (dir==LPX_MIN) { /* reduced cost must be positive */ max_inc = DBL_MAX; /* really represents infinity */ max_dec = dx; } else { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; /* means infinity */ } } if (tagx == LPX_NU) { if (dir==LPX_MIN) { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; } else { max_inc = DBL_MAX; max_dec = dx; } } if (tagx == LPX_NF) { /* can't change nonbasic free variables' cost */ max_inc = 0.0; max_dec = 0.0; } if (tagx == LPX_NS) { /* doesn't matter what happens to the cost */ max_inc = DBL_MAX; max_dec = DBL_MAX; } if (tagx == LPX_BS) { int len; /* We need to see how this objective coefficient affects reduced costs of other variables */ len = lpx_eval_tab_row(lp, m+j, index, val); max_inc = DBL_MAX; max_dec = DBL_MAX; for (i = 1; i <= len; i++) { /*int stat;*/ int tagx2; double vx2, dx2; double delta; if (index[i]>m) lpx_get_col_info(lp, index[i]-m, &tagx2, &vx2, &dx2); else lpx_get_row_info(lp, index[i], &tagx2, &vx2, &dx2); if (tagx2 == LPX_NL) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta >0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NU) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta > 0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NF) { if (val[i] != 0.0) { max_inc = 0.0; max_dec = 0.0; } } } } if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } for (what = 1; what <= 2; what++) { int ij, mn; fprintf(fp, "\n"); fprintf(fp, "%s Analysis\n", what==1? "Constraint Bounds":"Variable Bounds"); fprintf(fp, " No. %12s St Value Max increase " " Max decrease\n", what==1 ? " Row name":"Column name"); fprintf(fp, "------ ------------ -- ------------- ------" "------- ------------- \n"); mn = what==1 ? m : n; for (ij = 1; ij <= mn; ij++) { char *name; int typx, tagx; double lb, ub, vx, dx; if (what==1) name = lpx_get_row_name(lp, ij); else name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; #if 0 /* 21/XII-2003 by mao */ if (what==1) { lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lp->round, lp->round = 1; lpx_get_row_info(lp, ij, &tagx, &vx, &dx); lp->round = round; } else { lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lp->round, lp->round = 1; lpx_get_col_info(lp, ij, &tagx, &vx, &dx); lp->round = round; } #else round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); if (what==1) { lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); lpx_get_row_info(lp, ij, &tagx, &vx, &dx); } else { lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); lpx_get_col_info(lp, ij, &tagx, &vx, &dx); } lpx_set_int_parm(lp, LPX_K_ROUND, round); #endif /* row/column ordinal number */ fprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) fprintf(fp, "%-12s ", name); else fprintf(fp, "%s\n%20s", name, ""); /* row/column status */ fprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); fprintf(fp, "\n"); /* first check lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) { int at_lower; at_lower = 0; if (tagx == LPX_BS || tagx == LPX_NU) { max_inc = vx - lb; max_dec = DBL_MAX; } if (tagx == LPX_NS) { max_inc = 0.0; max_dec = 0.0; if (dir == LPX_MIN && dx > 0) at_lower = 1; if (dir == LPX_MAX && dx < 0) at_lower = 1; } if (tagx == LPX_NL || at_lower == 1) { int len; /* we have to see how it affects basic variables */ len = lpx_eval_tab_col(lp, what==1?ij:ij+m, index, val); k = lpx_prim_ratio_test(lp, len, index, val, 1, 10e-7); max_inc = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is upper bound */ if (alpha > 0) max_inc = (ub2 - vx2)/ alpha; else max_inc = (lb2 - vx2)/ alpha; } /* now check lower bound */ k = lpx_prim_ratio_test(lp, len, index, val, -1, 10e-7); max_dec = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is lower bound */ if (alpha > 0) max_dec = (vx2 - lb2)/ alpha; else max_dec = (vx2 - ub2)/ alpha; } } /* bound */ if (typx == LPX_DB || typx == LPX_FX) { if (max_inc > ub - lb) max_inc = ub - lb; } fprintf(fp, " LOWER %13.6g ", lb); if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } /* now check upper bound */ if (typx == LPX_UP || typx == LPX_DB || typx == LPX_FX) { int at_upper; at_upper = 0; if (tagx == LPX_BS || tagx == LPX_NL) { max_inc = DBL_MAX; max_dec = ub - vx; } if (tagx == LPX_NS) { max_inc = 0.0; max_dec = 0.0; if (dir == LPX_MIN && dx < 0) at_upper = 1; if (dir == LPX_MAX && dx > 0) at_upper = 1; } if (tagx == LPX_NU || at_upper == 1) { int len; /* we have to see how it affects basic variables */ len = lpx_eval_tab_col(lp, what==1?ij:ij+m, index, val); k = lpx_prim_ratio_test(lp, len, index, val, 1, 10e-7); max_inc = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is upper bound */ if (alpha > 0) max_inc = (ub2 - vx2)/ alpha; else max_inc = (lb2 - vx2)/ alpha; } /* now check lower bound */ k = lpx_prim_ratio_test(lp, len, index, val, -1, 10e-7); max_dec = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is lower bound */ if (alpha > 0) max_dec = (vx2 - lb2)/ alpha; else max_dec = (vx2 - ub2)/ alpha; } } if (typx == LPX_DB || typx == LPX_FX) { if (max_dec > ub - lb) max_dec = ub - lb; } /* bound */ fprintf(fp, " UPPER %13.6g ", ub); if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } } } /* free the memory we used */ ufree(index); ufree(val); } else fprintf(fp, "No range information since solution is not o" "ptimal.\n"); } fprintf(fp, "\n"); fprintf(fp, "End of output\n"); fflush(fp); if (ferror(fp)) { print("lpx_print_sens_bnds: can't write to `%s' - %s", fname, strerror(errno)); goto fail; } ufclose(fp); return 0; fail: if (fp != NULL) ufclose(fp); return 1; }
void lpp_unload_sol(LPP *lpp, LPX *orig) { int i, j, k, m, n, typx, tagx, p_stat, d_stat; double sum; m = lpp->orig_m; n = lpp->orig_n; xassert(m == lpx_get_num_rows(orig)); xassert(n == lpx_get_num_cols(orig)); xassert(lpp->orig_dir == lpx_get_obj_dir(orig)); /* check row and column statuses */ xassert(m <= lpp->nrows); xassert(n <= lpp->ncols); for (k = 1; k <= m+n; k++) { tagx = (k <= m ? lpp->row_stat[k] : lpp->col_stat[k-m]); if (tagx != LPX_BS) { if (k <= m) lpx_get_row_bnds(orig, k, &typx, NULL, NULL); else lpx_get_col_bnds(orig, k-m, &typx, NULL, NULL); switch (typx) { case LPX_FR: xassert(tagx == LPX_NF); break; case LPX_LO: xassert(tagx == LPX_NL); break; case LPX_UP: xassert(tagx == LPX_NU); break; case LPX_DB: xassert(tagx == LPX_NL || tagx == LPX_NU); break; case LPX_FX: xassert(tagx == LPX_NS); break; default: xassert(orig != orig); } } } /* if the original problem is maximization, change signs of dual values */ if (lpp->orig_dir == LPX_MAX) { for (i = 1; i <= m; i++) lpp->row_dual[i] = -lpp->row_dual[i]; for (j = 1; j <= n; j++) lpp->col_dual[j] = -lpp->col_dual[j]; } /* store solution components into the original problem object (it is assumed that the recovered solution is optimal) */ p_stat = d_stat = GLP_FEAS; for (i = 1; i <= m; i++) lpp->row_stat[i] = lpp->row_stat[i] - LPX_BS + GLP_BS; for (j = 1; j <= n; j++) lpp->col_stat[j] = lpp->col_stat[j] - LPX_BS + GLP_BS; sum = lpx_get_obj_coef(orig, 0); for (j = 1; j <= n; j++) sum += lpx_get_obj_coef(orig, j) * lpp->col_prim[j]; glp_put_solution(orig, 1, &p_stat, &d_stat, &sum, lpp->row_stat, lpp->row_prim, lpp->row_dual, lpp->col_stat, lpp->col_prim, lpp->col_dual); for (i = 1; i <= m; i++) lpp->row_stat[i] = lpp->row_stat[i] - GLP_BS + LPX_BS; for (j = 1; j <= n; j++) lpp->col_stat[j] = lpp->col_stat[j] - GLP_BS + LPX_BS; return; }
void lpp_load_orig(LPP *lpp, LPX *orig) { LPPROW *row; LPPCOL *col, **map; int i, j, t, len, typx, *ndx; double lb, ub, temp, *c, *val; /* save some information about the original problem */ lpp->orig_m = lpx_get_num_rows(orig); lpp->orig_n = lpx_get_num_cols(orig); lpp->orig_nnz = lpx_get_num_nz(orig); lpp->orig_dir = lpx_get_obj_dir(orig); /* allocate working arrays */ c = xcalloc(1+lpp->orig_n, sizeof(double)); ndx = xcalloc(1+lpp->orig_n, sizeof(int)); val = xcalloc(1+lpp->orig_n, sizeof(double)); /* auxiliary variables (i.e. rows) in the original problem may have non-zero objective coefficients; so, we substitute these auxiliary variables into the objective function in order that it depends only on structural variables (i.e. columns); the resultant vector of objective coefficients is accumulated in the working array c */ for (j = 1; j <= lpp->orig_n; j++) c[j] = lpx_get_obj_coef(orig, j); for (i = 1; i <= lpp->orig_m; i++) { /* obtain an objective coefficient at i-th row */ #if 0 temp = lpx_get_row_coef(orig, i); #else temp = 0.0; #endif /* substitute i-th row into the objective function */ if (temp != 0.0) { len = lpx_get_mat_row(orig, i, ndx, val); for (t = 1; t <= len; t++) c[ndx[t]] += val[t] * temp; } } /* copy rows of the original problem into the workspace; each row created in the workspace is assigned a reference number, which is its ordinal number in the original problem */ for (i = 1; i <= lpp->orig_m; i++) { lpx_get_row_bnds(orig, i, &typx, &lb, &ub); if (typx == LPX_FR || typx == LPX_UP) lb = -DBL_MAX; if (typx == LPX_FR || typx == LPX_LO) ub = +DBL_MAX; if (typx == LPX_FX) ub = lb; lpp_add_row(lpp, lb, ub); } /* copy columns of the original problem into the workspace; each column created in the workspace is assigned a reference number, which its ordinal number in the original problem */ for (j = 1; j <= lpp->orig_n; j++) { lpx_get_col_bnds(orig, j, &typx, &lb, &ub); if (typx == LPX_FR || typx == LPX_UP) lb = -DBL_MAX; if (typx == LPX_FR || typx == LPX_LO) ub = +DBL_MAX; if (typx == LPX_FX) ub = lb; lpp_add_col(lpp, lb, ub, c[j]); } /* copy the constant term of the original objective function */ lpp->c0 = lpx_get_obj_coef(orig, 0); /* if the original problem is maximization, change the sign of the objective function, because the transformed problem to be processed by the presolver must be minimization */ if (lpp->orig_dir == LPX_MAX) { for (col = lpp->col_ptr; col != NULL; col = col->next) col->c = - col->c; lpp->c0 = - lpp->c0; } /* build an auxiliary array to map column ordinal numbers to the corresponding pointers */ xassert(sizeof(LPPCOL *) <= sizeof(double)); map = (LPPCOL **)c; for (col = lpp->col_ptr; col != NULL; col = col->next) map[col->j] = col; /* copy the original constraint matrix into the workspace */ for (row = lpp->row_ptr; row != NULL; row = row->next) #if 1 { len = lpx_get_mat_row(orig, row->i, ndx, val); for (t = 1; t <= len; t++) lpp_add_aij(lpp, row, map[ndx[t]], val[t]); } #else /* 27/XI-2003 (the problem persists) */ { double big, eps; len = lpx_get_mat_row(orig, row->i, ndx, val); big = 0.0; for (t = 1; t <= len; t++) if (big < fabs(val[t])) big = fabs(val[t]); eps = 1e-10 * big; for (t = 1; t <= len; t++) { if (fabs(val[t]) < eps) continue; lpp_add_aij(lpp, row, map[ndx[t]], val[t]); } } #endif /* free working arrays */ xfree(c); xfree(ndx); xfree(val); return; }