示例#1
0
int main(int argc, char **argv)
{
    TESTING_INIT();

    real_Double_t   gflops, magma_perf, magma_time, cublas_perf, cublas_time, cpu_perf, cpu_time;
    float          magma_error, cublas_error, work[1];
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t N, lda, sizeA, sizeX, sizeY, blocks, ldwork;
    magma_int_t incx = 1;
    magma_int_t incy = 1;
    magma_int_t nb   = 64;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex alpha = MAGMA_C_MAKE(  1.5, -2.3 );
    magmaFloatComplex beta  = MAGMA_C_MAKE( -0.6,  0.8 );
    magmaFloatComplex *A, *X, *Y, *Ycublas, *Ymagma;
    magmaFloatComplex *dA, *dX, *dY, *dC_work;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );

    printf("    N   MAGMA Gflop/s (ms)  CUBLAS Gflop/s (ms)   CPU Gflop/s (ms)  MAGMA error  CUBLAS error\n");
    printf("=============================================================================================\n");
    for( int i = 0; i < opts.ntest; ++i ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[i];
            lda    = ((N + 31)/32)*32;
            sizeA  = N*lda;
            sizeX  = N*incx;
            sizeY  = N*incy;
            gflops = FLOPS_CHEMV( N ) / 1e9;
            
            TESTING_MALLOC( A,       magmaFloatComplex, sizeA );
            TESTING_MALLOC( X,       magmaFloatComplex, sizeX );
            TESTING_MALLOC( Y,       magmaFloatComplex, sizeY );
            TESTING_MALLOC( Ycublas, magmaFloatComplex, sizeY );
            TESTING_MALLOC( Ymagma,  magmaFloatComplex, sizeY );
            
            TESTING_DEVALLOC( dA, magmaFloatComplex, sizeA );
            TESTING_DEVALLOC( dX, magmaFloatComplex, sizeX );
            TESTING_DEVALLOC( dY, magmaFloatComplex, sizeY );
            
            blocks = (N + nb - 1) / nb;
            ldwork = lda * (blocks + 1);
            TESTING_DEVALLOC( dC_work, magmaFloatComplex, ldwork );
            
            /* Initialize the matrix */
            lapackf77_clarnv( &ione, ISEED, &sizeA, A );
            magma_cmake_hermitian( N, A, lda );
            lapackf77_clarnv( &ione, ISEED, &sizeX, X );
            lapackf77_clarnv( &ione, ISEED, &sizeY, Y );
            
            /* =====================================================================
               Performs operation using CUBLAS
               =================================================================== */
            magma_csetmatrix( N, N, A, lda, dA, lda );
            magma_csetvector( N, X, incx, dX, incx );
            magma_csetvector( N, Y, incy, dY, incy );
            
            cublas_time = magma_sync_wtime( 0 );
            cublasChemv( opts.uplo, N, alpha, dA, lda, dX, incx, beta, dY, incy );
            cublas_time = magma_sync_wtime( 0 ) - cublas_time;
            cublas_perf = gflops / cublas_time;
            
            magma_cgetvector( N, dY, incy, Ycublas, incy );
            
            /* =====================================================================
               Performs operation using MAGMA BLAS
               =================================================================== */
            magma_csetvector( N, Y, incy, dY, incy );
            
            magma_time = magma_sync_wtime( 0 );
            #if (GPUSHMEM >= 200)
            magmablas_chemv2( opts.uplo, N, alpha, dA, lda, dX, incx, beta, dY, incy, dC_work, ldwork );
            #else
            magmablas_chemv( opts.uplo, N, alpha, dA, lda, dX, incx, beta, dY, incy );
            #endif
            magma_time = magma_sync_wtime( 0 ) - magma_time;
            magma_perf = gflops / magma_time;
            
            magma_cgetvector( N, dY, incy, Ymagma, incy );
            
            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            cpu_time = magma_wtime();
            blasf77_chemv( &opts.uplo, &N, &alpha, A, &lda, X, &incx, &beta, Y, &incy );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            
            /* =====================================================================
               Check the result
               =================================================================== */
            blasf77_caxpy( &N, &c_neg_one, Y, &incy, Ymagma, &incy );
            magma_error = lapackf77_clange( "M", &N, &ione, Ymagma, &N, work ) / N;
            
            blasf77_caxpy( &N, &c_neg_one, Y, &incy, Ycublas, &incy );
            cublas_error = lapackf77_clange( "M", &N, &ione, Ycublas, &N, work ) / N;
            
            printf("%5d   %7.2f (%7.2f)    %7.2f (%7.2f)   %7.2f (%7.2f)    %8.2e     %8.2e\n",
                   (int) N,
                   magma_perf,  1000.*magma_time,
                   cublas_perf, 1000.*cublas_time,
                   cpu_perf,    1000.*cpu_time,
                   magma_error, cublas_error );
            
            TESTING_FREE( A );
            TESTING_FREE( X );
            TESTING_FREE( Y );
            TESTING_FREE( Ycublas );
            TESTING_FREE( Ymagma );
            
            TESTING_DEVFREE( dA );
            TESTING_DEVFREE( dX );
            TESTING_DEVFREE( dY );
            TESTING_DEVFREE( dC_work );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    TESTING_FINALIZE();
    return 0;
}
示例#2
0
int main(int argc, char **argv)
{
    TESTING_INIT();

    const magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    const magma_int_t        ione      = 1;
    
    real_Double_t   gflops, magma_perf, magma_time, cpu_perf, cpu_time;
    float          magma_error, work[1];
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t N, lda, ldda, sizeA, sizeX, sizeY, blocks, ldwork;
    magma_int_t incx = 1;
    magma_int_t incy = 1;
    magma_int_t nb   = 64;
    magmaFloatComplex alpha = MAGMA_C_MAKE(  1.5, -2.3 );
    magmaFloatComplex beta  = MAGMA_C_MAKE( -0.6,  0.8 );
    magmaFloatComplex *A, *X, *Y, *Ymagma;
    magmaFloatComplex_ptr dA, dX, dY, dwork;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = opts.tolerance * lapackf77_slamch("E");

    printf("uplo = %s\n", lapack_uplo_const(opts.uplo) );
    printf("    N   MAGMA Gflop/s (ms)  CPU Gflop/s (ms)  MAGMA error\n");
    printf("=========================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            lda    = N;
            ldda   = ((N + 31)/32)*32;
            sizeA  = N*lda;
            sizeX  = N*incx;
            sizeY  = N*incy;
            gflops = FLOPS_CSYMV( N ) / 1e9;
            
            TESTING_MALLOC_CPU( A,       magmaFloatComplex, sizeA );
            TESTING_MALLOC_CPU( X,       magmaFloatComplex, sizeX );
            TESTING_MALLOC_CPU( Y,       magmaFloatComplex, sizeY );
            TESTING_MALLOC_CPU( Ymagma,  magmaFloatComplex, sizeY );
            
            TESTING_MALLOC_DEV( dA, magmaFloatComplex, ldda*N );
            TESTING_MALLOC_DEV( dX, magmaFloatComplex, sizeX );
            TESTING_MALLOC_DEV( dY, magmaFloatComplex, sizeY );
            
            blocks = (N + nb - 1) / nb;
            ldwork = ldda*blocks;
            TESTING_MALLOC_DEV( dwork, magmaFloatComplex, ldwork );
            
            magmablas_claset( MagmaFull, ldwork, 1, MAGMA_C_NAN, MAGMA_C_NAN, dwork, ldwork );
            magmablas_claset( MagmaFull, ldda,   N, MAGMA_C_NAN, MAGMA_C_NAN, dA,    ldda   );
            
            /* Initialize the matrix */
            lapackf77_clarnv( &ione, ISEED, &sizeA, A );
            magma_cmake_hermitian( N, A, lda );
            
            // should not use data from the opposite triangle -- fill with NAN to check
            magma_int_t N1 = N-1;
            if ( opts.uplo == MagmaUpper ) {
                lapackf77_claset( "Lower", &N1, &N1, &MAGMA_C_NAN, &MAGMA_C_NAN, &A[1], &lda );
            }
            else {
                lapackf77_claset( "Upper", &N1, &N1, &MAGMA_C_NAN, &MAGMA_C_NAN, &A[lda], &lda );
            }
            
            lapackf77_clarnv( &ione, ISEED, &sizeX, X );
            lapackf77_clarnv( &ione, ISEED, &sizeY, Y );
            
            /* Note: CUBLAS does not implement csymv */
            
            /* =====================================================================
               Performs operation using MAGMABLAS
               =================================================================== */
            magma_csetmatrix( N, N, A, lda, dA, ldda );
            magma_csetvector( N, X, incx, dX, incx );
            magma_csetvector( N, Y, incy, dY, incy );
            
            magma_time = magma_sync_wtime( 0 );
            if ( opts.version == 1 ) {
                magmablas_csymv_work( opts.uplo, N, alpha, dA, ldda, dX, incx, beta, dY, incy, dwork, ldwork, opts.queue );
            }
            else {
                // non-work interface (has added overhead)
                magmablas_csymv( opts.uplo, N, alpha, dA, ldda, dX, incx, beta, dY, incy );
            }
            magma_time = magma_sync_wtime( 0 ) - magma_time;
            magma_perf = gflops / magma_time;
            
            magma_cgetvector( N, dY, incy, Ymagma, incy );
            
            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_csymv( lapack_uplo_const(opts.uplo), &N, &alpha, A, &lda, X, &incx, &beta, Y, &incy );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            
            /* =====================================================================
               Check the result
               =================================================================== */
            blasf77_caxpy( &N, &c_neg_one, Y, &incy, Ymagma, &incy );
            magma_error = lapackf77_clange( "M", &N, &ione, Ymagma, &N, work ) / N;
            
            printf("%5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                   (int) N,
                   magma_perf,  1000.*magma_time,
                   cpu_perf,    1000.*cpu_time,
                   magma_error, (magma_error < tol ? "ok" : "failed"));
            status += ! (magma_error < tol);
            
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( X );
            TESTING_FREE_CPU( Y );
            TESTING_FREE_CPU( Ymagma  );
            
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dX );
            TESTING_FREE_DEV( dY );
            TESTING_FREE_DEV( dwork );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    TESTING_FINALIZE();
    return status;
}
示例#3
0
extern "C" magma_int_t
magma_cidr(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;

    // prepare solver feedback
    solver_par->solver = Magma_IDR;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->init_res = 0.0;
    solver_par->final_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->runtime = 0.0;

    // constants
    const magmaFloatComplex c_zero = MAGMA_C_ZERO;
    const magmaFloatComplex c_one = MAGMA_C_ONE;
    const magmaFloatComplex c_n_one = MAGMA_C_NEG_ONE;

    // internal user parameters
    const magma_int_t smoothing = 1;   // 0 = disable, 1 = enable
    const float angle = 0.7;          // [0-1]

    // local variables
    magma_int_t iseed[4] = {0, 0, 0, 1};
    magma_int_t dof;
    magma_int_t s;
    magma_int_t distr;
    magma_int_t k, i, sk;
    magma_int_t innerflag;
    float residual;
    float nrm;
    float nrmb;
    float nrmr;
    float nrmt;
    float rho;
    magmaFloatComplex om;
    magmaFloatComplex tt;
    magmaFloatComplex tr;
    magmaFloatComplex gamma;
    magmaFloatComplex alpha;
    magmaFloatComplex mkk;
    magmaFloatComplex fk;

    // matrices and vectors
    magma_c_matrix dxs = {Magma_CSR};
    magma_c_matrix dr = {Magma_CSR}, drs = {Magma_CSR};
    magma_c_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR};
    magma_c_matrix dG = {Magma_CSR};
    magma_c_matrix dU = {Magma_CSR};
    magma_c_matrix dM = {Magma_CSR};
    magma_c_matrix df = {Magma_CSR};
    magma_c_matrix dt = {Magma_CSR};
    magma_c_matrix dc = {Magma_CSR};
    magma_c_matrix dv = {Magma_CSR};
    magma_c_matrix dbeta = {Magma_CSR}, hbeta = {Magma_CSR};

    // chronometry
    real_Double_t tempo1, tempo2;

    // initial s space
    // TODO: add option for 's' (shadow space number)
    // Hack: uses '--restart' option as the shadow space number.
    //       This is not a good idea because the default value of restart option is used to detect
    //       if the user provided a custom restart. This means that if the default restart value
    //       is changed then the code will think it was the user (unless the default value is
    //       also updated in the 'if' statement below.
    s = 1;
    if ( solver_par->restart != 50 ) {
        if ( solver_par->restart > A.num_cols ) {
            s = A.num_cols;
        } else {
            s = solver_par->restart;
        }
    }
    solver_par->restart = s;

    // set max iterations
    solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter );

    // check if matrix A is square
    if ( A.num_rows != A.num_cols ) {
        //printf("Matrix A is not square.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }

    // |b|
    nrmb = magma_scnrm2( b.num_rows, b.dval, 1, queue );
    if ( nrmb == 0.0 ) {
        magma_cscal( x->num_rows, MAGMA_C_ZERO, x->dval, 1, queue );
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // r = b - A x
    CHECK( magma_cvinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue ));
    CHECK( magma_cresidualvec( A, b, *x, &dr, &nrmr, queue ));
    
    // |r|
    solver_par->init_res = nrmr;
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nrmr;
    }

    // check if initial is guess good enough
    if ( nrmr <= solver_par->atol ||
        nrmr/nrmb <= solver_par->rtol ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // P = randn(n, s)
    // P = ortho(P)
//---------------------------------------
    // P = 0.0
    CHECK( magma_cvinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue ));

    // P = randn(n, s)
    distr = 3;        // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) 
    dof = dP.num_rows * dP.num_cols;
    lapackf77_clarnv( &distr, iseed, &dof, dP.val );

    // transfer P to device
    CHECK( magma_cmtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue ));
    magma_cmfree( &dP, queue );

    // P = ortho(P1)
    if ( dP1.num_cols > 1 ) {
        // P = magma_cqr(P1), QR factorization
        CHECK( magma_cqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue ));
    } else {
        // P = P1 / |P1|
        nrm = magma_scnrm2( dof, dP1.dval, 1, queue );
        nrm = 1.0 / nrm;
        magma_csscal( dof, nrm, dP1.dval, 1, queue );
        CHECK( magma_cmtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue ));
    }
    magma_cmfree( &dP1, queue );
//---------------------------------------

    // allocate memory for the scalar products
    CHECK( magma_cvinit( &hbeta, Magma_CPU, s, 1, c_zero, queue ));
    CHECK( magma_cvinit( &dbeta, Magma_DEV, s, 1, c_zero, queue ));

    // smoothing enabled
    if ( smoothing > 0 ) {
        // set smoothing solution vector
        CHECK( magma_cmtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue ));

        // set smoothing residual vector
        CHECK( magma_cmtransfer( dr, &drs, Magma_DEV, Magma_DEV, queue ));
    }

    // G(n,s) = 0
    CHECK( magma_cvinit( &dG, Magma_DEV, A.num_cols, s, c_zero, queue ));

    // U(n,s) = 0
    CHECK( magma_cvinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue ));

    // M(s,s) = I
    CHECK( magma_cvinit( &dM, Magma_DEV, s, s, c_zero, queue ));
    magmablas_claset( MagmaFull, s, s, c_zero, c_one, dM.dval, s, queue );

    // f = 0
    CHECK( magma_cvinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue ));

    // t = 0
    CHECK( magma_cvinit( &dt, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    // c = 0
    CHECK( magma_cvinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue ));

    // v = 0
    CHECK( magma_cvinit( &dv, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    //--------------START TIME---------------
    // chronometry
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->timing[0] = 0.0;
    }

    om = MAGMA_C_ONE;
    innerflag = 0;

    // start iteration
    do
    {
        solver_par->numiter++;
    
        // new RHS for small systems
        // f = P' r
        magmablas_cgemv( MagmaConjTrans, dP.num_rows, dP.num_cols, c_one, dP.dval, dP.ld, dr.dval, 1, c_zero, df.dval, 1, queue );

        // shadow space loop
        for ( k = 0; k < s; ++k ) {
            sk = s - k;
    
            // f(k:s) = M(k:s,k:s) c(k:s)
            magma_ccopyvector( sk, &df.dval[k], 1, &dc.dval[k], 1, queue );
            magma_ctrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk, &dM.dval[k*dM.ld+k], dM.ld, &dc.dval[k], 1, queue );

            // v = r - G(:,k:s) c(k:s)
            magma_ccopyvector( dr.num_rows, dr.dval, 1, dv.dval, 1, queue );
            magmablas_cgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, &dG.dval[k*dG.ld], dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queue );

            // U(:,k) = om * v + U(:,k:s) c(k:s)
            magmablas_cgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queue );
            magma_ccopyvector( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queue );

            // G(:,k) = A U(:,k)
            CHECK( magma_c_spmv( c_one, A, dv, c_zero, dv, queue ));
            solver_par->spmv_count++;
            magma_ccopyvector( dG.num_rows, dv.dval, 1, &dG.dval[k*dG.ld], 1, queue );

            // bi-orthogonalize the new basis vectors
            for ( i = 0; i < k; ++i ) {
                // alpha = P(:,i)' G(:,k)
                alpha = magma_cdotc( dP.num_rows, &dP.dval[i*dP.ld], 1, &dG.dval[k*dG.ld], 1, queue );

                // alpha = alpha / M(i,i)
                magma_cgetvector( 1, &dM.dval[i*dM.ld+i], 1, &mkk, 1, queue );
                alpha = alpha / mkk;

                // G(:,k) = G(:,k) - alpha * G(:,i)
                magma_caxpy( dG.num_rows, -alpha, &dG.dval[i*dG.ld], 1, &dG.dval[k*dG.ld], 1, queue );

                // U(:,k) = U(:,k) - alpha * U(:,i)
                magma_caxpy( dU.num_rows, -alpha, &dU.dval[i*dU.ld], 1, &dU.dval[k*dU.ld], 1, queue );
            }

            // new column of M = P'G, first k-1 entries are zero
            // M(k:s,k) = P(:,k:s)' G(:,k)
            magmablas_cgemv( MagmaConjTrans, dP.num_rows, sk, c_one, &dP.dval[k*dP.ld], dP.ld, &dG.dval[k*dG.ld], 1, c_zero, &dM.dval[k*dM.ld+k], 1, queue );

            // check M(k,k) == 0
            magma_cgetvector( 1, &dM.dval[k*dM.ld+k], 1, &mkk, 1, queue );
            if ( MAGMA_C_EQUAL(mkk, MAGMA_C_ZERO) ) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // beta = f(k) / M(k,k)
            magma_cgetvector( 1, &df.dval[k], 1, &fk, 1, queue );
            hbeta.val[k] = fk / mkk;

            // check for nan
            if ( magma_c_isnan( hbeta.val[k] ) || magma_c_isinf( hbeta.val[k] )) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // r = r - beta * G(:,k)
            magma_caxpy( dr.num_rows, -hbeta.val[k], &dG.dval[k*dG.ld], 1, dr.dval, 1, queue );

            // smoothing disabled
            if ( smoothing <= 0 ) {
                // |r|
                nrmr = magma_scnrm2( dr.num_rows, dr.dval, 1, queue );

            // smoothing enabled
            } else {
                // x = x + beta * U(:,k)
                magma_caxpy( x->num_rows, hbeta.val[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queue );

                // smoothing operation
//---------------------------------------
                // t = rs - r
                magma_ccopyvector( drs.num_rows, drs.dval, 1, dt.dval, 1, queue );
                magma_caxpy( dt.num_rows, c_n_one, dr.dval, 1, dt.dval, 1, queue );

                // t't
                // t'rs 
                tt = magma_cdotc( dt.num_rows, dt.dval, 1, dt.dval, 1, queue );
                tr = magma_cdotc( dt.num_rows, dt.dval, 1, drs.dval, 1, queue );

                // gamma = (t' * rs) / (t' * t)
                gamma = tr / tt;

                // rs = rs - gamma * (rs - r) 
                magma_caxpy( drs.num_rows, -gamma, dt.dval, 1, drs.dval, 1, queue );

                // xs = xs - gamma * (xs - x) 
                magma_ccopyvector( dxs.num_rows, dxs.dval, 1, dt.dval, 1, queue );
                magma_caxpy( dt.num_rows, c_n_one, x->dval, 1, dt.dval, 1, queue );
                magma_caxpy( dxs.num_rows, -gamma, dt.dval, 1, dxs.dval, 1, queue );

                // |rs|
                nrmr = magma_scnrm2( drs.num_rows, drs.dval, 1, queue );           
//---------------------------------------
            }

            // store current timing and residual
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                    solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)nrmr;
                    solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)tempo2 - tempo1;
                }
            }

            // check convergence
            if ( nrmr <= solver_par->atol ||
                nrmr/nrmb <= solver_par->rtol ) {
                s = k + 1; // for the x-update outside the loop
                innerflag = 2;
                info = MAGMA_SUCCESS;
                break;
            }

            // non-last s iteration
            if ( (k + 1) < s ) {
                // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k)
                magma_caxpy( sk-1, -hbeta.val[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queue );
            }

        }

        // smoothing disabled
        if ( smoothing <= 0 && innerflag != 1 ) {
            // update solution approximation x
            // x = x + U(:,1:s) * beta(1:s)
            magma_csetvector( s, hbeta.val, 1, dbeta.dval, 1, queue );
            magmablas_cgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queue );
        }

        // check convergence or iteration limit or invalid result of inner loop
        if ( innerflag > 0 ) {
            break;
        }

        // t = A v
        // t = A r
        CHECK( magma_c_spmv( c_one, A, dr, c_zero, dt, queue ));
        solver_par->spmv_count++;

        // computation of a new omega
//---------------------------------------
        // |t|
        nrmt = magma_scnrm2( dt.num_rows, dt.dval, 1, queue );

        // t'r 
        tr = magma_cdotc( dt.num_rows, dt.dval, 1, dr.dval, 1, queue );

        // rho = abs(t' * r) / (|t| * |r|))
        rho = MAGMA_D_ABS( MAGMA_C_REAL(tr) / (nrmt * nrmr) );

        // om = (t' * r) / (|t| * |t|)
        om = tr / (nrmt * nrmt);
        if ( rho < angle ) {
            om = (om * angle) / rho;
        }
//---------------------------------------
        if ( MAGMA_C_EQUAL(om, MAGMA_C_ZERO) ) {
            info = MAGMA_DIVERGENCE;
            break;
        }

        // update approximation vector
        // x = x + om * v
        // x = x + om * r
        magma_caxpy( x->num_rows, om, dr.dval, 1, x->dval, 1, queue );

        // update residual vector
        // r = r - om * t
        magma_caxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queue );

        // smoothing disabled
        if ( smoothing <= 0 ) {
            // residual norm
            nrmr = magma_scnrm2( b.num_rows, dr.dval, 1, queue );

        // smoothing enabled
        } else {
            // smoothing operation
//---------------------------------------
            // t = rs - r
            magma_ccopyvector( drs.num_rows, drs.dval, 1, dt.dval, 1, queue );
            magma_caxpy( dt.num_rows, c_n_one, dr.dval, 1, dt.dval, 1, queue );

            // t't
            // t'rs
            tt = magma_cdotc( dt.num_rows, dt.dval, 1, dt.dval, 1, queue );
            tr = magma_cdotc( dt.num_rows, dt.dval, 1, drs.dval, 1, queue );

            // gamma = (t' * rs) / (|t| * |t|)
            gamma = tr / tt;

            // rs = rs - gamma * (rs - r) 
            magma_caxpy( drs.num_rows, -gamma, dt.dval, 1, drs.dval, 1, queue );

            // xs = xs - gamma * (xs - x) 
            magma_ccopyvector( dxs.num_rows, dxs.dval, 1, dt.dval, 1, queue );
            magma_caxpy( dt.num_rows, c_n_one, x->dval, 1, dt.dval, 1, queue );
            magma_caxpy( dxs.num_rows, -gamma, dt.dval, 1, dxs.dval, 1, queue );

            // |rs|
            nrmr = magma_scnrm2( b.num_rows, drs.dval, 1, queue );           
//---------------------------------------
        }

        // store current timing and residual
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)nrmr;
                solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)tempo2 - tempo1;
            }
        }

        // check convergence
        if ( nrmr <= solver_par->atol ||
            nrmr/nrmb <= solver_par->rtol ) { 
            info = MAGMA_SUCCESS;
            break;
        }
    }
    while ( solver_par->numiter + 1 <= solver_par->maxiter );

    // smoothing enabled
    if ( smoothing > 0 ) {
        // x = xs
        magma_ccopyvector( x->num_rows, dxs.dval, 1, x->dval, 1, queue );

        // r = rs
        magma_ccopyvector( dr.num_rows, drs.dval, 1, dr.dval, 1, queue );
    }

    // get last iteration timing
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t)tempo2 - tempo1;
//--------------STOP TIME----------------

    // get final stats
    solver_par->iter_res = nrmr;
    CHECK( magma_cresidualvec( A, b, *x, &dr, &residual, queue ));
    solver_par->final_res = residual;

    // set solver conclusion
    if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) {
        if ( solver_par->init_res > solver_par->final_res ) {
            info = MAGMA_SLOW_CONVERGENCE;
        }
    }


cleanup:
    // free resources
    // smoothing enabled
    if ( smoothing > 0 ) {
        magma_cmfree( &dxs, queue );
        magma_cmfree( &drs, queue );
    }
    magma_cmfree( &dr, queue );
    magma_cmfree( &dP, queue );
    magma_cmfree( &dP1, queue );
    magma_cmfree( &dG, queue );
    magma_cmfree( &dU, queue );
    magma_cmfree( &dM, queue );
    magma_cmfree( &df, queue );
    magma_cmfree( &dt, queue );
    magma_cmfree( &dc, queue );
    magma_cmfree( &dv, queue );
    magma_cmfree( &dbeta, queue );
    magma_cmfree( &hbeta, queue );

    solver_par->info = info;
    return info;
    /* magma_cidr */
}
示例#4
0
int main(int argc, char **argv)
{        
    TESTING_INIT();
    magma_setdevice(0);

    magma_timestr_t  start, end;
    float      flops, magma_perf, cuda_perf, error, work[1];
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t n_local[4];

    FILE        *fp ; 
    magma_int_t N, m, i, j, lda, LDA, M;
    magma_int_t matsize;
    magma_int_t vecsize;
    magma_int_t istart = 64;
    magma_int_t incx = 1;
    char        uplo = MagmaLower;

    magmaFloatComplex alpha = MAGMA_C_MAKE(1., 0.); // MAGMA_C_MAKE(  1.5, -2.3 );
    magmaFloatComplex beta  = MAGMA_C_MAKE(0., 0.); // MAGMA_C_MAKE( -0.6,  0.8 );
    magmaFloatComplex *A, *X, *Y[4], *Ycublas, *Ymagma;
    magmaFloatComplex *dA, *dX[4], *dY[4], *d_lA[4], *dYcublas ;

    magma_queue_t stream[4][10];
    magmaFloatComplex *C_work;
    magmaFloatComplex *dC_work[4];

    int max_num_gpus;
    magma_int_t num_gpus = 1, nb;
    magma_int_t blocks, lwork;
    magma_int_t offset = 0;

    M = 0;
    N = 0;
    if (argc != 1){
        for(i = 1; i<argc; i++){
            if (strcmp("-N", argv[i])==0)
            {
                N = atoi(argv[++i]);
                istart = N;
            }
            else if (strcmp("-M", argv[i])==0)
                M = atoi(argv[++i]);
            else if (strcmp("-NGPU", argv[i])==0)
              num_gpus = atoi(argv[++i]);
            else if (strcmp("-offset", argv[i])==0)
              offset = atoi(argv[++i]);
        }
        if ( M == 0 ) {
            M = N;
        }
        if ( N == 0 ) {
            N = M;
        }
        if (M>0 && N>0)
        {    printf("  testing_chemv_mgpu -M %d -N %d -NGPU %d\n\n", (int) M, (int) N, (int) num_gpus);
            printf("  in %c side \n", uplo);
        }
        else
            {
                printf("\nUsage: \n");
                printf("  testing_chemv_mgpu -M %d -N %d -NGPU %d\n\n", 
                       1024, 1024, 1);
                exit(1);
            }
    }
    else {
#if defined(PRECISION_z)
        M = N = 8000;
#else
        M = N = 12480;
#endif 
        num_gpus = 2;
        offset = 0;
        printf("\nUsage: \n");
        printf("  testing_chemv_mgpu -M %d -N %d -NGPU %d\n\n", (int) M, (int) N, (int) num_gpus);
    }
         

    //////////////////////////////////////////////////////////////////////////
    cudaGetDeviceCount(&max_num_gpus);
    if (num_gpus > max_num_gpus){
      printf("More GPUs requested than available. Have to change it.\n");
      num_gpus = max_num_gpus;
    }
    printf("Number of GPUs to be used = %d\n", (int) num_gpus);
    for(int i=0; i< num_gpus; i++)
    {
        magma_queue_create(&stream[i][0]);
    }
    

    LDA = ((N+31)/32)*32;
    matsize = N*LDA;
    vecsize = N*incx;
    nb = 32;
    //nb = 64;

    printf("block size = %d\n", (int) nb);
   
    TESTING_MALLOC_CPU( A,       magmaFloatComplex, matsize );
    TESTING_MALLOC_CPU( X,       magmaFloatComplex, vecsize );
    TESTING_MALLOC_CPU( Ycublas, magmaFloatComplex, vecsize );
    TESTING_MALLOC_CPU( Ymagma,  magmaFloatComplex, vecsize );
    for(i=0; i<num_gpus; i++)
    {     
        TESTING_MALLOC_CPU( Y[i], magmaFloatComplex, vecsize );
    }

    magma_setdevice(0);
    TESTING_MALLOC_DEV( dA,       magmaFloatComplex, matsize );
    TESTING_MALLOC_DEV( dYcublas, magmaFloatComplex, vecsize );

    for(i=0; i<num_gpus; i++)
    {      
        n_local[i] = ((N/nb)/num_gpus)*nb;
        if (i < (N/nb)%num_gpus)
            n_local[i] += nb;
        else if (i == (N/nb)%num_gpus)
            n_local[i] += N%nb;
        
        magma_setdevice(i);
        
        TESTING_MALLOC_DEV( d_lA[i], magmaFloatComplex, LDA*n_local[i] );// potentially bugged 
        TESTING_MALLOC_DEV( dX[i],   magmaFloatComplex, vecsize );
        TESTING_MALLOC_DEV( dY[i],   magmaFloatComplex, vecsize );
        
        printf("device %2d n_local = %4d\n", (int) i, (int) n_local[i]); 
    }
    magma_setdevice(0);

      

    //////////////////////////////////////////////////////////////////////////

    /* Initialize the matrix */
    lapackf77_clarnv( &ione, ISEED, &matsize, A );
    magma_cmake_hermitian( N, A, LDA );

    blocks = N / nb + (N % nb != 0);
    lwork = LDA * (blocks + 1);
    TESTING_MALLOC_CPU( C_work, magmaFloatComplex, lwork );
    for(i=0; i<num_gpus; i++){
           magma_setdevice(i);  
           TESTING_MALLOC_DEV( dC_work[i], magmaFloatComplex, lwork );
           //fillZero(dC_work[i], lwork);
    }
      
     magma_setdevice(0);


    //////////////////////////////////////////////////////////////////////////
   
    fp = fopen ("results_chemv_mgpu.csv", "w") ;
    if( fp == NULL ){ printf("Couldn't open output file\n"); exit(1);}

    printf("CHEMV magmaFloatComplex precision\n\n");

    printf( "   n   CUBLAS,Gflop/s   MAGMABLAS,Gflop/s      \"error\"\n" 
            "==============================================================\n");
    fprintf(fp, "   n   CUBLAS,Gflop/s   MAGMABLAS,Gflop/s      \"error\"\n" 
            "==============================================================\n");


//    for( offset = 0; offset< N; offset ++ )
    
    for(int size = istart ; size <= N ; size += 128)
    {
    //    printf("offset = %d ", offset);
        m = size ;
    //    m = N;
        // lda = ((m+31)/32)*32;// 
        lda = LDA; 
        flops = FLOPS( (float)m ) / 1e6;

        printf(      "N %5d ", (int) m );
        fprintf( fp, "%5d, ", (int) m );

        vecsize = m * incx;
        lapackf77_clarnv( &ione, ISEED, &vecsize, X );
        lapackf77_clarnv( &ione, ISEED, &vecsize, Y[0] );

        /* =====================================================================
           Performs operation using CUDA-BLAS
           =================================================================== */
        magma_setdevice(0);
        magma_csetmatrix_1D_col_bcyclic(m, m, A, LDA, d_lA, lda, num_gpus, nb); 
        magma_setdevice(0);

    
    
    magma_csetmatrix( m, m, A, LDA, dA, lda );
        magma_csetvector( m, Y[0], incx, dYcublas, incx );
        
        for(i=0; i<num_gpus; i++){
            magma_setdevice(i);
            magma_csetvector( m, X, incx, dX[i], incx );
            magma_csetvector( m, Y[0], incx, dY[i], incx );


            blocks    = m / nb + (m % nb != 0);
            magma_csetmatrix( lda, blocks, C_work, LDA, dC_work[i], lda );
        }

        magma_setdevice(0);
        start = get_current_time();
        cublasChemv( uplo, m-offset, alpha, dA + offset + offset * lda, lda, dX[0] + offset, incx, beta, dYcublas + offset, incx );
         
        end = get_current_time();

        magma_cgetvector( m, dYcublas, incx, Ycublas, incx );
                
        
        cuda_perf = flops / GetTimerValue(start,end);
        printf(     "%11.2f", cuda_perf );
        fprintf(fp, "%11.2f,", cuda_perf );
       
        
        magma_setdevice(0);

        
        start = get_current_time();
        

        if(nb == 32)
       { 

        magmablas_chemv2_mgpu_32_offset( uplo, m, alpha, d_lA, lda, dX, incx, beta, dY, incx, 
                dC_work, lwork, num_gpus, nb, offset);
 
        }
        else // nb = 64
       { 

        magmablas_chemv2_mgpu_offset( uplo, m, alpha, d_lA, lda, dX, incx, beta, dY, incx, 
                dC_work, lwork, num_gpus, nb, offset);
 
        }
    
            
        for(i=1; i<num_gpus; i++)
        {
           magma_setdevice(i);
           cudaDeviceSynchronize();
        }
      
        end = get_current_time();
        magma_perf = flops / GetTimerValue(start,end); 
        printf(     "%11.2f", magma_perf );
        fprintf(fp, "%11.2f,", magma_perf );
       

        for(i=0; i<num_gpus; i++)
        {        
            magma_setdevice(i);
            magma_cgetvector( m, dY[i], incx, Y[i], incx );
        }
        magma_setdevice(0);

        
#ifdef validate        

        for( j= offset;j<m;j++)
        {
            for(i=1; i<num_gpus; i++)
            {

//            printf("Y[%d][%d] = %15.14f\n", i, j, Y[i][j].x);
#if defined(PRECISION_z) || defined(PRECISION_c)
            Y[0][j].x = Y[0][j].x + Y[i][j].x;
                        Y[0][j].y = Y[0][j].y + Y[i][j].y;
#else 
            Y[0][j] = Y[0][j] + Y[i][j];
            
#endif 

            }
        }

/*

#if defined(PRECISION_z) || defined(PRECISION_c)
        
        for( j=offset;j<m;j++)
        {
            if(Y[0][j].x != Ycublas[j].x)
            {
                     printf("Y-multi[%d] = %f, %f\n",  j, Y[0][j].x, Y[0][j].y );
                     printf("Ycublas[%d] = %f, %f\n",  j, Ycublas[j].x, Ycublas[j].y);
            }
        }

#else 

        for( j=offset;j<m;j++)
        {
            if(Y[0][j] != Ycublas[j])
            {
                     printf("Y-multi[%d] = %f\n",  j, Y[0][j] );
                     printf("Ycublas[%d] = %f\n",  j, Ycublas[j]);
            }
        }

#endif

*/        
        /* =====================================================================
           Computing the Difference Cublas VS Magma
           =================================================================== */
       
        magma_int_t nw = m - offset ;
        blasf77_caxpy( &nw, &c_neg_one, Y[0] + offset, &incx, Ycublas + offset, &incx);
        error = lapackf77_clange( "M", &nw, &ione, Ycublas + offset, &nw, work );
            
#if  0
        printf(      "\t\t %8.6e", error / m );
        fprintf( fp, "\t\t %8.6e", error / m );

        /*
         * Extra check with cblas vs magma
         */
        cblas_ccopy( m, Y, incx, Ycublas, incx );
        cblas_chemv( CblasColMajor, CblasLower, m, 
                     CBLAS_SADDR(alpha), A, LDA, X, incx, 
                     CBLAS_SADDR(beta), Ycublas, incx );
 
        blasf77_caxpy( &m, &c_neg_one, Ymagma, &incx, Ycublas, &incx);
        error = lapackf77_clange( "M", &m, &ione, Ycublas, &m, work );
#endif

        printf(      "\t\t %8.6e", error / m );
        fprintf( fp, "\t\t %8.6e", error / m );
 
#endif 
        printf("\n");        
        fprintf(fp, "\n");        
    }
    
    fclose( fp ) ; 

    /* Free Memory */
    TESTING_FREE_CPU( A );
    TESTING_FREE_CPU( X );
    TESTING_FREE_CPU( Ycublas );
    TESTING_FREE_CPU( Ymagma  );
    TESTING_FREE_CPU( C_work  );

    magma_setdevice(0);
    TESTING_FREE_DEV( dA );
    TESTING_FREE_DEV( dYcublas );
    
    for(i=0; i<num_gpus; i++)
    { 
        TESTING_FREE_CPU( Y[i] );
        magma_setdevice(i);

        TESTING_FREE_DEV( d_lA[i]    );
        TESTING_FREE_DEV( dX[i]      );
        TESTING_FREE_DEV( dY[i]      );
        TESTING_FREE_DEV( dC_work[i] );
    }

    magma_setdevice(0);
 ///////////////////////////////////////////////////////////   
      

    /* Free device */
    TESTING_FINALIZE();
    return 0;
}        
示例#5
0
extern "C" magma_int_t
magma_ccg_merge(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_CGMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // solver variables
    magmaFloatComplex alpha, beta, gamma, rho, tmp1, *skp_h={0};
    float nom, nom0, betanom, den, nomb;

    // some useful variables
    magmaFloatComplex c_zero = MAGMA_C_ZERO, c_one = MAGMA_C_ONE;
    magma_int_t dofs = A.num_rows*b.num_cols;

    magma_c_matrix r={Magma_CSR}, d={Magma_CSR}, z={Magma_CSR}, B={Magma_CSR}, C={Magma_CSR};
    magmaFloatComplex *d1=NULL, *d2=NULL, *skp=NULL;

    // GPU workspace
    CHECK( magma_cvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &d, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    
    CHECK( magma_cmalloc( &d1, dofs*(1) ));
    CHECK( magma_cmalloc( &d2, dofs*(1) ));
    // array for the parameters
    CHECK( magma_cmalloc( &skp, 6 ));
    // skp = [alpha|beta|gamma|rho|tmp1|tmp2]
    
    // solver setup
    magma_cscal( dofs, c_zero, x->dval, 1, queue );                      // x = 0
    //CHECK(  magma_cresidualvec( A, b, *x, &r, nom0, queue));
    magma_ccopy( dofs, b.dval, 1, r.dval, 1, queue );                    // r = b
    magma_ccopy( dofs, r.dval, 1, d.dval, 1, queue );                    // d = r
    nom0 = betanom = magma_scnrm2( dofs, r.dval, 1, queue );
    nom = nom0 * nom0;                                           // nom = r' * r
    CHECK( magma_c_spmv( c_one, A, d, c_zero, z, queue ));              // z = A d
    den = MAGMA_C_ABS( magma_cdotc( dofs, d.dval, 1, z.dval, 1, queue ) ); // den = d'* z
    solver_par->init_res = nom0;
    
    nomb = magma_scnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    
    // array on host for the parameters
    CHECK( magma_cmalloc_cpu( &skp_h, 6 ));
    
    alpha = rho = gamma = tmp1 = c_one;
    beta =  magma_cdotc( dofs, r.dval, 1, r.dval, 1, queue );
    skp_h[0]=alpha;
    skp_h[1]=beta;
    skp_h[2]=gamma;
    skp_h[3]=rho;
    skp_h[4]=tmp1;
    skp_h[5]=MAGMA_C_MAKE(nom, 0.0);

    magma_csetvector( 6, skp_h, 1, skp, 1, queue );

    if( nom0 < solver_par->atol ||
        nom0/nomb < solver_par->rtol ){
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t) nom0;
        solver_par->timing[0] = 0.0;
    }
    // check positive definite
    if (den <= 0.0) {
        info = MAGMA_NONSPD; 
        goto cleanup;
    }
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );

    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;

        // computes SpMV and dot product
        CHECK( magma_ccgmerge_spmv1(  A, d1, d2, d.dval, z.dval, skp, queue ));
        solver_par->spmv_count++;
        // updates x, r, computes scalars and updates d
        CHECK( magma_ccgmerge_xrbeta( dofs, d1, d2, x->dval, r.dval, d.dval, z.dval, skp, queue ));

        // check stopping criterion (asynchronous copy)
        magma_cgetvector( 1 , skp+1, 1, skp_h+1, 1, queue );
        betanom = sqrt(MAGMA_C_ABS(skp_h[1]));

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if (  betanom  < solver_par->atol || 
              betanom/nomb < solver_par->rtol ) {
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_cresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = betanom;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->atol ||
            solver_par->iter_res/solver_par->init_res < solver_par->rtol ){
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_cmfree(&r, queue );
    magma_cmfree(&z, queue );
    magma_cmfree(&d, queue );
    magma_cmfree(&B, queue );
    magma_cmfree(&C, queue );

    magma_free( d1 );
    magma_free( d2 );
    magma_free( skp );
    magma_free_cpu( skp_h );

    solver_par->info = info;
    return info;
}   /* magma_ccg_merge */
示例#6
0
/**
    @deprecated
    
    Purpose
    -------
    CLAQPS computes a step of QR factorization with column pivoting
    of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. N >= 0

    @param[in]
    offset  INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    @param[in]
    nb      INTEGER
            The number of columns to factorize.

    @param[out]
    kb      INTEGER
            The number of columns actually factorized.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A. LDA >= max(1,M).

    @param[in,out]
    jpvt    INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    @param[out]
    tau     COMPLEX array, dimension (KB)
            The scalar factors of the elementary reflectors.

    @param[in,out]
    vn1     REAL array, dimension (N)
            The vector with the partial column norms.

    @param[in,out]
    vn2     REAL array, dimension (N)
            The vector with the exact column norms.

    @param[in,out]
    auxv    COMPLEX array, dimension (NB)
            Auxiliar vector.

    @param[in,out]
    F       COMPLEX array, dimension (LDF,NB)
            Matrix F' = L*Y'*A.

    @param[in]
    ldf     INTEGER
            The leading dimension of the array F. LDF >= max(1,N).

    @ingroup magma_cgeqp3_aux
    ********************************************************************/
extern "C" magma_int_t
magma_claqps_gpu(magma_int_t m, magma_int_t n, magma_int_t offset,
             magma_int_t nb, magma_int_t *kb,
             magmaFloatComplex *A,  magma_int_t lda,
             magma_int_t *jpvt, magmaFloatComplex *tau,
             float *vn1, float *vn2,
             magmaFloatComplex *auxv,
             magmaFloatComplex *F,  magma_int_t ldf)
{
#define  A(i, j) (A  + (i) + (j)*(lda ))
#define  F(i, j) (F  + (i) + (j)*(ldf ))

    magmaFloatComplex c_zero    = MAGMA_C_MAKE( 0.,0.);
    magmaFloatComplex c_one     = MAGMA_C_MAKE( 1.,0.);
    magmaFloatComplex c_neg_one = MAGMA_C_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    //float d__1;
    magmaFloatComplex z__1;
    
    //magma_int_t j;
    magma_int_t k, rk;
    //magmaFloatComplex Akk;
    magmaFloatComplex *Aks;
    magmaFloatComplex tauk = MAGMA_C_ZERO;
    magma_int_t pvt;
    //float temp, temp2;
    float tol3z;
    magma_int_t itemp;

    float lsticc, *lsticcs;
    magma_int_t lastrk;
    magma_smalloc( &lsticcs, 1+256*(n+255)/256 );

    lastrk = min( m, n + offset );
    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    lsticc = 0;
    k = 0;
    magma_cmalloc( &Aks, nb );

    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // subtract 1 from Fortran/CUBLAS isamax; pvt, k are 0-based.
        pvt = k + magma_isamax( n-k, &vn1[k], ione ) - 1;
        
        if (pvt != k) {
            /*if (pvt >= nb) {
                // 1. Start copy from GPU
                magma_cgetmatrix_async( m - offset - nb, 1,
                                        dA(offset + nb, pvt), ldda,
                                        A (offset + nb, pvt), lda, stream );
            }*/

            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            /*if (pvt < nb) {
                // no need of transfer if pivot is within the panel
                blasf77_cswap( &m, A(0, pvt), &ione, A(0, k), &ione );
            }
            else {
                // 1. Finish copy from GPU
                magma_queue_sync( stream );

                // 2. Swap as usual on CPU
                blasf77_cswap(&m, A(0, pvt), &ione, A(0, k), &ione);

                // 3. Restore the GPU
                magma_csetmatrix_async( m - offset - nb, 1,
                                        A (offset + nb, pvt), lda,
                                        dA(offset + nb, pvt), ldda, stream);
            }*/
            magmablas_cswap( m, A(0, pvt), ione, A(0, k), ione );

            //blasf77_cswap( &i__1, F(pvt,0), &ldf, F(k,0), &ldf );
            magmablas_cswap( i__1, F(pvt, 0), ldf, F(k, 0), ldf);
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            //vn1[pvt] = vn1[k];
            //vn2[pvt] = vn2[k];
            #if defined(PRECISION_d) || defined(PRECISION_z)
                //magma_dswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_dswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_dswap( 2, &vn1[pvt], n+offset, &vn1[k], n+offset );
            #else
                //magma_sswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_sswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_sswap(2, &vn1[pvt], n+offset, &vn1[k], n+offset);
            #endif
        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/

//#define RIGHT_UPDATE
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(offset+nb, 0), lda,
                                    F(k,         0), ldf,
                         c_one,     A(offset+nb, k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            /*blasf77_cgemv( MagmaNoTransStr, &i__1, &i__2,
                           &c_neg_one, A(rk, 0), &lda,
                                       F(k,  0), &ldf,
                           &c_one,     A(rk, k), &ione );*/
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(rk, 0), lda,
                                    F(k,  0), ldf,
                         c_one,     A(rk, k), ione );
#endif

            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/
        }
        
        /*  Generate elementary reflector H(k). */
        magma_clarfg_gpu(m-rk, A(rk, k), A(rk + 1, k), &tau[k], &vn1[k], &Aks[k]);

        //Akk = *A(rk, k);
        //*A(rk, k) = c_one;
        //magma_cgetvector( 1, &Aks[k],  1, &Akk,     1 );

        /* needed to avoid the race condition */
        if (k == 0) magma_csetvector(  1,    &c_one,       1, A(rk, k), 1 );
        else        magma_ccopymatrix( 1, 1, A(offset, 0), 1, A(rk, k), 1 );

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1 || k > 0) magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;

            /* Send the vector to the GPU */
            //magma_csetmatrix( i__1, 1, A(rk, k), lda, dA(rk,k), ldda );

            /* Multiply on GPU */
            // was CALL CGEMV( 'Conjugate transpose', M-RK+1, N-K,
            //                 TAU( K ), A( RK,  K+1 ), LDA,
            //                           A( RK,  K   ), 1,
            //                 CZERO,    F( K+1, K   ), 1 )
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            magma_cgemv( MagmaConjTrans, m-rk, n-k-1,
                         tauk,   A( rk,  k+1 ), lda,
                                 A( rk,  k   ), 1,
                         c_zero, F( k+1, k   ), 1 );
            //magma_cscal( m-rk, tau[k], F( k+1, k), 1 );
            //magma_int_t i__3 = nb-k-1;
            //magma_int_t i__4 = i__2 - i__3;
            //magma_int_t i__5 = nb-k;
            //magma_cgemv( MagmaConjTrans, i__1 - i__5, i__2 - i__3,
            //             tau[k], dA(rk +i__5, k+1+i__3), ldda,
            //                     dA(rk +i__5, k       ), ione,
            //             c_zero, dF(k+1+i__3, k       ), ione );
            
            //magma_cgetmatrix_async( i__2-i__3, 1,
            //                        dF(k + 1 +i__3, k), i__2,
            //                        F (k + 1 +i__3, k), i__2, stream );
            
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__3,
            //               &tau[k], A(rk,  k+1), &lda,
            //                        A(rk,  k  ), &ione,
            //               &c_zero, F(k+1, k  ), &ione );
            
            //magma_queue_sync( stream );
            //blasf77_cgemv( MagmaConjTransStr, &i__5, &i__4,
            //               &tau[k], A(rk, k+1+i__3), &lda,
            //                        A(rk, k       ), &ione,
            //               &c_one,  F(k+1+i__3, k ), &ione );
        }
        
        /* Padding F(1:K,K) with zeros.
        for (j = 0; j <= k; ++j) {
            magma_csetvector( 1, &c_zero, 1, F(j, k), 1 );
        }*/
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K)                        - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K).
           F(1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K)
                    := tau(K)(A(RK:M,K+1:N)' - F(1:N,1:K-1)*A(RK:M,1:K-1)') A(RK:M,K)
           so, F is (updated A)*V */
        //if (k > 0 && k < n-1) {
        if (k > 0) {
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            z__1 = MAGMA_C_NEGATE( tauk );
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(offset+nb, 0), lda,
                                 A(offset+nb, k), ione,
                         c_zero, auxv, ione );
            
            i__1 = k;
            magma_cgemv( MagmaNoTrans, n-k-1, i__1,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__2,
            //               &z__1,   A(rk, 0), &lda,
            //                        A(rk, k), &ione,
            //               &c_zero, auxv, &ione );

            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(rk, 0), lda,
                                 A(rk, k), ione,
                         c_zero, auxv, ione );
            
            //i__1 = k;
            //blasf77_cgemv( MagmaNoTransStr, &n, &i__1,
            //               &c_one, F(0,0), &ldf,
            //                       auxv,   &ione,
            //               &c_one, F(0,k), &ione );
            /*magma_cgemv( MagmaNoTrans, n, i__1,
                           c_one, F(0,0), ldf,
                                  auxv,   ione,
                           c_one, F(0,k), ione );*/
            /* I think we only need stricly lower-triangular part :) */
            magma_cgemv( MagmaNoTrans, n-k-1, i__2,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#endif
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            //blasf77_cgemm( MagmaNoTransStr, MagmaConjTransStr, &ione, &i__1, &i__2,
            //               &c_neg_one, A(rk, 0  ), &lda,
            //                           F(k+1,0  ), &ldf,
            //               &c_one,     A(rk, k+1), &lda );
#ifdef RIGHT_UPDATE
            /* right-looking update of rows,                     */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, nb-k, i__1, ione,
                         c_neg_one, A(rk,  k  ), lda,
                                    F(k+1, k  ), ldf,
                         c_one,     A(rk,  k+1), lda );
#else
            /* left-looking update of rows,                     *
             * since F=A'v with original A, so no right-looking */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, ione, i__1, i__2,
                         c_neg_one, A(rk, 0  ), lda,
                                    F(k+1,0  ), ldf,
                         c_one,     A(rk, k+1), lda );
#endif
        }
        
        /* Update partial column norms. */
        if (rk < min(m, n+offset)-1 ) {
            magmablas_scnrm2_row_check_adjust(n-k-1, tol3z, &vn1[k+1], &vn2[k+1], A(rk,k+1), lda, lsticcs);

            magma_device_sync();
            #if defined(PRECISION_d) || defined(PRECISION_z)
            magma_sgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #else
            magma_sgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #endif
        }


        /*if (rk < lastrk) {
            for (j = k + 1; j < n; ++j) {
                if (vn1[j] != 0.) {
                    // NOTE: The following 4 lines follow from the analysis in
                    //   Lapack Working Note 176.
                    temp = MAGMA_C_ABS( *A(rk,j) ) / vn1[j];
                    temp = max( 0., ((1. + temp) * (1. - temp)) );

                    d__1 = vn1[j] / vn2[j];
                    temp2 = temp * (d__1 * d__1);

                    if (temp2 <= tol3z) {
                        vn2[j] = (float) lsticc;
                        lsticc = j;
                    } else {
                        vn1[j] *= magma_ssqrt(temp);
                    }
                }
            }
        }*/
        
        //*A(rk, k) = Akk;
        //magma_csetvector( 1, &Akk, 1, A(rk, k), 1 );
        //magma_cswap( 1, &Aks[k], 1, A(rk, k), 1 );
        
        ++k;
    }
    magma_ccopymatrix( 1, k, Aks, 1, A(offset, 0), lda+1 );

    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        /* Send F to the GPU
        magma_csetmatrix( i__2, *kb,
                          F (*kb, 0), ldf,
                          dF(*kb, 0), i__2 );*/

        magma_cgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, A(rk+1, 0  ), lda,
                                F(*kb,  0  ), ldf,
                     c_one,     A(rk+1, *kb), lda );
    }
    /* Recomputation of difficult columns. */
    if ( lsticc > 0 ) {
        // printf( " -- recompute dnorms --\n" );
        magmablas_scnrm2_check(m-rk-1, n-*kb, A(rk+1,*kb), lda,
                               &vn1[*kb], lsticcs);
        magma_scopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb);
    /*while( lsticc > 0 ) {
        itemp = (magma_int_t)(vn2[lsticc] >= 0. ? floor(vn2[lsticc] + .5) : -floor(.5 - vn2[lsticc]));
        i__1 = m - rk - 1;
        if (lsticc <= nb)
            vn1[lsticc] = magma_cblas_scnrm2( i__1, A(rk+1,lsticc), ione );
        else {
            // Where is the data, CPU or GPU ?
            float r1, r2;
            
            r1 = magma_cblas_scnrm2( nb-k, A(rk+1,lsticc), ione );
            r2 = magma_scnrm2(m-offset-nb, dA(offset + nb + 1, lsticc), ione);
            
            vn1[lsticc] = magma_ssqrt(r1*r1+r2*r2);
        }
        
        // NOTE: The computation of VN1( LSTICC ) relies on the fact that
        //   SNRM2 does not fail on vectors with norm below the value of SQRT(SLAMCH('S'))
        vn2[lsticc] = vn1[lsticc];
        lsticc = itemp;*/
    }
    magma_free(Aks);
    magma_free(lsticcs);

    return MAGMA_SUCCESS;
} /* magma_claqps */
示例#7
0
/**
    Purpose
    =======

    CLAHEF computes a partial factorization of a complex Hermitian
    matrix A using the Bunch-Kaufman diagonal pivoting method. The
    partial factorization has the form:

    A  =  ( I  U12 ) ( A11  0  ) (  I    0   )  if UPLO = 'U', or:
          ( 0  U22 ) (  0   D  ) ( U12' U22' )

    A  =  ( L11  0 ) (  D   0  ) ( L11' L21' )  if UPLO = 'L'
          ( L21  I ) (  0  A22 ) (  0    I   )

    where the order of D is at most NB. The actual order is returned in
    the argument KB, and is either NB or NB-1, or N if N <= NB.
    Note that U' denotes the conjugate transpose of U.

    CLAHEF is an auxiliary routine called by CHETRF. It uses blocked code
    (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
    A22 (if UPLO = 'L').

    Arguments
    ---------
    @param[in]
    UPLO    CHARACTER
            Specifies whether the upper or lower triangular part of the
            Hermitian matrix A is stored:
      -     = 'U':  Upper triangular
      -     = 'L':  Lower triangular

    @param[in]
    N       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in]
    NB      INTEGER
            The maximum number of columns of the matrix A that should be
            factored.  NB should be at least 2 to allow for 2-by-2 pivot
            blocks.

    @param[out]
    KB      INTEGER
            The number of columns of A that were actually factored.
            KB is either NB-1 or NB, or N if N <= NB.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
            n-by-n upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = 'L', the
            leading n-by-n lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit, A contains details of the partial factorization.

    @param[in]
    LDA     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    ipiv    INTEGER array, dimension (N)
            Details of the interchanges and the block structure of D.
            If UPLO = 'U', only the last KB elements of ipiv are set;
            if UPLO = 'L', only the first KB elements are set.
    \n
            If ipiv(k) > 0, then rows and columns k and ipiv(k) were
            interchanged and D(k,k) is a 1-by-1 diagonal block.
            If UPLO = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and
            columns k-1 and -ipiv(k) were interchanged and D(k-1:k,k-1:k)
            is a 2-by-2 diagonal block.  If UPLO = 'L' and ipiv(k) =
            ipiv(k+1) < 0, then rows and columns k+1 and -ipiv(k) were
            interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

    @param[out]
    W       (workspace) COMPLEX array, dimension (LDW,NB)

    @param[in]
    LDW     INTEGER
            The leading dimension of the array W.  LDW >= max(1,N).

    @param[out]
    INFO    INTEGER
      -     = 0: successful exit
      -     > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                 has been completed, but the block diagonal matrix D is
                 exactly singular.

    @ingroup magma_chetrf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_clahef_gpu(
    magma_uplo_t uplo, magma_int_t n, magma_int_t nb, magma_int_t *kb,
    magmaFloatComplex *hA, magma_int_t lda,
    magmaFloatComplex_ptr dA, size_t dA_offset, magma_int_t ldda,
    magma_int_t *ipiv,
    magmaFloatComplex_ptr dW, size_t dW_offset, magma_int_t lddw,
    magma_queue_t queue,
    magma_int_t *info)
{
    /* .. Parameters .. */
    float d_one   = 1.0;
    float d_zero  = 0.0;
    float d_eight = 8.0;
    float d_seven = 7.0;
#if defined(PRECISION_c)
    float  f_zero =  0.0;
#endif
    magmaFloatComplex c_one  =  MAGMA_C_ONE;
    magmaFloatComplex c_mone = -MAGMA_C_ONE;
    magma_int_t upper = (uplo == MagmaUpper);
    magma_int_t ione = 1;

    /* .. Local Scalars .. */
    magma_int_t imax = 0, jmax = 0, kk, kkW, kp, kstep, iinfo;
    float   abs_akk, alpha, colmax, R1, rowmax;
    magmaFloatComplex Zimax, Z;

#define dA(i, j)  dA, dA_offset + (j)*ldda  + (i)
#define dW(i, j)  dW, dW_offset + (j)*lddw  + (i)
#define  A(i, j) (hA + (j)*lda   + (i))

    /* .. Executable Statements .. */
    *info = 0;

    /* Initialize alpha for use in choosing pivot block size. */
    alpha = ( d_one+sqrt( d_seven ) ) / d_eight;

    magma_event_t event = NULL;
    if( upper ) {
        /* Factorize the trailing columns of A using the upper triangle
           of A and working backwards, and compute the matrix W = U12*D
           for use in updating A11 (note that conjg(W) is actually stored)

           K is the main loop index, decreasing from N in steps of 1 or 2

           KW is the column of W which corresponds to column K of A   */
        int k, kw = 0;
        for (k = n-1; k+1 > max(n-nb+1, nb); k -= kstep) {
            kw = nb - (n-k);
            /* Copy column K of A to column KW of W and update it */

            magma_ccopy( k+1, dA( 0, k ), 1, dW( 0, kw ), 1, queue );

            // set imaginary part of diagonal to be zero
#if defined(PRECISION_z)
            magma_dsetvector_async( 1, &d_zero, 1,
                                    dW, 2*(k+ kw*lddw+dW_offset)+1, 1, queue, &event);
            magma_queue_sync( queue );
#elif defined(PRECISION_c)
            magma_ssetvector_async( 1, &f_zero, 1,
                                    dW, 2*(k+ kw*lddw+dW_offset)+1, 1, queue, &event);
            magma_queue_sync( queue );
#endif

            if (k+1 < n) {
                magma_cgemv( MagmaNoTrans, k+1, n-(k+1), c_mone, dA( 0, k+1 ), ldda,
                             dW( k, kw+1 ), lddw, c_one, dW( 0, kw ), ione, queue );

                // set imaginary part of diagonal to be zero
#if defined(PRECISION_z)
                magma_dsetvector_async( 1, &d_zero, 1,
                                        dW, 2*(k+ kw*lddw+dW_offset)+1, 1, queue, &event );
                magma_queue_sync( queue );
#elif defined(PRECISION_c)
                magma_ssetvector_async( 1, &f_zero, 1,
                                        dW, 2*(k+ kw*lddw+dW_offset)+1, 1, queue, &event );
                magma_queue_sync( queue );
#endif
            }

            kstep = 1;

            /* Determine rows and columns to be interchanged and whether
               a 1-by-1 or 2-by-2 pivot block will be used */
            magma_cgetvector_async( 1, dW( k, kw ), 1, &Z, 1, queue, &event );
            magma_queue_sync( queue );
            abs_akk = fabs( MAGMA_C_REAL( Z ) );

            /* imax is the row-index of the largest off-diagonal element in
               column K, and colmax is its absolute value */
            if( k > 0 ) {
                // magma is one-base
                imax = magma_icamax( k, dW( 0, kw ), 1, queue ) - 1;
                magma_cgetvector( 1, dW( imax, kw ), 1, &Z, 1, queue );
                colmax = MAGMA_C_ABS1( Z );
            } else {
                colmax = d_zero;
            }
            if( max( abs_akk, colmax ) == 0.0 ) {

                /* Column K is zero: set INFO and continue */
                if ( *info == 0 ) *info = k;

                kp = k;

#if defined(PRECISION_z)
                magma_dsetvector_async( 1, &d_zero, 1,
                                        dA, 2*(k+ k*ldda+dA_offset)+1, 1, queue, &event );
                magma_queue_sync( queue );
#elif defined(PRECISION_c)
                magma_ssetvector_async( 1, &f_zero, 1,
                                        dA, 2*(k+ k*ldda+dA_offset)+1, 1, queue, &event );
                magma_queue_sync( queue );
#endif
            } else {
                if( abs_akk >= alpha*colmax ) {

                    /* no interchange, use 1-by-1 pivot block */
                    kp = k;
                } else {

                    /* Copy column imax to column KW-1 of W and update it */
                    magma_ccopy( imax+1, dA( 0, imax ), 1, dW( 0, kw-1 ), 1, queue );
#if defined(PRECISION_z)
                    magma_dsetvector_async( 1, &d_zero, 1,
                                            dW, 2*(imax+ (kw-1)*lddw+dW_offset)+1, 1, queue, &event );
#elif defined(PRECISION_c)
                    magma_ssetvector_async( 1, &f_zero, 1,
                                            dW, 2*(imax+ (kw-1)*lddw+dW_offset)+1, 1, queue, &event );
#endif

#if defined(PRECISION_z) || defined(PRECISION_c)
                    magmablas_clacpy_cnjg( k-imax, dA(imax,imax+1), ldda, dW(imax+1,kw-1), 1, queue );
#else
                    magma_ccopy( k-imax, dA(imax,imax+1), ldda, dW(imax+1,kw-1), 1, queue );
#endif
                    if( k+1 < n ) {
                        magma_cgemv( MagmaNoTrans, k+1, n-(k+1), c_mone,
                                     dA( 0, k+1 ), ldda, dW( imax, kw+1 ), lddw,
                                     c_one, dW( 0, kw-1 ), ione, queue );

#if defined(PRECISION_z)
                        magma_dsetvector_async( 1, &d_zero, 1,
                                                dW, 2*(imax+ (kw-1)*lddw+dW_offset)+1, 1, queue, &event );
#elif defined(PRECISION_c)
                        magma_ssetvector_async( 1, &f_zero, 1,
                                                dW, 2*(imax+ (kw-1)*lddw+dW_offset)+1, 1, queue, &event );
#endif
                    }
                    magma_cgetvector_async( 1, dW( imax, kw-1 ), 1, &Zimax, 1, queue, &event );
                    magma_queue_sync( queue );

                    /* jmax is the column-index of the largest off-diagonal
                      element in row imax, and rowmax is its absolute value */
                    jmax = imax + magma_icamax( k-imax, dW( imax+1, kw-1 ), 1, queue );
                    magma_cgetvector( 1, dW( jmax, kw-1 ), 1, &Z, 1, queue );
                    rowmax = MAGMA_C_ABS1( Z );
                    if ( imax > 0 ) {
                        // magma is one-base
                        jmax = magma_icamax( imax, dW( 0, kw-1 ), 1, queue ) - 1;
                        magma_cgetvector( 1, dW( jmax, kw-1 ), 1, &Z, 1, queue );
                        rowmax = max( rowmax, MAGMA_C_ABS1( Z  ) );
                    }

                    if( abs_akk >= alpha*colmax*( colmax / rowmax ) ) {

                        /* no interchange, use 1-by-1 pivot block */
                        kp = k;
                    } else if ( fabs( MAGMA_C_REAL( Zimax ) ) >= alpha*rowmax ) {

                        /* interchange rows and columns K and imax, use 1-by-1
                           pivot block */
                        kp = imax;

                        /* copy column KW-1 of W to column KW */
                        magma_ccopy( k+1, dW( 0, kw-1 ), 1, dW( 0, kw ), 1, queue );
                    } else {

                        /* interchange rows and columns K-1 and imax, use 2-by-2
                           pivot block */
                        kp = imax;
                        kstep = 2;
                    }
                }
                kk = k - kstep + 1;
                kkW = nb - (n - kk);

                /* Updated column kp is already stored in column kkW of W */
                if( kp != kk ) {

                    /* Interchange rows kk and kp in last kk columns of A and W */
                    // note: row-swap A(:,kk)
                    magmablas_cswap( n-kk, dA( kk, kk ), ldda, dA( kp, kk ), ldda, queue );
                    magmablas_cswap( n-kk, dW( kk, kkW), lddw, dW( kp, kkW), lddw, queue );

                    /* Copy non-updated column kk to column kp */
#if defined(PRECISION_z) || defined(PRECISION_c)
                    magmablas_clacpy_cnjg( kk-kp-1, dA( kp+1, kk ), 1, dA( kp, kp+1 ), ldda, queue );
#else
                    magma_ccopy( kk-kp-1, dA( kp+1, kk ), 1, dA( kp, kp+1 ), ldda, queue );
#endif

                    // now A(kp,kk) should be A(kk,kk), and copy to A(kp,kp)
                    magma_ccopy( kp+1, dA( 0, kk ), 1, dA( 0, kp ), 1, queue );
#if defined(PRECISION_z)
                    magma_dsetvector_async( 1, &d_zero, 1,
                                            dA, 2*(kp+ kp*ldda+dA_offset)+1, 1, queue, &event );
                    magma_queue_sync( queue );
#elif defined(PRECISION_c)
                    magma_ssetvector_async( 1, &f_zero, 1,
                                            dA, 2*(kp+ kp*ldda+dA_offset)+1, 1, queue, &event );
#endif
                }
                if( kstep == 1 ) {

                    /* 1-by-1 pivot block D(k): column KW of W now holds
                          W(k) = U(k)*D(k)
                          where U(k) is the k-th column of U
                          Store U(k) in column k of A */
                    magma_ccopy( k+1, dW( 0, kw ), 1, dA( 0, k ), 1, queue );
                    if ( k > 0 ) {
                        magma_cgetvector_async( 1, dA( k, k ), 1, &Z, 1, queue, &event );
                        magma_queue_sync( queue );
                        R1 = d_one / MAGMA_C_REAL( Z );
                        magma_csscal( k, R1, dA( 0, k ), 1, queue );

                        /* Conjugate W(k) */
#if defined(PRECISION_z) || defined(PRECISION_c)
                        magmablas_clacpy_cnjg( k, dW( 0, kw ), 1, dW( 0, kw ), 1, queue );
#endif
                    }
                } else {

                    /* 2-by-2 pivot block D(k): columns KW and KW-1 of W now hold
                      ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
                      where U(k) and U(k-1) are the k-th and (k-1)-th columns of U */
                    if( k > 1 ) {
                        /* Store U(k) and U(k-1) in columns k and k-1 of A */
                        magmablas_clascl_2x2( MagmaUpper,
                                              k-1, dW(0, kw-1), lddw, dA(0,k-1), ldda, &iinfo, queue );
                    }

                    /* Copy D(k) to A */
                    magma_ccopymatrix( 2, 2, dW( k-1, kw-1 ), lddw, dA( k-1, k-1 ), ldda, queue );

                    /* Conjugate W(k) and W(k-1) */
#if defined(PRECISION_z) || defined(PRECISION_c)
                    magmablas_clacpy_cnjg( k,   dW( 0, kw ),   1, dW( 0, kw ),   1, queue );
                    magmablas_clacpy_cnjg( k-1, dW( 0, kw-1 ), 1, dW( 0, kw-1 ), 1, queue );
#endif
                }
            }

            /* Store details of the interchanges in ipiv */
            if( kstep == 1 ) {
                ipiv[ k ] = 1+kp;
            } else {
                ipiv[ k ] = -(1+kp);
                ipiv[ k-1 ] = -(1+kp);
            }
        }
        /* Update the upper triangle of A11 (= A(1:k,1:k)) as
            A11 := A11 - U12*D*U12' = A11 - U12*W'
           computing blocks of NB columns at a time (note that conjg(W) is
           actually stored) */
        kw = nb - (n-k);
        for (int j = ( k / nb )*nb; j >= 0; j -= nb ) {
            int jb = min( nb, k-j+1 );

#ifdef SYMMETRIC_UPDATE
            /* Update the upper triangle of the diagonal block */
            for (int jj = j; jj < j + jb; jj++) {
#if defined(PRECISION_z)
                magma_dsetvector_async( 1, &d_zero, 1,
                                        dA, 2*(jj+ jj*ldda+dA_offset)+1, 1, queue, &event );
#elif defined(PRECISION_c)
                magma_ssetvector_async( 1, &f_zero, 1,
                                        dA, 2*(jj+ jj*ldda+dA_offset)+1, 1, queue, &event );
#endif
                magma_cgemv( MagmaNoTrans, jj-j+1, n-(k+1), c_mone,
                             dA( j, k+1 ), ldda, dW( jj, kw+1 ), lddw, c_one,
                             dA( j, jj ), 1, queue );
#if defined(PRECISION_z)
                magma_dsetvector_async( 1, &d_zero, 1,
                                        dA, 2*(jj+ jj*ldda+dA_offset)+1, 1, queue, &event );
#elif defined(PRECISION_c)
                magma_ssetvector_async( 1, &f_zero, 1,
                                        dA, 2*(jj+ jj*ldda+dA_offset)+1, 1, queue, &event );
#endif
            }
            /* Update the rectangular superdiagonal block */
            magma_cgemm( MagmaNoTrans, MagmaTrans, j, jb, n-(k+1),
                         c_mone, dA( 0, k+1 ), ldda, dW( j, kw+1 ), lddw,
                         c_one, dA( 0, j ), ldda, queue );
#else
#if defined(PRECISION_z)
            magmablas_dlaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j+ j*ldda+dA_offset)+1, 2*(1+ldda), queue );
#elif defined(PRECISION_c)
            magmablas_slaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j+ j*ldda+dA_offset)+1, 2*(1+ldda), queue );
#endif
            magma_cgemm( MagmaNoTrans, MagmaTrans, j+jb, jb, n-(k+1),
                         c_mone, dA( 0, k+1 ),  ldda,
                         dW( j, kw+1 ), lddw,
                         c_one,  dA( 0, j ),    ldda, queue );
#if defined(PRECISION_z)
            magmablas_dlaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j+ j*ldda+dA_offset)+1, 2*(1+ldda), queue );
#elif defined(PRECISION_c)
            magmablas_slaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j+ j*ldda+dA_offset)+1, 2*(1+ldda), queue );
#endif
#endif
        }

        /* Put U12 in standard form by partially undoing the interchanges in columns k+1:n */
        for (int j = k+1; j < n;)
        {
            int jj = j;
            int jp = ipiv[ j ];
            if( jp < 0 ) {
                jp = -jp;
                j = j + 1;
            }
            j = j + 1;
            jp = jp - 1;
            if( jp != jj && j < n )
                magmablas_cswap( n-j, dA( jp, j ), ldda, dA( jj, j ), ldda, queue );
        }

        // copying the panel back to CPU
        magma_cgetmatrix_async( n, n-(k+1), dA(0,k+1), ldda, A(0,k+1), lda, queue, &event );
        magma_queue_sync( queue );

        /* Set KB to the number of columns factorized */
        *kb = n - (k+1);

    } else {
        /* Factorize the leading columns of A using the lower triangle
           of A and working forwards, and compute the matrix W = L21*D
           for use in updating A22 (note that conjg(W) is actually stored)

           K is the main loop index, increasing from 1 in steps of 1 or 2 */

        int k;
        for (k = 0; k < min(nb-1,n); k += kstep) {

            /* Copy column K of A to column K of W and update it */
            /* -------------------------------------------------------------- */
            magma_ccopy( n-k, dA( k, k ), 1, dW( k, k ), 1, queue );

            // set imaginary part of diagonal to be zero
#if defined(PRECISION_z)
            magma_dsetvector_async( 1, &d_zero, 1,
                                    dW, 2*(k*lddw+k+dW_offset)+1, 1, queue, &event);
            magma_queue_sync( queue );
#elif defined(PRECISION_c)
            magma_ssetvector_async( 1, &f_zero, 1,
                                    dW, 2*(k*lddw+k+dW_offset)+1, 1, queue, &event);
            magma_queue_sync( queue );
#endif
            /* -------------------------------------------------------------- */

            magma_cgemv( MagmaNoTrans, n-k, k, c_mone, dA( k, 0 ), ldda,
                         dW( k, 0 ), lddw, c_one, dW( k, k ), ione, queue );
            // re-set imaginary part of diagonal to be zero
#if defined(PRECISION_z)
            magma_dsetvector_async( 1, &d_zero, 1,
                                    dW, 2*(k*lddw+k+dW_offset)+1, 1, queue, &event );
            magma_queue_sync( queue );
#elif defined(PRECISION_c)
            magma_ssetvector_async( 1, &f_zero, 1,
                                    dW, 2*(k*lddw+k+dW_offset)+1, 1, queue, &event );
            magma_queue_sync( queue );
#endif

            kstep = 1;

            /* Determine rows and columns to be interchanged and whether
               a 1-by-1 or 2-by-2 pivot block will be used */
            magma_cgetvector_async( 1, dW( k, k ), 1, &Z, 1, queue, &event );
            magma_queue_sync( queue );
            abs_akk = fabs( MAGMA_C_REAL( Z ) );

            /* imax is the row-index of the largest off-diagonal element in
               column K, and colmax is its absolute value */
            if( k < n-1 ) {
                // magmablas is one-base
                imax = k + magma_icamax( n-k-1, dW(k+1,k), 1, queue );

                magma_cgetvector( 1, dW( imax,k ), 1, &Z, 1, queue );
                colmax = MAGMA_C_ABS1( Z );

            } else {
                colmax = d_zero;
            }

            if ( max( abs_akk, colmax ) == 0.0 ) {

                /* Column K is zero: set INFO and continue */
                if( *info == 0 ) *info = k;
                kp = k;

                // make sure the imaginary part of diagonal is zero
#if defined(PRECISION_z)
                magma_dsetvector_async( 1, &d_zero, 1,
                                        dA, 2*(k*ldda+k+dA_offset)+1, 1, queue, &event );
                magma_queue_sync( queue );
#elif defined(PRECISION_c)
                magma_ssetvector_async( 1, &f_zero, 1,
                                        dA, 2*(k*ldda+k+dA_offset)+1, 1, queue, &event );
                magma_queue_sync( queue );
#endif
            } else {
                if ( abs_akk >= alpha*colmax ) {

                    /* no interchange, use 1-by-1 pivot block */

                    kp = k;
                } else {
                    /* Copy column imax to column K+1 of W and update it */
#if defined(PRECISION_z) || defined(PRECISION_c)
                    magmablas_clacpy_cnjg( imax-k, dA(imax,k), ldda, dW(k,k+1), 1, queue );
#else
                    magma_ccopy( imax-k, dA( imax, k ), ldda, dW( k, k+1 ), 1, queue );
#endif

                    magma_ccopy( n-imax, dA( imax, imax ), 1, dW( imax, k+1 ), 1, queue );
#if defined(PRECISION_z)
                    magma_dsetvector_async( 1, &d_zero, 1,
                                            dW, 2*((k+1)*lddw+imax+dW_offset)+1, 1, queue, &event);
                    magma_queue_sync( queue );
#elif defined(PRECISION_c)
                    magma_ssetvector_async( 1, &f_zero, 1,
                                            dW, 2*((k+1)*lddw+imax+dW_offset)+1, 1, queue, &event);
                    magma_queue_sync( queue );
#endif

                    magma_cgemv( MagmaNoTrans, n-k, k, c_mone, dA( k, 0 ), ldda,
                                 dW( imax, 0 ), lddw, c_one, dW( k, k+1 ), ione, queue );
#if defined(PRECISION_z)
                    magma_dsetvector_async( 1, &d_zero, 1,
                                            dW, 2*((k+1)*lddw+imax+dW_offset)+1, 1, queue, &event);
                    magma_queue_sync( queue );
#elif defined(PRECISION_c)
                    magma_ssetvector_async( 1, &f_zero, 1,
                                            dW, 2*((k+1)*lddw+imax+dW_offset)+1, 1, queue, &event);
                    magma_queue_sync( queue );
#endif

                    magma_cgetvector_async( 1, dW(imax,k+1), 1, &Zimax, 1, queue, &event);
                    magma_queue_sync( queue );

                    /* jmax is the column-index of the largest off-diagonal
                       element in row imax, and rowmax is its absolute value */

                    // magmablas is one-base
                    jmax = k-1 + magma_icamax( imax-k, dW(k, k+1), 1, queue );

                    magma_cgetvector( 1, dW(jmax,k+1), 1, &Z, 1, queue );
                    rowmax = MAGMA_C_ABS1( Z );
                    if( imax < n-1 ) {
                        // magmablas is one-base
                        jmax = imax + magma_icamax( (n-1)-imax, dW(imax+1,k+1), 1, queue);
                        magma_cgetvector( 1, dW(jmax,k+1), 1, &Z, 1, queue );
                        rowmax = max( rowmax, MAGMA_C_ABS1( Z ) );
                    }

                    if( abs_akk >= alpha*colmax*( colmax / rowmax ) ) {

                        /* no interchange, use 1-by-1 pivot block */
                        kp = k;
                    } else if( fabs( MAGMA_C_REAL( Zimax ) ) >= alpha*rowmax ) {

                        /* interchange rows and columns K and imax, use 1-by-1
                           pivot block */
                        kp = imax;

                        /* copy column K+1 of W to column K */
                        magma_ccopy( n-k, dW( k, k+1 ), 1, dW( k, k ), 1, queue );
                    } else {

                        /* interchange rows and columns K+1 and imax, use 2-by-2
                           pivot block */
                        kp = imax;
                        kstep = 2;
                    }
                }

                kk = k + kstep - 1;

                /* Updated column kp is already stored in column kk of W */
                if( kp != kk ) {

                    /* Copy non-updated column kk to column kp */
                    /* ------------------------------------------------------------------ */
#if defined(PRECISION_z) || defined(PRECISION_c)
                    magmablas_clacpy_cnjg( kp-kk, dA( kk, kk ), 1, dA( kp, kk ), ldda, queue );
#else
                    magma_ccopy( kp-kk, dA( kk, kk ), 1, dA( kp, kk ), ldda, queue );
#endif
                    if ( kp < n ) {
                        magma_ccopy( n-kp, dA( kp, kk), 1, dA( kp, kp ), 1, queue );
                    }
                    /* ------------------------------------------------------------------ */

                    /* Interchange rows kk and kp in first kk columns of A and W */
                    magmablas_cswap( kk+1, dA( kk, 0 ), ldda, dA( kp, 0 ), ldda, queue );
                    magmablas_cswap( kk+1, dW( kk, 0 ), lddw, dW( kp, 0 ), lddw, queue );
                }

                if ( kstep == 1 ) {

                    /* 1-by-1 pivot block D(k): column k of W now holds

                       W(k) = L(k)*D(k)

                       where L(k) is the k-th column of L

                       Store L(k) in column k of A */
                    magma_ccopy( n-k, dW( k, k ), 1, dA( k, k ), 1, queue );

                    if ( k < n-1 ) {
                        magma_cgetvector_async( 1, dA(k,k), 1, &Z, 1, queue, &event );
                        magma_queue_sync( queue );
                        R1 = d_one / MAGMA_C_REAL( Z );
                        magma_csscal((n-1)-k, R1, dA( k+1,k ), 1, queue);

                        /* Conjugate W(k) */
#if defined(PRECISION_z) || defined(PRECISION_c)
                        magmablas_clacpy_cnjg( (n-1)-k, dW( k+1,k ), 1, dW( k+1,k ), 1, queue );
#endif
                    }
                } else {

                    /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold

                    ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)

                    where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    of L */
                    magmablas_clascl_2x2( MagmaLower,
                                          n-(k+2), dW(k,k), lddw, dA(k+2,k), ldda, &iinfo,
                                          queue );

                    /* Copy D(k) to A */
                    magma_ccopymatrix( 2, 2, dW( k, k ), lddw, dA( k, k ), ldda, queue );

                    /* Conjugate W(k) and W(k+1) */
#if defined(PRECISION_z) || defined(PRECISION_c)
                    magmablas_clacpy_cnjg( (n-1)-k,   dW( k+1,k ),  1, dW( k+1,k ),   1, queue );
                    magmablas_clacpy_cnjg( (n-1)-k-1, dW( k+2,k+1), 1, dW( k+2,k+1 ), 1, queue );
#endif
                }
            }

            /* Store details of the interchanges in ipiv */
            if ( kstep == 1 ) {
                ipiv[k] = kp+1;
            } else {
                ipiv[k] = -kp-1;
                ipiv[k+1] = -kp-1;
            }
        }

        /* Update the lower triangle of A22 (= A(k:n,k:n)) as

           A22 := A22 - L21*D*L21' = A22 - L21*W'

           computing blocks of NB columns at a time (note that conjg(W) is
           actually stored) */
        for( int j = k; j < n; j += nb ) {
            int jb = min( nb, n-j );

            /* Update the lower triangle of the diagonal block */

#ifdef SYMMETRIC_UPDATE
            for (int jj = j; jj < j + jb; jj++) {
                int jnb = j + jb - jj;

                /* -------------------------------------------------------- */
                magma_cgemv( MagmaNoTrans, jnb, k, c_mone, dA( jj, 0 ), ldda,
                             dW( jj, 0 ), lddw, c_one, dA( jj, jj ), ione, queue );
                /* -------------------------------------------------------- */
            }

            /* Update the rectangular subdiagonal block */

            if( j+jb < n ) {
                int nk = n - (j+jb);

                /* -------------------------------------------- */
                magma_cgemm( MagmaNoTrans, MagmaTrans, nk, jb, k,
                             c_mone, dA( j+jb, 0 ), ldda,
                             dW( j, 0 ),    lddw,
                             c_one,  dA( j+jb, j ), ldda, queue );
                /* ------------------------------------------- */
            }
#else

#if defined(PRECISION_z)
            magmablas_dlaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j*ldda+j+dA_offset)+1, 2*(1+ldda), queue );
#elif defined(PRECISION_c)
            magmablas_slaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j*ldda+j+dA_offset)+1, 2*(1+ldda), queue );
#endif
            magma_cgemm( MagmaNoTrans, MagmaTrans, n-j, jb, k,
                         c_mone, dA( j, 0 ), ldda,
                         dW( j, 0 ), lddw,
                         c_one,  dA( j, j ), ldda, queue );
#if defined(PRECISION_z)
            magmablas_dlaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j*ldda+j+dA_offset)+1, 2*(1+ldda), queue );
#elif defined(PRECISION_c)
            magmablas_slaset(MagmaUpperLower, 1, jb,
                             0, 0, dA, 2*(j*ldda+j+dA_offset)+1, 2*(1+ldda), queue );
#endif
#endif
        }

        /* Put L21 in standard form by partially undoing the interchanges
           in columns 1:k-1 */
        for (int j = k; j > 0;) {
            int jj = j;
            int jp = ipiv[j-1];
            if( jp < 0 ) {
                jp = -jp;
                j--;
            }
            j--;
            if ( jp != jj && j >= 1 ) {
                magmablas_cswap( j, dA( jp-1,0 ), ldda, dA( jj-1,0 ), ldda, queue );
            }
        }
        // copying the panel back to CPU
        magma_cgetmatrix_async( n, k, dA(0,0), ldda, A(0,0), lda, queue, &event );
        magma_queue_sync( queue );

        /* Set KB to the number of columns factorized */
        *kb = k;
    }

    return *info;
    /* End of CLAHEF */
}
示例#8
0
extern "C" magma_int_t
magma_cpidr_strms(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_c_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;

    // prepare solver feedback
    solver_par->solver = Magma_PIDRMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->init_res = 0.0;
    solver_par->final_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->runtime = 0.0;

    // constants
    const magmaFloatComplex c_zero = MAGMA_C_ZERO;
    const magmaFloatComplex c_one = MAGMA_C_ONE;
    const magmaFloatComplex c_n_one = MAGMA_C_NEG_ONE;

    // internal user options
    const magma_int_t smoothing = 1;   // 0 = disable, 1 = enable
    const float angle = 0.7;          // [0-1]

    // local variables
    magma_int_t iseed[4] = {0, 0, 0, 1};
    magma_int_t dof;
    magma_int_t s;
    magma_int_t distr;
    magma_int_t k, i, sk;
    magma_int_t innerflag;
    magma_int_t ldd;
    magma_int_t q;
    float residual;
    float nrm;
    float nrmb;
    float nrmr;
    float nrmt;
    float rho;
    magmaFloatComplex om;
    magmaFloatComplex gamma;

    // matrices and vectors
    magma_c_matrix dxs = {Magma_CSR};
    magma_c_matrix dr = {Magma_CSR}, drs = {Magma_CSR};
    magma_c_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR};
    magma_c_matrix dG = {Magma_CSR}, dGcol = {Magma_CSR};
    magma_c_matrix dU = {Magma_CSR};
    magma_c_matrix dM = {Magma_CSR};
    magma_c_matrix df = {Magma_CSR};
    magma_c_matrix dt = {Magma_CSR}, dtt = {Magma_CSR};
    magma_c_matrix dc = {Magma_CSR};
    magma_c_matrix dv = {Magma_CSR};
    magma_c_matrix dlu = {Magma_CSR};
    magma_c_matrix dskp = {Magma_CSR};
    magma_c_matrix dalpha = {Magma_CSR};
    magma_c_matrix dbeta = {Magma_CSR};
    magmaFloatComplex *hMdiag = NULL;
    magmaFloatComplex *hskp = NULL;
    magmaFloatComplex *halpha = NULL;
    magmaFloatComplex *hbeta = NULL;
    magmaFloatComplex *d1 = NULL, *d2 = NULL;
    
    // queue variables
    const magma_int_t nqueues = 3;     // number of queues
    magma_queue_t queues[nqueues];    

    // chronometry
    real_Double_t tempo1, tempo2;

    // create additional queues
    queues[0] = queue;
    for ( q = 1; q < nqueues; q++ ) {
        magma_queue_create( queue->device(), &(queues[q]) );
    }

    // initial s space
    // TODO: add option for 's' (shadow space number)
    // Hack: uses '--restart' option as the shadow space number.
    //       This is not a good idea because the default value of restart option is used to detect
    //       if the user provided a custom restart. This means that if the default restart value
    //       is changed then the code will think it was the user (unless the default value is
    //       also updated in the 'if' statement below.
    s = 1;
    if ( solver_par->restart != 50 ) {
        if ( solver_par->restart > A.num_cols ) {
            s = A.num_cols;
        } else {
            s = solver_par->restart;
        }
    }
    solver_par->restart = s;

    // set max iterations
    solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter );

    // check if matrix A is square
    if ( A.num_rows != A.num_cols ) {
        //printf("Matrix A is not square.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }

    // |b|
    nrmb = magma_scnrm2( b.num_rows, b.dval, 1, queue );
    if ( nrmb == 0.0 ) {
        magma_cscal( x->num_rows, MAGMA_C_ZERO, x->dval, 1, queue );
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // t = 0
    // make t twice as large to contain both, dt and dr
    ldd = magma_roundup( b.num_rows, 32 );
    CHECK( magma_cvinit( &dt, Magma_DEV, ldd, 2, c_zero, queue ));
    dt.num_rows = b.num_rows;
    dt.num_cols = 1;
    dt.nnz = dt.num_rows;

    // redirect the dr.dval to the second part of dt
    CHECK( magma_cvinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue ));
    magma_free( dr.dval );
    dr.dval = dt.dval + ldd;

    // r = b - A x
    CHECK( magma_cresidualvec( A, b, *x, &dr, &nrmr, queue ));
    
    // |r|
    solver_par->init_res = nrmr;
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nrmr;
    }

    // check if initial is guess good enough
    if ( nrmr <= solver_par->atol ||
        nrmr/nrmb <= solver_par->rtol ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // P = randn(n, s)
    // P = ortho(P)
//---------------------------------------
    // P = 0.0
    CHECK( magma_cvinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue ));

    // P = randn(n, s)
    distr = 3;        // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) 
    dof = dP.num_rows * dP.num_cols;
    lapackf77_clarnv( &distr, iseed, &dof, dP.val );

    // transfer P to device
    CHECK( magma_cmtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue ));
    magma_cmfree( &dP, queue );

    // P = ortho(P1)
    if ( dP1.num_cols > 1 ) {
        // P = magma_cqr(P1), QR factorization
        CHECK( magma_cqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue ));
    } else {
        // P = P1 / |P1|
        nrm = magma_scnrm2( dof, dP1.dval, 1, queue );
        nrm = 1.0 / nrm;
        magma_csscal( dof, nrm, dP1.dval, 1, queue );
        CHECK( magma_cmtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue ));
    }
    magma_cmfree( &dP1, queue );
//---------------------------------------

    // allocate memory for the scalar products
    CHECK( magma_cmalloc_pinned( &hskp, 5 ));
    CHECK( magma_cvinit( &dskp, Magma_DEV, 4, 1, c_zero, queue ));

    CHECK( magma_cmalloc_pinned( &halpha, s ));
    CHECK( magma_cvinit( &dalpha, Magma_DEV, s, 1, c_zero, queue ));

    CHECK( magma_cmalloc_pinned( &hbeta, s ));
    CHECK( magma_cvinit( &dbeta, Magma_DEV, s, 1, c_zero, queue ));
    
    // workspace for merged dot product
    CHECK( magma_cmalloc( &d1, max(2, s) * b.num_rows ));
    CHECK( magma_cmalloc( &d2, max(2, s) * b.num_rows ));

    // smoothing enabled
    if ( smoothing > 0 ) {
        // set smoothing solution vector
        CHECK( magma_cmtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue ));

        // tt = 0
        // make tt twice as large to contain both, dtt and drs
        ldd = magma_roundup( b.num_rows, 32 );
        CHECK( magma_cvinit( &dtt, Magma_DEV, ldd, 2, c_zero, queue ));
        dtt.num_rows = dr.num_rows;
        dtt.num_cols = 1;
        dtt.nnz = dtt.num_rows;

        // redirect the drs.dval to the second part of dtt
        CHECK( magma_cvinit( &drs, Magma_DEV, dr.num_rows, 1, c_zero, queue ));
        magma_free( drs.dval );
        drs.dval = dtt.dval + ldd;

        // set smoothing residual vector
        magma_ccopyvector( dr.num_rows, dr.dval, 1, drs.dval, 1, queue );
    }

    // G(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_rows, 32 );
        CHECK( magma_cvinit( &dG, Magma_DEV, ldd, s, c_zero, queue ));
        dG.num_rows = A.num_rows;
    } else {
        CHECK( magma_cvinit( &dG, Magma_DEV, A.num_rows, s, c_zero, queue ));
    }

    // dGcol represents a single column of dG, array pointer is set inside loop
    CHECK( magma_cvinit( &dGcol, Magma_DEV, dG.num_rows, 1, c_zero, queue ));
    magma_free( dGcol.dval );

    // U(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_cols, 32 );
        CHECK( magma_cvinit( &dU, Magma_DEV, ldd, s, c_zero, queue ));
        dU.num_rows = A.num_cols;
    } else {
        CHECK( magma_cvinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue ));
    }

    // M(s,s) = I
    CHECK( magma_cvinit( &dM, Magma_DEV, s, s, c_zero, queue ));
    CHECK( magma_cmalloc_pinned( &hMdiag, s ));
    magmablas_claset( MagmaFull, dM.num_rows, dM.num_cols, c_zero, c_one, dM.dval, dM.ld, queue );

    // f = 0
    CHECK( magma_cvinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue ));

    // c = 0
    CHECK( magma_cvinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue ));

    // v = r
    CHECK( magma_cmtransfer( dr, &dv, Magma_DEV, Magma_DEV, queue ));

    // lu = 0
    CHECK( magma_cvinit( &dlu, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    //--------------START TIME---------------
    // chronometry
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->timing[0] = 0.0;
    }

    om = MAGMA_C_ONE;
    gamma = MAGMA_C_ZERO;
    innerflag = 0;

    // start iteration
    do
    {
        solver_par->numiter++;

        // new RHS for small systems
        // f = P' r
        // Q1
        magma_cgemvmdot_shfl( dP.num_rows, dP.num_cols, dP.dval, dr.dval, d1, d2, df.dval, queues[1] );

        // skp[4] = f(k)
        // Q1
        magma_cgetvector_async( 1, df.dval, 1, &hskp[4], 1, queues[1] );

        // c(k:s) = f(k:s)
        // Q1
        magma_ccopyvector_async( s, df.dval, 1, dc.dval, 1, queues[1] );

        // c(k:s) = M(k:s,k:s) \ f(k:s)
        // Q1
        magma_ctrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, s, dM.dval, dM.ld, dc.dval, 1, queues[1] );

        // shadow space loop
        for ( k = 0; k < s; ++k ) {
            sk = s - k;
            dGcol.dval = dG.dval + k * dG.ld;

            // v = r - G(:,k:s) c(k:s)
            // Q1
            magmablas_cgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, dGcol.dval, dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queues[1] );

            // preconditioning operation 
            // v = L \ v;
            // v = U \ v;
            // Q1
            CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queues[1] )); 
            CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queues[1] )); 

            // sync Q0 --> U(:,k) = U(:,k) - U(:,1:k) * alpha(1:k)
            magma_queue_sync( queues[0] );

            // U(:,k) = om * v + U(:,k:s) c(k:s)
            // Q1
            magmablas_cgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queues[1] );

            // G(:,k) = A U(:,k)
            // Q1
            CHECK( magma_c_spmv( c_one, A, dv, c_zero, dGcol, queues[1] ));
            solver_par->spmv_count++;

            // bi-orthogonalize the new basis vectors
            for ( i = 0; i < k; ++i ) {
                // alpha = P(:,i)' G(:,k)
                // Q1
                halpha[i] = magma_cdotc( dP.num_rows, &dP.dval[i*dP.ld], 1, dGcol.dval, 1, queues[1] );
                // implicit sync Q1 --> alpha = P(:,i)' G(:,k) 

                // alpha = alpha / M(i,i)
                halpha[i] = halpha[i] / hMdiag[i];
                    
                // G(:,k) = G(:,k) - alpha * G(:,i)
                // Q1
                magma_caxpy( dG.num_rows, -halpha[i], &dG.dval[i*dG.ld], 1, dGcol.dval, 1, queues[1] );
            }

            // sync Q1 --> compute new G, skp[4] = f(k
            magma_queue_sync( queues[1] );

            // new column of M = P'G, first k-1 entries are zero
            // M(k:s,k) = P(:,k:s)' G(:,k)
            // Q2
            magma_cgemvmdot_shfl( dP.num_rows, sk, &dP.dval[k*dP.ld], dGcol.dval, d1, d2, &dM.dval[k*dM.ld+k], queues[2] );

            // U(:,k) = v
            // Q0
            magma_ccopyvector_async( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queues[0] );

            // non-first s iteration
            if ( k > 0 ) {
                // alpha = dalpha
                // Q0
                magma_csetvector_async( k, halpha, 1, dalpha.dval, 1, queues[0] );

                // U update outside of loop using GEMV
                // U(:,k) = U(:,k) - U(:,1:k) * alpha(1:k)
                // Q0
                magmablas_cgemv( MagmaNoTrans, dU.num_rows, k, c_n_one, dU.dval, dU.ld, dalpha.dval, 1, c_one, &dU.dval[k*dU.ld], 1, queues[0] );
            }

            // Mdiag(k) = M(k,k)
            // Q2
            magma_cgetvector( 1, &dM.dval[k*dM.ld+k], 1, &hMdiag[k], 1, queues[2] );
            // implicit sync Q2 --> Mdiag(k) = M(k,k)

            // check M(k,k) == 0
            if ( MAGMA_C_EQUAL(hMdiag[k], MAGMA_C_ZERO) ) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // beta = f(k) / M(k,k)
            hbeta[k] = hskp[4] / hMdiag[k];

            // check for nan
            if ( magma_c_isnan( hbeta[k] ) || magma_c_isinf( hbeta[k] )) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // non-last s iteration 
            if ( (k + 1) < s ) {
                // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k)
                // Q1
                magma_caxpy( sk-1, -hbeta[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queues[1] );

                // c(k+1:s) = f(k+1:s)
                // Q1
                magma_ccopyvector_async( sk-1, &df.dval[k+1], 1, &dc.dval[k+1], 1, queues[1] );

                // c(k+1:s) = M(k+1:s,k+1:s) \ f(k+1:s)
                // Q1
                magma_ctrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk-1, &dM.dval[(k+1)*dM.ld+(k+1)], dM.ld, &dc.dval[k+1], 1, queues[1] );

                // skp[4] = f(k+1)
                // Q1
                magma_cgetvector_async( 1, &df.dval[k+1], 1, &hskp[4], 1, queues[1] );
            }

            // r = r - beta * G(:,k)
            // Q2
            magma_caxpy( dr.num_rows, -hbeta[k], dGcol.dval, 1, dr.dval, 1, queues[2] );

            // smoothing disabled
            if ( smoothing <= 0 ) {
                // |r|
                // Q2
                nrmr = magma_scnrm2( dr.num_rows, dr.dval, 1, queues[2] );           
                // implicit sync Q2 --> |r|

                // v = r
                // Q1
                magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

            // smoothing enabled
            } else {
                // x = x + beta * U(:,k)
                // Q0
                magma_caxpy( x->num_rows, hbeta[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queues[0] );

                // smoothing operation
//---------------------------------------
                // t = rs - r
                // Q2
                magma_cidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queues[2] );

                // t't
                // t'rs
                // Q2
                CHECK( magma_cgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queues[2] ));

                // skp[2-3] = dskp[2-3]
                // Q2
                magma_cgetvector( 2, &dskp.dval[2], 1, &hskp[2], 1, queues[2] );
                // implicit sync Q2 --> skp = dskp

                // gamma = (t' * rs) / (t' * t)
                gamma = hskp[3] / hskp[2];
                
                // xs = xs - gamma * (xs - x) 
                // Q0
                magma_cidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queues[0] );

                // v = r
                // Q1
                magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

                // rs = rs - gamma * t 
                // Q2
                magma_caxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queues[2] );

                // |rs|
                // Q2
                nrmr = magma_scnrm2( drs.num_rows, drs.dval, 1, queues[2] );       
                // implicit sync Q2 --> |r|
//---------------------------------------
            }

            // store current timing and residual
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                    solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)nrmr;
                    solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)tempo2 - tempo1;
                }
            }

            // check convergence or iteration limit
            if ( nrmr <= solver_par->atol ||
                nrmr/nrmb <= solver_par->rtol ) { 
                s = k + 1; // for the x-update outside the loop
                innerflag = 2;
                info = MAGMA_SUCCESS;
                break;
            }

        }

        // smoothing disabled
        if ( smoothing <= 0 && innerflag != 1 ) {
            // dbeta(1:s) = beta(1:s)
            // Q0
            magma_csetvector_async( s, hbeta, 1, dbeta.dval, 1, queues[0] );

            // x = x + U(:,1:s) * beta(1:s)
            // Q0
            magmablas_cgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queues[0] );
        }

        // check convergence or iteration limit or invalid result of inner loop
        if ( innerflag > 0 ) {
            break;
        }

        // preconditioning operation 
        // v = L \ v;
        // v = U \ v;
        // Q2
        CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queues[2] )); 
        CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queues[2] )); 

        // t = A v
        // Q2
        CHECK( magma_c_spmv( c_one, A, dv, c_zero, dt, queues[2] ));
        solver_par->spmv_count++;

        // computation of a new omega
//---------------------------------------
        // t't
        // t'r
        // Q2
        CHECK( magma_cgemvmdot_shfl( dt.ld, 2, dt.dval, dt.dval, d1, d2, dskp.dval, queues[2] ));

        // skp[0-2] = dskp[0-2]
        // Q2
        magma_cgetvector( 2, dskp.dval, 1, hskp, 1, queues[2] );
        // implicit sync Q2 --> skp = dskp

        // |t|
        nrmt = magma_ssqrt( MAGMA_C_REAL(hskp[0]) );

        // rho = abs((t' * r) / (|t| * |r|))
        rho = MAGMA_D_ABS( MAGMA_C_REAL(hskp[1]) / (nrmt * nrmr) );

        // om = (t' * r) / (|t| * |t|)
        om = hskp[1] / hskp[0]; 
        if ( rho < angle ) {
            om = (om * angle) / rho;
        }
//---------------------------------------
        if ( MAGMA_C_EQUAL(om, MAGMA_C_ZERO) ) {
            info = MAGMA_DIVERGENCE;
            break;
        }

        // sync Q1 --> v = r
        magma_queue_sync( queues[1] );

        // r = r - om * t
        // Q2
        magma_caxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queues[2] );

        // x = x + om * v
        // Q0
        magma_caxpy( x->num_rows, om, dv.dval, 1, x->dval, 1, queues[0] );

        // smoothing disabled
        if ( smoothing <= 0 ) {
            // |r|
            // Q2
            nrmr = magma_scnrm2( dr.num_rows, dr.dval, 1, queues[2] );           
            // implicit sync Q2 --> |r|

            // v = r
            // Q1
            magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

        // smoothing enabled
        } else {
            // smoothing operation
//---------------------------------------
            // t = rs - r
            // Q2
            magma_cidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queues[2] );

            // t't
            // t'rs
            // Q2
            CHECK( magma_cgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queues[2] ));

            // skp[2-3] = dskp[2-3]
            // Q2
            magma_cgetvector( 2, &dskp.dval[2], 1, &hskp[2], 1, queues[2] );
            // implicit sync Q2 --> skp = dskp

            // gamma = (t' * rs) / (t' * t)
            gamma = hskp[3] / hskp[2];

            // xs = xs - gamma * (xs - x) 
            // Q0
            magma_cidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queues[0] );

            // v = r
            // Q1
            magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

            // rs = rs - gamma * (rs - r) 
            // Q2
            magma_caxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queues[2] );

            // |rs|
            // Q2
            nrmr = magma_scnrm2( drs.num_rows, drs.dval, 1, queues[2] );           
            // implicit sync Q2 --> |r|
//---------------------------------------
        }

        // store current timing and residual
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            magma_queue_sync( queue );
            if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)nrmr;
                solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)tempo2 - tempo1;
            }
        }

        // check convergence or iteration limit
        if ( nrmr <= solver_par->atol ||
            nrmr/nrmb <= solver_par->rtol ) { 
            info = MAGMA_SUCCESS;
            break;
        }
    }
    while ( solver_par->numiter + 1 <= solver_par->maxiter );

    // sync all queues
    for ( q = 0; q < nqueues; q++ ) {
        magma_queue_sync( queues[q] );
    }

    // smoothing enabled
    if ( smoothing > 0 ) {
        // x = xs
        magma_ccopyvector_async( x->num_rows, dxs.dval, 1, x->dval, 1, queue );

        // r = rs
        magma_ccopyvector_async( dr.num_rows, drs.dval, 1, dr.dval, 1, queue );
    }

    // get last iteration timing
    tempo2 = magma_sync_wtime( queue );
    magma_queue_sync( queue );
    solver_par->runtime = (real_Double_t)tempo2 - tempo1;
//--------------STOP TIME----------------

    // get final stats
    solver_par->iter_res = nrmr;
    CHECK( magma_cresidualvec( A, b, *x, &dr, &residual, queue ));
    solver_par->final_res = residual;

    // set solver conclusion
    if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) {
        if ( solver_par->init_res > solver_par->final_res ) {
            info = MAGMA_SLOW_CONVERGENCE;
        }
    }


cleanup:
    // free resources
    // sync all queues, destory additional queues
    magma_queue_sync( queues[0] );
    for ( q = 1; q < nqueues; q++ ) {
        magma_queue_sync( queues[q] );
        magma_queue_destroy( queues[q] );
    }

    // smoothing enabled
    if ( smoothing > 0 ) {
        drs.dval = NULL;  // needed because its pointer is redirected to dtt
        magma_cmfree( &dxs, queue );
        magma_cmfree( &drs, queue ); 
        magma_cmfree( &dtt, queue );
    }
    dr.dval = NULL;       // needed because its pointer is redirected to dt
    dGcol.dval = NULL;    // needed because its pointer is redirected to dG
    magma_cmfree( &dr, queue );
    magma_cmfree( &dP, queue );
    magma_cmfree( &dP1, queue );
    magma_cmfree( &dG, queue );
    magma_cmfree( &dGcol, queue );
    magma_cmfree( &dU, queue );
    magma_cmfree( &dM, queue );
    magma_cmfree( &df, queue );
    magma_cmfree( &dt, queue );
    magma_cmfree( &dc, queue );
    magma_cmfree( &dv, queue );
    magma_cmfree( &dlu, queue );
    magma_cmfree( &dskp, queue );
    magma_cmfree( &dalpha, queue );
    magma_cmfree( &dbeta, queue );
    magma_free_pinned( hMdiag );
    magma_free_pinned( hskp );
    magma_free_pinned( halpha );
    magma_free_pinned( hbeta );
    magma_free( d1 );
    magma_free( d2 );

    solver_par->info = info;
    return info;
    /* magma_cpidr_strms */
}
示例#9
0
/**
    @deprecated
    
    Purpose
    -------
    CLAQPS computes a step of QR factorization with column pivoting
    of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. N >= 0

    @param[in]
    offset  INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    @param[in]
    nb      INTEGER
            The number of columns to factorize.

    @param[out]
    kb      INTEGER
            The number of columns actually factorized.

    @param[in,out]
    dA      COMPLEX array, dimension (LDDA,N), on the GPU.
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A. LDDA >= max(1,M).

    @param[in,out]
    jpvt    INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    @param[out]
    tau     COMPLEX array, dimension (KB)
            The scalar factors of the elementary reflectors.

    @param[in,out]
    vn1     REAL array, dimension (N)
            The vector with the partial column norms.

    @param[in,out]
    vn2     REAL array, dimension (N)
            The vector with the exact column norms.

    @param[in,out]
    dauxv   COMPLEX array, dimension (NB), on the GPU
            Auxiliary vector.

    @param[in,out]
    dF      COMPLEX array, dimension (LDDF,NB), on the GPU
            Matrix F' = L*Y'*A.

    @param[in]
    lddf    INTEGER
            The leading dimension of the array F. LDDF >= max(1,N).

    @ingroup magma_cgeqp3_aux
    ********************************************************************/
extern "C" magma_int_t
magma_claqps_gpu(
    magma_int_t m, magma_int_t n, magma_int_t offset,
    magma_int_t nb, magma_int_t *kb,
    magmaFloatComplex_ptr dA,  magma_int_t ldda,
    magma_int_t *jpvt, magmaFloatComplex *tau,
    float *vn1, float *vn2,
    magmaFloatComplex_ptr dauxv,
    magmaFloatComplex_ptr dF,  magma_int_t lddf)
{
#define  dA(i, j) (dA  + (i) + (j)*(ldda))
#define  dF(i, j) (dF  + (i) + (j)*(lddf))

    magmaFloatComplex c_zero    = MAGMA_C_MAKE( 0.,0.);
    magmaFloatComplex c_one     = MAGMA_C_MAKE( 1.,0.);
    magmaFloatComplex c_neg_one = MAGMA_C_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    magmaFloatComplex z__1;
    
    magma_int_t k, rk;
    magmaFloatComplex_ptr dAks;
    magmaFloatComplex tauk = MAGMA_C_ZERO;
    magma_int_t pvt;
    float tol3z;
    magma_int_t itemp;

    float lsticc;
    magmaFloat_ptr dlsticcs;
    magma_smalloc( &dlsticcs, 1+256*(n+255)/256 );

    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    lsticc = 0;
    k = 0;
    magma_cmalloc( &dAks, nb );

    magma_queue_t queue;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );

    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // subtract 1 from Fortran/CUBLAS isamax; pvt, k are 0-based.
        pvt = k + magma_isamax( n-k, &vn1[k], ione, queue ) - 1;
        
        if (pvt != k) {
            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            magmablas_cswap( m, dA(0, pvt), ione, dA(0, k), ione, queue );

            magmablas_cswap( i__1, dF(pvt, 0), lddf, dF(k, 0), lddf, queue );
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            magma_sswap( 2, &vn1[pvt], n+offset, &vn1[k], n+offset, queue );
        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            //#define RIGHT_UPDATE
            #ifdef RIGHT_UPDATE
                i__1 = m - offset - nb;
                i__2 = k;
                magma_cgemv( MagmaNoTrans, i__1, i__2,
                             c_neg_one, A(offset+nb, 0), lda,
                                        F(k,         0), ldf,
                             c_one,     A(offset+nb, k), ione, queue );
            #else
                i__1 = m - rk;
                i__2 = k;
                magma_cgemv( MagmaNoTrans, i__1, i__2,
                             c_neg_one, dA(rk, 0), ldda,
                                        dF(k,  0), lddf,
                             c_one,     dA(rk, k), ione, queue );
            #endif
        }
        
        /*  Generate elementary reflector H(k). */
        magma_clarfg_gpu( m-rk, dA(rk, k), dA(rk + 1, k), &tau[k], &vn1[k], &dAks[k], queue );

        /* needed to avoid the race condition */
        if (k == 0) magma_csetvector(  1,    &c_one,        1, dA(rk, k), 1, queue );
        else        magma_ccopymatrix( 1, 1, dA(offset, 0), 1, dA(rk, k), 1, queue );

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1 || k > 0) magma_cgetvector( 1, &tau[k], 1, &tauk, 1, queue );
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;

            /* Multiply on GPU */
            magma_cgemv( MagmaConjTrans, m-rk, n-k-1,
                         tauk,   dA( rk,  k+1 ), ldda,
                                 dA( rk,  k   ), 1,
                         c_zero, dF( k+1, k   ), 1, queue );
        }
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K)                        - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K).
           F(1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K)
                    := tau(K)(A(RK:M,K+1:N)' - F(1:N,1:K-1)*A(RK:M,1:K-1)') A(RK:M,K)
           so, F is (updated A)*V */
        if (k > 0) {
            z__1 = MAGMA_C_NEGATE( tauk );
            #ifdef RIGHT_UPDATE
                i__1 = m - offset - nb;
                i__2 = k;
                magma_cgemv( MagmaConjTrans, i__1, i__2,
                             z__1,   dA(offset+nb, 0), lda,
                                     dA(offset+nb, k), ione,
                             c_zero, dauxv, ione, queue );
                
                i__1 = k;
                magma_cgemv( MagmaNoTrans, n-k-1, i__1,
                             c_one, F(k+1,0), ldf,
                                    dauxv,     ione,
                             c_one, F(k+1,k), ione, queue );
            #else
                i__1 = m - rk;
                i__2 = k;
                magma_cgemv( MagmaConjTrans, i__1, i__2,
                             z__1,   dA(rk, 0), ldda,
                                     dA(rk, k), ione,
                             c_zero, dauxv, ione, queue );
                
                /* I think we only need stricly lower-triangular part :) */
                magma_cgemv( MagmaNoTrans, n-k-1, i__2,
                             c_one, dF(k+1,0), lddf,
                                    dauxv,     ione,
                             c_one, dF(k+1,k), ione, queue );
            #endif
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            #ifdef RIGHT_UPDATE
                /* right-looking update of rows,                     */
                magma_cgemm( MagmaNoTrans, MagmaConjTrans, nb-k, i__1, ione,
                             c_neg_one, dA(rk,  k  ), ldda,
                                        dF(k+1, k  ), lddf,
                             c_one,     dA(rk,  k+1), ldda, queue );
            #else
                /* left-looking update of rows,                     *
                 * since F=A'v with original A, so no right-looking */
                magma_cgemm( MagmaNoTrans, MagmaConjTrans, ione, i__1, i__2,
                             c_neg_one, dA(rk, 0  ), ldda,
                                        dF(k+1,0  ), lddf,
                             c_one,     dA(rk, k+1), ldda, queue );
            #endif
        }
        
        /* Update partial column norms. */
        if (rk < min(m, n+offset)-1 ) {
            magmablas_scnrm2_row_check_adjust( n-k-1, tol3z, &vn1[k+1], &vn2[k+1], 
                                               dA(rk,k+1), ldda, dlsticcs, queue );

            //magma_device_sync();
            magma_sgetvector( 1, &dlsticcs[0], 1, &lsticc, 1, queue );
        }
        
        ++k;
    }
    magma_ccopymatrix( 1, k, dAks, 1, dA(offset, 0), ldda+1, queue );

    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        magma_cgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, dA(rk+1, 0  ), ldda,
                                dF(*kb,  0  ), lddf,
                     c_one,     dA(rk+1, *kb), ldda, queue );
    }
    /* Recomputation of difficult columns. */
    if ( lsticc > 0 ) {
        // printf( " -- recompute dnorms --\n" );
        magmablas_scnrm2_check( m-rk-1, n-*kb, dA(rk+1,*kb), ldda,
                                &vn1[*kb], dlsticcs, queue );
        magma_scopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb, queue );
    }
    magma_free( dAks );
    magma_free( dlsticcs );

    magma_queue_destroy( queue );

    return MAGMA_SUCCESS;
} /* magma_claqps */
示例#10
0
/**
    Purpose
    -------
    CLAHR2 reduces the first NB columns of a complex general n-BY-(n-k+1)
    matrix A so that elements below the k-th subdiagonal are zero. The
    reduction is performed by an orthogonal similarity transformation
    Q' * A * Q. The routine returns the matrices V and T which determine
    Q as a block reflector I - V*T*V', and also the matrix Y = A * V.
    (Note this is different than LAPACK, which computes Y = A * V * T.)

    This is an auxiliary routine called by CGEHRD.

    Arguments
    ---------
    @param[in]
    n       INTEGER
            The order of the matrix A.

    @param[in]
    k       INTEGER
            The offset for the reduction. Elements below the k-th
            subdiagonal in the first NB columns are reduced to zero.
            K < N.

    @param[in]
    nb      INTEGER
            The number of columns to be reduced.

    @param[in,out]
    dA      COMPLEX array on the GPU, dimension (LDDA,N-K+1)
            On entry, the n-by-(n-k+1) general matrix A.
            On exit, the elements in rows K:N of the first NB columns are
            overwritten with the matrix Y.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA.  LDDA >= max(1,N).

    @param[out]
    dV      COMPLEX array on the GPU, dimension (LDDV, NB)
            On exit this n-by-nb array contains the Householder vectors of the transformation.

    @param[in]
    lddv    INTEGER
            The leading dimension of the array dV.  LDDV >= max(1,N).

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N-K+1)
            On entry, the n-by-(n-k+1) general matrix A.
            On exit, the elements on and above the k-th subdiagonal in
            the first NB columns are overwritten with the corresponding
            elements of the reduced matrix; the elements below the k-th
            subdiagonal, with the array TAU, represent the matrix Q as a
            product of elementary reflectors. The other columns of A are
            unchanged. See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    tau     COMPLEX array, dimension (NB)
            The scalar factors of the elementary reflectors. See Further
            Details.

    @param[out]
    T       COMPLEX array, dimension (LDT,NB)
            The upper triangular matrix T.

    @param[in]
    ldt     INTEGER
            The leading dimension of the array T.  LDT >= NB.

    @param[out]
    Y       COMPLEX array, dimension (LDY,NB)
            The n-by-nb matrix Y.

    @param[in]
    ldy     INTEGER
            The leading dimension of the array Y. LDY >= N.

    Further Details
    ---------------
    The matrix Q is represented as a product of nb elementary reflectors

       Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a complex scalar, and v is a complex vector with
    v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
    A(i+k+1:n,i), and tau in TAU(i).

    The elements of the vectors v together form the (n-k+1)-by-nb matrix
    V which is needed, with T and Y, to apply the transformation to the
    unreduced part of the matrix, using an update of the form:
    A := (I - V*T*V') * (A - Y*T*V').

    The contents of A on exit are illustrated by the following example
    with n = 7, k = 3 and nb = 2:

    @verbatim
       ( a   a   a   a   a )
       ( a   a   a   a   a )
       ( a   a   a   a   a )
       ( h   h   a   a   a )
       ( v1  h   a   a   a )
       ( v1  v2  a   a   a )
       ( v1  v2  a   a   a )
    @endverbatim

    where "a" denotes an element of the original matrix A, h denotes a
    modified element of the upper Hessenberg matrix H, and vi denotes an
    element of the vector defining H(i).

    This implementation follows the hybrid algorithm and notations described in

    S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
    form through hybrid GPU-based computing," University of Tennessee Computer
    Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),
    May 24, 2009.

    @ingroup magma_cgeev_aux
    ********************************************************************/
extern "C" magma_int_t
magma_clahr2(
    magma_int_t n, magma_int_t k, magma_int_t nb,
    magmaFloatComplex_ptr dA, magma_int_t ldda,
    magmaFloatComplex_ptr dV, magma_int_t lddv,
    magmaFloatComplex *A,     magma_int_t lda,
    magmaFloatComplex *tau,
    magmaFloatComplex *T,     magma_int_t ldt,
    magmaFloatComplex *Y,     magma_int_t ldy )
{
    #define  A(i_,j_) ( A + (i_) + (j_)*lda)
    #define  Y(i_,j_) ( Y + (i_) + (j_)*ldy)
    #define  T(i_,j_) ( T + (i_) + (j_)*ldt)
    #define dA(i_,j_) (dA + (i_) + (j_)*ldda)
    #define dV(i_,j_) (dV + (i_) + (j_)*lddv)
    
    magmaFloatComplex c_zero    = MAGMA_C_ZERO;
    magmaFloatComplex c_one     = MAGMA_C_ONE;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;

    magma_int_t ione = 1;
    
    magma_int_t n_k_i_1, n_k;
    magmaFloatComplex scale;

    magma_int_t i;
    magmaFloatComplex ei = MAGMA_C_ZERO;

    magma_int_t info = 0;
    if (n < 0) {
        info = -1;
    } else if (k < 0 || k > n) {
        info = -2;
    } else if (nb < 1 || nb > n) {
        info = -3;
    } else if (ldda < max(1,n)) {
        info = -5;
    } else if (lddv < max(1,n)) {
        info = -7;
    } else if (lda < max(1,n)) {
        info = -9;
    } else if (ldt < max(1,nb)) {
        info = -12;
    } else if (ldy < max(1,n)) {
        info = -13;
    }
    if (info != 0) {
        magma_xerbla( __func__, -(info) );
        return info;
    }

    // adjust from 1-based indexing
    k -= 1;

    if (n <= 1)
        return info;
    
    for (i = 0; i < nb; ++i) {
        n_k_i_1 = n - k - i - 1;
        n_k     = n - k;
        
        if (i > 0) {
            // Update A(k:n-1,i); Update i-th column of A - Y * T * V'
            // This updates one more row than LAPACK does (row k),
            // making the block above the panel an even multiple of nb.
            // Use last column of T as workspace, w.
            // w(0:i-1, nb-1) = VA(k+i, 0:i-1)'
            blasf77_ccopy( &i,
                           A(k+i,0),  &lda,
                           T(0,nb-1), &ione );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            // If complex, conjugate row of V.
            lapackf77_clacgv(&i, T(0,nb-1), &ione);
            #endif
            
            // w = T(0:i-1, 0:i-1) * w
            blasf77_ctrmv( "Upper", "No trans", "No trans", &i,
                           T(0,0),    &ldt,
                           T(0,nb-1), &ione );
            
            // A(k:n-1, i) -= Y(k:n-1, 0:i-1) * w
            blasf77_cgemv( "No trans", &n_k, &i,
                           &c_neg_one, Y(k,0),    &ldy,
                                       T(0,nb-1), &ione,
                           &c_one,     A(k,i),    &ione );
            
            // Apply I - V * T' * V' to this column (call it b) from the
            // left, using the last column of T as workspace, w.
            //
            // Let  V = ( V1 )   and   b = ( b1 )   (first i-1 rows)
            //          ( V2 )             ( b2 )
            // where V1 is unit lower triangular
            
            // w := b1 = A(k+1:k+i, i)
            blasf77_ccopy( &i,
                           A(k+1,i),  &ione,
                           T(0,nb-1), &ione );
            
            // w := V1' * b1 = VA(k+1:k+i, 0:i-1)' * w
            blasf77_ctrmv( "Lower", "Conj", "Unit", &i,
                           A(k+1,0), &lda,
                           T(0,nb-1), &ione );
            
            // w := w + V2'*b2 = w + VA(k+i+1:n-1, 0:i-1)' * A(k+i+1:n-1, i)
            blasf77_cgemv( "Conj", &n_k_i_1, &i,
                           &c_one, A(k+i+1,0), &lda,
                                   A(k+i+1,i), &ione,
                           &c_one, T(0,nb-1),  &ione );
            
            // w := T'*w = T(0:i-1, 0:i-1)' * w
            blasf77_ctrmv( "Upper", "Conj", "Non-unit", &i,
                           T(0,0), &ldt,
                           T(0,nb-1), &ione );
            
            // b2 := b2 - V2*w = A(k+i+1:n-1, i) - VA(k+i+1:n-1, 0:i-1) * w
            blasf77_cgemv( "No trans", &n_k_i_1, &i,
                           &c_neg_one, A(k+i+1,0), &lda,
                                       T(0,nb-1),  &ione,
                           &c_one,     A(k+i+1,i), &ione );
            
            // w := V1*w = VA(k+1:k+i, 0:i-1) * w
            blasf77_ctrmv( "Lower", "No trans", "Unit", &i,
                           A(k+1,0), &lda,
                           T(0,nb-1), &ione );
            
            // b1 := b1 - w = A(k+1:k+i-1, i) - w
            blasf77_caxpy( &i,
                           &c_neg_one, T(0,nb-1), &ione,
                                       A(k+1,i),  &ione );
            
            // Restore diagonal element, saved below during previous iteration
            *A(k+i,i-1) = ei;
        }
        
        // Generate the elementary reflector H(i) to annihilate A(k+i+1:n-1,i)
        lapackf77_clarfg( &n_k_i_1,
                          A(k+i+1,i),
                          A(k+i+2,i), &ione, &tau[i] );
        // Save diagonal element and set to one, to simplify multiplying by V
        ei = *A(k+i+1,i);
        *A(k+i+1,i) = c_one;

        // dV(i+1:n-k-1, i) = VA(k+i+1:n-1, i)
        magma_csetvector( n_k_i_1,
                          A(k+i+1,i), 1,
                          dV(i+1,i),  1 );
        
        // Compute Y(k+1:n,i) = A vi
        // dA(k:n-1, i) = dA(k:n-1, i+1:n-k-1) * dV(i+1:n-k-1, i)
        magma_cgemv( MagmaNoTrans, n_k, n_k_i_1,
                     c_one,  dA(k,i+1), ldda,
                             dV(i+1,i), ione,
                     c_zero, dA(k,i),   ione );
        
        // Compute T(0:i,i) = [ -tau T V' vi ]
        //                    [  tau         ]
        // T(0:i-1, i) = -tau VA(k+i+1:n-1, 0:i-1)' VA(k+i+1:n-1, i)
        scale = MAGMA_C_NEGATE( tau[i]);
        blasf77_cgemv( "Conj", &n_k_i_1, &i,
                       &scale,  A(k+i+1,0), &lda,
                                A(k+i+1,i), &ione,
                       &c_zero, T(0,i),     &ione );
        // T(0:i-1, i) = T(0:i-1, 0:i-1) * T(0:i-1, i)
        blasf77_ctrmv( "Upper", "No trans", "Non-unit", &i,
                       T(0,0), &ldt,
                       T(0,i), &ione );
        *T(i,i) = tau[i];

        // Y(k:n-1, i) = dA(k:n-1, i)
        magma_cgetvector( n-k,
                          dA(k,i), 1,
                          Y(k,i),  1 );
    }
    // Restore diagonal element
    *A(k+nb,nb-1) = ei;

    return info;
} /* magma_clahr2 */
示例#11
0
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, t1, t2;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;
    magma_trans_t trans[] = { MagmaNoTrans, MagmaConjTrans, MagmaTrans };
    magma_uplo_t  uplo [] = { MagmaLower, MagmaUpper };
    magma_diag_t  diag [] = { MagmaUnit, MagmaNonUnit };
    magma_side_t  side [] = { MagmaLeft, MagmaRight };
    
    magmaFloatComplex  *A,  *B,  *C,   *C2, *LU;
    magmaFloatComplex_ptr dA, dB, dC1, dC2;
    magmaFloatComplex alpha = MAGMA_C_MAKE( 0.5, 0.1 );
    magmaFloatComplex beta  = MAGMA_C_MAKE( 0.7, 0.2 );
    float dalpha = 0.6;
    float dbeta  = 0.8;
    float work[1], error, total_error;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t m, n, k, size, maxn, ld, info;
    magma_int_t *piv;
    magma_int_t err;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    printf( "Compares magma wrapper function to cublas function; all diffs should be exactly 0.\n\n" );
    
    total_error = 0.;
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        m = opts.msize[itest];
        n = opts.nsize[itest];
        k = opts.ksize[itest];
        printf("=========================================================================\n");
        printf( "m=%d, n=%d, k=%d\n", (int) m, (int) n, (int) k );
        
        // allocate matrices
        // over-allocate so they can be any combination of {m,n,k} x {m,n,k}.
        maxn = max( max( m, n ), k );
        ld = max( 1, maxn );
        size = ld*maxn;
        err = magma_malloc_cpu( (void**) &piv, maxn*sizeof(magma_int_t) );  assert( err == 0 );
        err = magma_cmalloc_pinned( &A,  size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &B,  size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &C,  size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &C2, size );  assert( err == 0 );
        err = magma_cmalloc_pinned( &LU, size );  assert( err == 0 );
        err = magma_cmalloc( &dA,  size );        assert( err == 0 );
        err = magma_cmalloc( &dB,  size );        assert( err == 0 );
        err = magma_cmalloc( &dC1, size );        assert( err == 0 );
        err = magma_cmalloc( &dC2, size );        assert( err == 0 );
        
        // initialize matrices
        size = maxn*maxn;
        lapackf77_clarnv( &ione, ISEED, &size, A  );
        lapackf77_clarnv( &ione, ISEED, &size, B  );
        lapackf77_clarnv( &ione, ISEED, &size, C  );
        
        printf( "========== Level 1 BLAS ==========\n" );
        
        // ----- test CSWAP
        // swap columns 2 and 3 of dA, then copy to C2 and compare with A
        if ( n >= 3 ) {
            magma_csetmatrix( m, n, A, ld, dA, ld );
            magma_csetmatrix( m, n, A, ld, dB, ld );
            magma_cswap( m, dA(0,1), 1, dA(0,2), 1 );
            magma_cswap( m, dB(0,1), 1, dB(0,2), 1 );
            
            // check results, storing diff between magma and cuda calls in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dA, 1, dB, 1 );
            magma_cgetmatrix( m, n, dB, ld, C2, ld );
            error = lapackf77_clange( "F", &m, &k, C2, &ld, work );
            total_error += error;
            printf( "cswap             diff %.2g\n", error );
        }
        else {
            printf( "cswap skipped for n < 3\n" );
        }
        
        // ----- test ICAMAX
        // get argmax of column of A
        magma_csetmatrix( m, k, A, ld, dA, ld );
        error = 0;
        for( int j = 0; j < k; ++j ) {
            magma_int_t i1 = magma_icamax( m, dA(0,j), 1 );
            int i2;  // NOT magma_int_t, for cublas
            cublasIcamax( opts.handle, m, dA(0,j), 1, &i2 );
            // todo need sync here?
            assert( i1 == i2 );
            error += abs( i1 - i2 );
        }
        total_error += error;
        gflops = (float)m * k / 1e9;
        printf( "icamax            diff %.2g\n", error );
        printf( "\n" );
        
        printf( "========== Level 2 BLAS ==========\n" );
        
        // ----- test CGEMV
        // c = alpha*A*b + beta*c,  with A m*n; b,c m or n-vectors
        // try no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
            magma_csetmatrix( m, n, A,  ld, dA,  ld );
            magma_csetvector( maxn, B, 1, dB,  1 );
            magma_csetvector( maxn, C, 1, dC1, 1 );
            magma_csetvector( maxn, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_cgemv( trans[ia], m, n, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCgemv( opts.handle, cublas_trans_const(trans[ia]),
                         m, n, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            size = (trans[ia] == MagmaNoTrans ? m : n);
            cublasCaxpy( opts.handle, size, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetvector( size, dC2, 1, C2, 1 );
            error = lapackf77_clange( "F", &size, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CGEMV( m, n ) / 1e9;
            printf( "cgemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test CHEMV
        // c = alpha*A*b + beta*c,  with A m*m symmetric; b,c m-vectors
        // try upper/lower
        for( int iu = 0; iu < 2; ++iu ) {
            magma_csetmatrix( m, m, A, ld, dA, ld );
            magma_csetvector( m, B, 1, dB,  1 );
            magma_csetvector( m, C, 1, dC1, 1 );
            magma_csetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_chemv( uplo[iu], m, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasChemv( opts.handle, cublas_uplo_const(uplo[iu]),
                         m, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_clange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHEMV( m ) / 1e9;
            printf( "chemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test CTRSV
        // solve A*c = c,  with A m*m triangular; c m-vector
        // try upper/lower, no-trans/trans, unit/non-unit diag
        // Factor A into LU to get well-conditioned triangles, else solve yields garbage.
        // Still can give garbage if solves aren't consistent with LU factors,
        // e.g., using unit diag for U, so copy lower triangle to upper triangle.
        // Also used for trsm later.
        lapackf77_clacpy( "Full", &maxn, &maxn, A, &ld, LU, &ld );
        lapackf77_cgetrf( &maxn, &maxn, LU, &ld, piv, &info );
        for( int j = 0; j < maxn; ++j ) {
            for( int i = 0; i < j; ++i ) {
                *LU(i,j) = *LU(j,i);
            }
        }
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            magma_csetmatrix( m, m, LU, ld, dA, ld );
            magma_csetvector( m, C, 1, dC1, 1 );
            magma_csetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_ctrsv( uplo[iu], trans[it], diag[id], m, dA, ld, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCtrsv( opts.handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         cublas_diag_const(diag[id]), m, dA, ld, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_clange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CTRSM( MagmaLeft, m, 1 ) / 1e9;
            printf( "ctrsv( %c, %c, %c )  diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]), lapacke_diag_const(diag[id]),
                    error, gflops/t1, gflops/t2 );
        }}}
        printf( "\n" );
        
        printf( "========== Level 3 BLAS ==========\n" );
        
        // ----- test CGEMM
        // C = alpha*A*B + beta*C,  with A m*k or k*m; B k*n or n*k; C m*n
        // try combinations of no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
        for( int ib = 0; ib < 3; ++ib ) {
            bool nta = (trans[ia] == MagmaNoTrans);
            bool ntb = (trans[ib] == MagmaNoTrans);
            magma_csetmatrix( (nta ? m : k), (nta ? m : k), A, ld, dA,  ld );
            magma_csetmatrix( (ntb ? k : n), (ntb ? n : k), B, ld, dB,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_cgemm( trans[ia], trans[ib], m, n, k, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCgemm( opts.handle, cublas_trans_const(trans[ia]), cublas_trans_const(trans[ib]),
                         m, n, k, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CGEMM( m, n, k ) / 1e9;
            printf( "cgemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), lapacke_trans_const(trans[ib]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CHEMM
        // C = alpha*A*B + beta*C  (left)  with A m*m symmetric; B,C m*n; or
        // C = alpha*B*A + beta*C  (right) with A n*n symmetric; B,C m*n
        // try left/right, upper/lower
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
            magma_csetmatrix( m, m, A, ld, dA,  ld );
            magma_csetmatrix( m, n, B, ld, dB,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_chemm( side[is], uplo[iu], m, n, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasChemm( opts.handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         m, n, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHEMM( side[is], m, n ) / 1e9;
            printf( "chemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_side_const(side[is]), lapacke_uplo_const(uplo[iu]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CHERK
        // C = alpha*A*A^H + beta*C  (no-trans) with A m*k and C m*m symmetric; or
        // C = alpha*A^H*A + beta*C  (trans)    with A k*m and C m*m symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            magma_csetmatrix( n, k, A, ld, dA,  ld );
            magma_csetmatrix( n, n, C, ld, dC1, ld );
            magma_csetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_cherk( uplo[iu], trans[it], n, k, dalpha, dA, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCherk( opts.handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         n, k, &dalpha, dA, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHERK( k, n ) / 1e9;
            printf( "cherk( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CHER2K
        // C = alpha*A*B^H + ^alpha*B*A^H + beta*C  (no-trans) with A,B n*k; C n*n symmetric; or
        // C = alpha*A^H*B + ^alpha*B^H*A + beta*C  (trans)    with A,B k*n; C n*n symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            bool nt = (trans[it] == MagmaNoTrans);
            magma_csetmatrix( (nt ? n : k), (nt ? n : k), A, ld, dA,  ld );
            magma_csetmatrix( n, n, C, ld, dC1, ld );
            magma_csetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_cher2k( uplo[iu], trans[it], n, k, alpha, dA, ld, dB, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCher2k( opts.handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                          n, k, &alpha, dA, ld, dB, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CHER2K( k, n ) / 1e9;
            printf( "cher2k( %c, %c )    diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test CTRMM
        // C = alpha*A*C  (left)  with A m*m triangular; C m*n; or
        // C = alpha*C*A  (right) with A n*n triangular; C m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_csetmatrix( (left ? m : n), (left ? m : n), A, ld, dA,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ctrmm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            // note cublas does trmm out-of-place (i.e., adds output matrix C),
            // but allows C=B to do in-place.
            t2 = magma_sync_wtime( 0 );
            cublasCtrmm( opts.handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CTRMM( side[is], m, n ) / 1e9;
            printf( "ctrmm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // ----- test CTRSM
        // solve A*X = alpha*B  (left)  with A m*m triangular; B m*n; or
        // solve X*A = alpha*B  (right) with A n*n triangular; B m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_csetmatrix( (left ? m : n), (left ? m : n), LU, ld, dA,  ld );
            magma_csetmatrix( m, n, C, ld, dC1, ld );
            magma_csetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ctrsm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasCtrsm( opts.handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasCaxpy( opts.handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_cgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_clange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_CTRSM( side[is], m, n ) / 1e9;
            printf( "ctrsm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // cleanup
        magma_free_cpu( piv );
        magma_free_pinned( A  );
        magma_free_pinned( B  );
        magma_free_pinned( C  );
        magma_free_pinned( C2 );
        magma_free_pinned( LU );
        magma_free( dA  );
        magma_free( dB  );
        magma_free( dC1 );
        magma_free( dC2 );
        fflush( stdout );
    }
    
    if ( total_error != 0. ) {
        printf( "total error %.2g -- ought to be 0 -- some test failed (see above).\n",
                total_error );
    }
    else {
        printf( "all tests passed\n" );
    }
    
    TESTING_FINALIZE();
    
    int status = (total_error != 0.);
    return status;
}
示例#12
0
extern "C" magma_int_t
magma_claqps_gpu(magma_int_t m, magma_int_t n, magma_int_t offset,
             magma_int_t nb, magma_int_t *kb,
             magmaFloatComplex *A,  magma_int_t lda,
             magma_int_t *jpvt, magmaFloatComplex *tau,
             float *vn1, float *vn2,
             magmaFloatComplex *auxv,
             magmaFloatComplex *F,  magma_int_t ldf)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    CLAQPS computes a step of QR factorization with column pivoting
    of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. N >= 0

    OFFSET  (input) INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    NB      (input) INTEGER
            The number of columns to factorize.

    KB      (output) INTEGER
            The number of columns actually factorized.

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    LDA     (input) INTEGER
            The leading dimension of the array A. LDA >= max(1,M).

    JPVT    (input/output) INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    TAU     (output) COMPLEX*16 array, dimension (KB)
            The scalar factors of the elementary reflectors.

    VN1     (input/output) DOUBLE PRECISION array, dimension (N)
            The vector with the partial column norms.

    VN2     (input/output) DOUBLE PRECISION array, dimension (N)
            The vector with the exact column norms.

    AUXV    (input/output) COMPLEX*16 array, dimension (NB)
            Auxiliar vector.

    F       (input/output) COMPLEX*16 array, dimension (LDF,NB)
            Matrix F' = L*Y'*A.

    LDF     (input) INTEGER
            The leading dimension of the array F. LDF >= max(1,N).

    =====================================================================    */
    
#define  A(i, j) (A  + (i) + (j)*(lda ))
#define  F(i, j) (F  + (i) + (j)*(ldf ))

    magmaFloatComplex c_zero    = MAGMA_C_MAKE( 0.,0.);
    magmaFloatComplex c_one     = MAGMA_C_MAKE( 1.,0.);
    magmaFloatComplex c_neg_one = MAGMA_C_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    //float d__1;
    magmaFloatComplex z__1;
    
    //magma_int_t j;
    magma_int_t k, rk;
    //magmaFloatComplex Akk;
    magmaFloatComplex *Aks;
    magmaFloatComplex tauk;
    magma_int_t pvt;
    //float temp, temp2;
    float tol3z;
    magma_int_t itemp;

    float lsticc, *lsticcs;
    magma_int_t lastrk;
    magma_smalloc( &lsticcs, 1+256*(n+255)/256 );

    lastrk = min( m, n + offset );
    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    lsticc = 0;
    k = 0;
    magma_cmalloc( &Aks, nb );

    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // Fortran: pvt, k, isamax are all 1-based; subtract 1 from k.
        // C:       pvt, k, isamax are all 0-based; don't subtract 1.
        pvt = k - 1 + magma_isamax( n-k, &vn1[k], ione );
        
        if (pvt != k) {

            /*if (pvt >= nb) {
                // 1. Start copy from GPU
                magma_cgetmatrix_async( m - offset - nb, 1,
                                        dA(offset + nb, pvt), ldda,
                                        A (offset + nb, pvt), lda, stream );
            }*/

            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            /*if (pvt < nb){
                // no need of transfer if pivot is within the panel
                blasf77_cswap( &m, A(0, pvt), &ione, A(0, k), &ione );
            }
            else {
                // 1. Finish copy from GPU
                magma_queue_sync( stream );

                // 2. Swap as usual on CPU
                blasf77_cswap(&m, A(0, pvt), &ione, A(0, k), &ione);

                // 3. Restore the GPU
                magma_csetmatrix_async( m - offset - nb, 1,
                                        A (offset + nb, pvt), lda,
                                        dA(offset + nb, pvt), ldda, stream);
            }*/
            magmablas_cswap( m, A(0, pvt), ione, A(0, k), ione );

            //blasf77_cswap( &i__1, F(pvt,0), &ldf, F(k,0), &ldf );
            magmablas_cswap( i__1, F(pvt, 0), ldf, F(k, 0), ldf);
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            //vn1[pvt] = vn1[k];
            //vn2[pvt] = vn2[k];
            #if defined(PRECISION_d) || defined(PRECISION_z)
                //magma_dswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_dswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_dswap( 2, &vn1[pvt], n+offset, &vn1[k], n+offset );
            #else
                //magma_sswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_sswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_sswap(2, &vn1[pvt], n+offset, &vn1[k], n+offset);
            #endif

        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j){
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/

//#define RIGHT_UPDATE
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(offset+nb, 0), lda,
                                    F(k,         0), ldf,
                         c_one,     A(offset+nb, k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            /*blasf77_cgemv( MagmaNoTransStr, &i__1, &i__2,
                           &c_neg_one, A(rk, 0), &lda,
                                       F(k,  0), &ldf,
                           &c_one,     A(rk, k), &ione );*/
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(rk, 0), lda,
                                    F(k,  0), ldf,
                         c_one,     A(rk, k), ione );
#endif

            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/
        }
        
        /*  Generate elementary reflector H(k). */
        magma_clarfg_gpu(m-rk, A(rk, k), A(rk + 1, k), &tau[k], &vn1[k], &Aks[k]);

        //Akk = *A(rk, k);
        //*A(rk, k) = c_one;
        //magma_cgetvector( 1, &Aks[k],  1, &Akk,     1 );

        /* needed to avoid the race condition */
        if (k == 0) magma_csetvector(  1,    &c_one,       1, A(rk, k), 1 );
        else        magma_ccopymatrix( 1, 1, A(offset, 0), 1, A(rk, k), 1 );

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1 || k > 0) magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;

            /* Send the vector to the GPU */
            //magma_csetmatrix( i__1, 1, A(rk, k), lda, dA(rk,k), ldda );

            /* Multiply on GPU */
            // was CALL CGEMV( 'Conjugate transpose', M-RK+1, N-K,
            //                 TAU( K ), A( RK,  K+1 ), LDA,
            //                           A( RK,  K   ), 1,
            //                 CZERO,    F( K+1, K   ), 1 )
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            magma_cgemv( MagmaConjTrans, m-rk, n-k-1,
                         tauk,   A( rk,  k+1 ), lda,
                                 A( rk,  k   ), 1,
                         c_zero, F( k+1, k   ), 1 );
            //magma_cscal( m-rk, tau[k], F( k+1, k), 1 );
            //magma_int_t i__3 = nb-k-1;
            //magma_int_t i__4 = i__2 - i__3;
            //magma_int_t i__5 = nb-k;
            //magma_cgemv( MagmaConjTrans, i__1 - i__5, i__2 - i__3,
            //             tau[k], dA(rk +i__5, k+1+i__3), ldda,
            //                     dA(rk +i__5, k       ), ione,
            //             c_zero, dF(k+1+i__3, k       ), ione );
            
            //magma_cgetmatrix_async( i__2-i__3, 1,
            //                        dF(k + 1 +i__3, k), i__2,
            //                        F (k + 1 +i__3, k), i__2, stream );
            
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__3,
            //               &tau[k], A(rk,  k+1), &lda,
            //                        A(rk,  k  ), &ione,
            //               &c_zero, F(k+1, k  ), &ione );
            
            //magma_queue_sync( stream );
            //blasf77_cgemv( MagmaConjTransStr, &i__5, &i__4,
            //               &tau[k], A(rk, k+1+i__3), &lda,
            //                        A(rk, k       ), &ione,
            //               &c_one,  F(k+1+i__3, k ), &ione );
        }
        
        /* Padding F(1:K,K) with zeros.
        for (j = 0; j <= k; ++j) {
            magma_csetvector( 1, &c_zero, 1, F(j, k), 1 );
        }*/
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K)                        - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K).
           F(1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K)
                    := tau(K)(A(RK:M,K+1:N)' - F(1:N,1:K-1)*A(RK:M,1:K-1)') A(RK:M,K)
           so, F is (updated A)*V */
        //if (k > 0 && k<n-1) {
        if (k > 0) {
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            z__1 = MAGMA_C_NEGATE( tauk );
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(offset+nb, 0), lda,
                                 A(offset+nb, k), ione,
                         c_zero, auxv, ione );
            
            i__1 = k;
            magma_cgemv( MagmaNoTrans, n-k-1, i__1,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__2,
            //               &z__1,   A(rk, 0), &lda,
            //                        A(rk, k), &ione,
            //               &c_zero, auxv, &ione );

            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(rk, 0), lda,
                                 A(rk, k), ione,
                         c_zero, auxv, ione );
            
            //i__1 = k;
            //blasf77_cgemv( MagmaNoTransStr, &n, &i__1,
            //               &c_one, F(0,0), &ldf,
            //                       auxv,   &ione,
            //               &c_one, F(0,k), &ione );
            /*magma_cgemv( MagmaNoTrans, n, i__1,
                           c_one, F(0,0), ldf,
                                  auxv,   ione,
                           c_one, F(0,k), ione );*/
            /* I think we only need stricly lower-triangular part :) */
            magma_cgemv( MagmaNoTrans, n-k-1, i__2,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#endif
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            //blasf77_cgemm( MagmaNoTransStr, MagmaConjTransStr, &ione, &i__1, &i__2,
            //               &c_neg_one, A(rk, 0  ), &lda,
            //                           F(k+1,0  ), &ldf,
            //               &c_one,     A(rk, k+1), &lda );
#ifdef RIGHT_UPDATE
            /* right-looking update of rows,                     */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, nb-k, i__1, ione,
                         c_neg_one, A(rk,  k  ), lda,
                                    F(k+1, k  ), ldf,
                         c_one,     A(rk,  k+1), lda );
#else
            /* left-looking update of rows,                     *
             * since F=A'v with original A, so no right-looking */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, ione, i__1, i__2,
                         c_neg_one, A(rk, 0  ), lda,
                                    F(k+1,0  ), ldf,
                         c_one,     A(rk, k+1), lda );
#endif
        }
        
        /* Update partial column norms. */
        if (rk < min(m, n+offset)-1 ){
            magmablas_scnrm2_row_check_adjust(n-k-1, tol3z, &vn1[k+1], &vn2[k+1], A(rk,k+1), lda, lsticcs);

            magma_device_sync();
            #if defined(PRECISION_d) || defined(PRECISION_z)
            magma_dgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #else
            magma_sgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #endif
        }


        /*if (rk < lastrk) {
            for (j = k + 1; j < n; ++j) {
                if (vn1[j] != 0.) {
                    // NOTE: The following 4 lines follow from the analysis in
                    //   Lapack Working Note 176.
                    temp = MAGMA_C_ABS( *A(rk,j) ) / vn1[j];
                    temp = max( 0., ((1. + temp) * (1. - temp)) );

                    d__1 = vn1[j] / vn2[j];
                    temp2 = temp * (d__1 * d__1);

                    if (temp2 <= tol3z) {
                        vn2[j] = (float) lsticc;
                        lsticc = j;
                    } else {
                        vn1[j] *= magma_ssqrt(temp);
                    }
                }
            }
        }*/
        
        //*A(rk, k) = Akk;
        //magma_csetvector( 1, &Akk, 1, A(rk, k), 1 );
        //magma_cswap( 1, &Aks[k], 1, A(rk, k), 1 );
        
        ++k;
    }
    magma_ccopymatrix( 1, k, Aks, 1, A(offset, 0), lda+1 );

    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        /* Send F to the GPU
        magma_csetmatrix( i__2, *kb,
                          F (*kb, 0), ldf,
                          dF(*kb, 0), i__2 );*/

        magma_cgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, A(rk+1, 0  ), lda,
                                F(*kb,  0  ), ldf,
                     c_one,     A(rk+1, *kb), lda );
    }
    /* Recomputation of difficult columns. */
    if( lsticc > 0 ) {
        printf( " -- recompute dnorms --\n" );
        magmablas_scnrm2_check(m-rk-1, n-*kb, A(rk+1,*kb), lda,
                               &vn1[*kb], lsticcs);
#if defined(PRECISION_d) || defined(PRECISION_z)
        magma_dcopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb);
#else
        magma_scopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb);
#endif
    /*while( lsticc > 0 ) {
        itemp = (magma_int_t)(vn2[lsticc] >= 0. ? floor(vn2[lsticc] + .5) : -floor(.5 - vn2[lsticc]));
        i__1 = m - rk - 1;
        if (lsticc <= nb)
            vn1[lsticc] = cblas_scnrm2(i__1, A(rk + 1, lsticc), ione);
        else {
            // Where is the data, CPU or GPU ?
            float r1, r2;
            
            r1 = cblas_scnrm2(nb-k, A(rk + 1, lsticc), ione);
            r2 = magma_scnrm2(m-offset-nb, dA(offset + nb + 1, lsticc), ione);
            
            vn1[lsticc] = magma_ssqrt(r1*r1+r2*r2);
        }
        
        // NOTE: The computation of VN1( LSTICC ) relies on the fact that
        //   SNRM2 does not fail on vectors with norm below the value of SQRT(SLAMCH('S'))
        vn2[lsticc] = vn1[lsticc];
        lsticc = itemp;*/
    }
    magma_free(Aks);
    magma_free(lsticcs);

    return MAGMA_SUCCESS;
} /* magma_claqps */
示例#13
0
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    magmaFloatComplex *h_x, *h_x2, *h_tau, *h_tau2;
    magmaFloatComplex *d_x, *d_tau;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    float      error, error2, work[1];
    magma_int_t N, nb, lda, ldda, size;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};    magma_int_t status = 0;


    magma_opts opts;
    parse_opts( argc, argv, &opts );

    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // does larfg on nb columns, one after another
    nb = (opts.nb > 0 ? opts.nb : 64);
    
    magma_queue_t queue = 0;

    printf("    N    nb    CPU GFLop/s (ms)    GPU GFlop/s (ms)   error      tau error\n");
    printf("==========================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            lda  = N;
            ldda = ((N+31)/32)*32;
            gflops = FLOPS_CLARFG( N ) / 1e9 * nb;
    
            TESTING_MALLOC_CPU( h_x,    magmaFloatComplex, N*nb );
            TESTING_MALLOC_CPU( h_x2,   magmaFloatComplex, N*nb );
            TESTING_MALLOC_CPU( h_tau,  magmaFloatComplex, nb   );
            TESTING_MALLOC_CPU( h_tau2, magmaFloatComplex, nb   );
        
            TESTING_MALLOC_DEV( d_x,   magmaFloatComplex, ldda*nb );
            TESTING_MALLOC_DEV( d_tau, magmaFloatComplex, nb      );
            
            /* Initialize the vectors */
            size = N*nb;
            lapackf77_clarnv( &ione, ISEED, &size, h_x );
            
            /* =====================================================================
               Performs operation using MAGMABLAS
               =================================================================== */
            magma_csetmatrix( N, nb, h_x, N, d_x, ldda );
    
            gpu_time = magma_sync_wtime( queue );
            for( int j = 0; j < nb; ++j ) {
                magmablas_clarfg( N, &d_x[0+j*ldda], &d_x[1+j*ldda], ione, &d_tau[j] );
            }
            gpu_time = magma_sync_wtime( queue ) - gpu_time;
            gpu_perf = gflops / gpu_time;
            
            magma_cgetmatrix( N, nb, d_x, ldda, h_x2, N );
            magma_cgetvector( nb, d_tau, 1, h_tau2, 1 );
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            for( int j = 0; j < nb; ++j ) {
                lapackf77_clarfg( &N, &h_x[0+j*lda], &h_x[1+j*lda], &ione, &h_tau[j] );
            }
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            
            /* =====================================================================
               Error Computation and Performance Comparison
               =================================================================== */
            blasf77_caxpy( &size, &c_neg_one, h_x, &ione, h_x2, &ione );
            error = lapackf77_clange( "F", &N, &nb, h_x2, &N, work )
                  / lapackf77_clange( "F", &N, &nb, h_x,  &N, work );
            
            // tau can be 0
            blasf77_caxpy( &nb, &c_neg_one, h_tau, &ione, h_tau2, &ione );
            error2 = lapackf77_clange( "F", &nb, &ione, h_tau,  &nb, work );
            if ( error2 != 0 ) {
                error2 = lapackf77_clange( "F", &nb, &ione, h_tau2, &nb, work ) / error2;
            }

            printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %8.2e   %s\n",
                   (int) N, (int) nb, cpu_perf, 1000.*cpu_time, gpu_perf, 1000.*gpu_time,
                   error, error2,
                   (error < tol && error2 < tol ? "ok" : "failed") );
            status += ! (error < tol && error2 < tol);
            
            TESTING_FREE_CPU( h_x   );
            TESTING_FREE_CPU( h_x2  );
            TESTING_FREE_CPU( h_tau );
        
            TESTING_FREE_DEV( d_x   );
            TESTING_FREE_DEV( d_tau );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    TESTING_FINALIZE();
    return status;
}
示例#14
0
int main(int argc, char **argv)
{
    TESTING_INIT();

    real_Double_t   gflops, magma_perf, magma_time, dev_perf, dev_time, cpu_perf, cpu_time;
    float          magma_error, dev_error, work[1];
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t M, N, Xm, Ym, lda, sizeA, sizeX, sizeY;
    magma_int_t incx = 1;
    magma_int_t incy = 1;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex alpha = MAGMA_C_MAKE(  1.5, -2.3 );
    magmaFloatComplex beta  = MAGMA_C_MAKE( -0.6,  0.8 );
    magmaFloatComplex *A, *X, *Y, *Ydev, *Ymagma;
    magmaFloatComplex_ptr dA, dX, dY;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = opts.tolerance * lapackf77_slamch("E");

    printf("trans = %s\n", lapack_trans_const(opts.transA) );
    #ifdef HAVE_CUBLAS
        printf("    M     N   MAGMA Gflop/s (ms)  %s Gflop/s (ms)   CPU Gflop/s (ms)  MAGMA error  %s error\n",
                g_platform_str, g_platform_str );
    #else
        printf("    M     N   %s Gflop/s (ms)   CPU Gflop/s (ms)  %s error\n",
                g_platform_str, g_platform_str );
    #endif
    printf("===================================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M = opts.msize[itest];
            N = opts.nsize[itest];
            lda    = ((M+31)/32)*32;
            gflops = FLOPS_CGEMV( M, N ) / 1e9;

            if ( opts.transA == MagmaNoTrans ) {
                Xm = N;
                Ym = M;
            } else {
                Xm = M;
                Ym = N;
            }

            sizeA = lda*N;
            sizeX = incx*Xm;
            sizeY = incy*Ym;
            
            TESTING_MALLOC_CPU( A,       magmaFloatComplex, sizeA );
            TESTING_MALLOC_CPU( X,       magmaFloatComplex, sizeX );
            TESTING_MALLOC_CPU( Y,       magmaFloatComplex, sizeY );
            TESTING_MALLOC_CPU( Ydev,    magmaFloatComplex, sizeY );
            TESTING_MALLOC_CPU( Ymagma,  magmaFloatComplex, sizeY );
            
            TESTING_MALLOC_DEV( dA, magmaFloatComplex, sizeA );
            TESTING_MALLOC_DEV( dX, magmaFloatComplex, sizeX );
            TESTING_MALLOC_DEV( dY, magmaFloatComplex, sizeY );
            
            /* Initialize the matrix */
            lapackf77_clarnv( &ione, ISEED, &sizeA, A );
            lapackf77_clarnv( &ione, ISEED, &sizeX, X );
            lapackf77_clarnv( &ione, ISEED, &sizeY, Y );
            
            /* =====================================================================
               Performs operation using CUBLAS
               =================================================================== */
            magma_csetmatrix( M, N, A, lda, dA, lda );
            magma_csetvector( Xm, X, incx, dX, incx );
            magma_csetvector( Ym, Y, incy, dY, incy );
            
            #ifdef HAVE_CUBLAS
                dev_time = magma_sync_wtime( 0 );
                cublasCgemv( opts.handle, cublas_trans_const(opts.transA),
                             M, N, &alpha, dA, lda, dX, incx, &beta, dY, incy );
                dev_time = magma_sync_wtime( 0 ) - dev_time;
            #else
                dev_time = magma_sync_wtime( opts.queue );
                magma_cgemv( opts.transA, M, N,
                             &alpha, dA, lda,
                                     dX, incx,
                             &beta,  dY, incy );
                dev_time = magma_sync_wtime( opts.queue ) - dev_time;
            #endif
            dev_perf = gflops / dev_time;
            
            magma_cgetvector( Ym, dY, incy, Ydev, incy );
            
            /* =====================================================================
               Performs operation using MAGMABLAS (currently only with CUDA)
               =================================================================== */
            #ifdef HAVE_CUBLAS
                magma_csetvector( Ym, Y, incy, dY, incy );
                
                magma_time = magma_sync_wtime( 0 );
                magmablas_cgemv( opts.transA, M, N, alpha, dA, lda, dX, incx, beta, dY, incy );
                magma_time = magma_sync_wtime( 0 ) - magma_time;
                magma_perf = gflops / magma_time;
                
                magma_cgetvector( Ym, dY, incy, Ymagma, incy );
            #endif
            
            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            cpu_time = magma_wtime();
            blasf77_cgemv( lapack_trans_const(opts.transA), &M, &N,
                           &alpha, A, &lda,
                                   X, &incx,
                           &beta,  Y, &incy );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            
            /* =====================================================================
               Check the result
               =================================================================== */
            float Anorm = lapackf77_clange( "F", &M, &N, A, &lda, work );
            float Xnorm = lapackf77_clange( "F", &Xm, &ione, X, &Xm, work );
            
            blasf77_caxpy( &Ym, &c_neg_one, Y, &incy, Ydev, &incy );
            dev_error = lapackf77_clange( "F", &Ym, &ione, Ydev, &Ym, work ) / (Anorm * Xnorm);
            
            #ifdef HAVE_CUBLAS
                blasf77_caxpy( &Ym, &c_neg_one, Y, &incy, Ymagma, &incy );
                magma_error = lapackf77_clange( "F", &Ym, &ione, Ymagma, &Ym, work ) / (Anorm * Xnorm);
                
                printf("%5d %5d   %7.2f (%7.2f)    %7.2f (%7.2f)   %7.2f (%7.2f)    %8.2e     %8.2e   %s\n",
                       (int) M, (int) N,
                       magma_perf,  1000.*magma_time,
                       dev_perf,    1000.*dev_time,
                       cpu_perf,    1000.*cpu_time,
                       magma_error, dev_error,
                       (magma_error < tol && dev_error < tol ? "ok" : "failed"));
                status += ! (magma_error < tol && dev_error < tol);
            #else
                printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)    %8.2e   %s\n",
                       (int) M, (int) N,
                       dev_perf,    1000.*dev_time,
                       cpu_perf,    1000.*cpu_time,
                       dev_error,
                       (dev_error < tol ? "ok" : "failed"));
                status += ! (dev_error < tol);
            #endif
            
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( X );
            TESTING_FREE_CPU( Y );
            TESTING_FREE_CPU( Ydev    );
            TESTING_FREE_CPU( Ymagma  );
            
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dX );
            TESTING_FREE_DEV( dY );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    TESTING_FINALIZE();
    return status;
}
示例#15
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cgeqrf
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t    gflops, gpu_perf, gpu_time, cpu_perf=0, cpu_time=0;
    float           error, work[1];
    magmaFloatComplex  c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex *h_A, *h_R, *tau, *h_work, tmp[1];
    magmaFloatComplex_ptr d_A, dT;
    magma_int_t M, N, n2, lda, ldda, lwork, info, min_mn, nb, size;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1}, ISEED2[4];
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    magma_int_t status = 0;
    float tol;
    opts.lapack |= (opts.version == 2 && opts.check == 2);  // check (-c2) implies lapack (-l)

    if ( opts.version != 2 && opts.check == 1 ) {
        printf( "NOTE: version %d requires -c2 check due to the special structure of the\n"
                "MAGMA cgeqrf results; using -c2.\n\n", (int) opts.version );
        opts.check = 2;
    }
    printf( "version %d\n", (int) opts.version );
    if ( opts.version == 2 ) {
        if ( opts.check == 1 ) {
            printf("    M     N   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R-Q'A||_1 / (M*||A||_1*eps) ||I-Q'Q||_1 / (M*eps)\n");
            printf("=========================================================================================================\n");
        } else {
            printf("    M     N   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R||_F / ||A||_F\n");
            printf("=======================================================================\n");
        }
        tol = 1.0;
    } else {
        printf("    M     N   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||Ax-b||_F/(N*||A||_F*||x||_F)\n");
        printf("====================================================================================\n");
        tol = opts.tolerance * lapackf77_slamch("E");
    }
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M = opts.msize[itest];
            N = opts.nsize[itest];
            min_mn = min(M, N);
            lda    = M;
            n2     = lda*N;
            ldda   = ((M+31)/32)*32;
            gflops = FLOPS_CGEQRF( M, N ) / 1e9;
            
            // query for workspace size
            lwork = -1;
            lapackf77_cgeqrf(&M, &N, NULL, &M, NULL, tmp, &lwork, &info);
            lwork = (magma_int_t)MAGMA_C_REAL( tmp[0] );
            
            TESTING_MALLOC_CPU( tau,    magmaFloatComplex, min_mn );
            TESTING_MALLOC_CPU( h_A,    magmaFloatComplex, n2     );
            TESTING_MALLOC_CPU( h_work, magmaFloatComplex, lwork  );
            
            TESTING_MALLOC_PIN( h_R,    magmaFloatComplex, n2     );
            
            TESTING_MALLOC_DEV( d_A,    magmaFloatComplex, ldda*N );
            
            /* Initialize the matrix */
            for ( int j=0; j<4; j++ )
                ISEED2[j] = ISEED[j]; // save seeds
            lapackf77_clarnv( &ione, ISEED, &n2, h_A );
            lapackf77_clacpy( MagmaUpperLowerStr, &M, &N, h_A, &lda, h_R, &lda );
            magma_csetmatrix( M, N, h_R, lda, d_A, 0, ldda, opts.queue );
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_wtime();
            if ( opts.version == 2 ) {
                magma_cgeqrf2_gpu( M, N, d_A, 0, ldda, tau, opts.queues2, &info );
            }
            else {
                nb = magma_get_cgeqrf_nb( M );
                size = (2*min(M, N) + (N+31)/32*32 )*nb;
                TESTING_MALLOC_DEV( dT, magmaFloatComplex, size );
                if ( opts.version == 1 ) {
                    magma_cgeqrf_gpu( M, N, d_A, 0, ldda, tau, dT, 0, opts.queue, &info );
                }
                #ifdef HAVE_CUBLAS
                else if ( opts.version == 3 ) {
                    magma_cgeqrf3_gpu( M, N, d_A, 0, ldda, tau, dT, opts.queue, &info );
                }
                #endif
                else {
                    printf( "Unknown version %d\n", opts.version );
                    exit(1);
                }
            }
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0)
                printf("magma_cgeqrf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            if ( opts.lapack ) {
                /* =====================================================================
                   Performs operation using LAPACK
                   =================================================================== */
                magmaFloatComplex *tau2;
                TESTING_MALLOC_CPU( tau2, magmaFloatComplex, min_mn );
                cpu_time = magma_wtime();
                lapackf77_cgeqrf(&M, &N, h_A, &lda, tau2, h_work, &lwork, &info);
                cpu_time = magma_wtime() - cpu_time;
                cpu_perf = gflops / cpu_time;
                if (info != 0)
                    printf("lapackf77_cgeqrf returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                TESTING_FREE_CPU( tau2 );
            }

            if ( opts.check == 1 && M >= N ) {
                /* =====================================================================
                   Check the result -- only version 1, cqrt02 requires M >= N
                   =================================================================== */
                magma_int_t lwork = n2+N;
                magmaFloatComplex *h_W1, *h_W2, *h_W3;
                float *h_RW, results[2];
                
                magma_cgetmatrix( M, N, d_A, 0, ldda, h_R, M, opts.queue );

                TESTING_MALLOC_CPU( h_W1, magmaFloatComplex, n2    ); // Q
                TESTING_MALLOC_CPU( h_W2, magmaFloatComplex, n2    ); // R
                TESTING_MALLOC_CPU( h_W3, magmaFloatComplex, lwork ); // WORK
                TESTING_MALLOC_CPU( h_RW, float, M );  // RWORK
                lapackf77_clarnv( &ione, ISEED2, &n2, h_A );
                lapackf77_cqrt02( &M, &N, &min_mn, h_A, h_R, h_W1, h_W2, &lda, tau, h_W3, &lwork,
                                  h_RW, results );

                if ( opts.lapack ) {
                    printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e                      %8.2e",
                           (int) M, (int) N, cpu_perf, cpu_time, gpu_perf, gpu_time, results[0], results[1] );
                } else {
                    printf("%5d %5d     ---   (  ---  )   %7.2f (%7.2f)    %8.2e                      %8.2e",
                           (int) M, (int) N, gpu_perf, gpu_time, results[0], results[1] );
                } 
                // todo also check results[1] < tol?
                printf("   %s\n", (results[0] < tol ? "ok" : "failed"));
                status += ! (results[0] < tol);
            
                TESTING_FREE_CPU( h_W1 );
                TESTING_FREE_CPU( h_W2 );
                TESTING_FREE_CPU( h_W3 );
                TESTING_FREE_CPU( h_RW );
            }
            else if ( opts.check == 2 && opts.version == 2 ) {
                /* =====================================================================
                   Check the result compared to LAPACK -- only version 2
                   =================================================================== */
                magma_cgetmatrix( M, N, d_A, 0, ldda, h_R, M, opts.queue );
                error = lapackf77_clange("f", &M, &N, h_A, &lda, work);
                blasf77_caxpy(&n2, &c_neg_one, h_A, &ione, h_R, &ione);
                error = lapackf77_clange("f", &M, &N, h_R, &lda, work) / error;

                if ( opts.lapack ) {
                    printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e",
                           (int) M, (int) N, cpu_perf, cpu_time, gpu_perf, gpu_time, error );
                } else {
                    printf("%5d %5d     ---   (  ---  )   %7.2f (%7.2f)   %8.2e",
                           (int) M, (int) N, gpu_perf, gpu_time, error );
                }
                printf("   %s\n", (error < tol ? "ok" : "failed"));
                status += ! (error < tol);
            }
            else if ( opts.check == 2 && M >= N ) {
                /* =====================================================================
                   Check the result by solving linear system -- only versions 1 & 3, M >= N
                   =================================================================== */
                magma_int_t lwork;
                magmaFloatComplex *x, *b, *hwork;
                magmaFloatComplex_ptr d_B;
                const magmaFloatComplex c_zero    = MAGMA_C_ZERO;
                const magmaFloatComplex c_one     = MAGMA_C_ONE;
                const magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
                const magma_int_t ione = 1;

                // initialize RHS, b = A*random
                TESTING_MALLOC_CPU( x, magmaFloatComplex, N );
                TESTING_MALLOC_CPU( b, magmaFloatComplex, M );
                lapackf77_clarnv( &ione, ISEED, &N, x );
                blasf77_cgemv( "Notrans", &M, &N, &c_one, h_A, &lda, x, &ione, &c_zero, b, &ione );
                // copy to GPU
                TESTING_MALLOC_DEV( d_B, magmaFloatComplex, M );
                magma_csetvector( M, b, 1, d_B, 0, 1, opts.queue );

                if ( opts.version == 1 ) {
                    // allocate hwork
                    magma_cgeqrs_gpu( M, N, 1,
                                      d_A, 0, ldda, tau, dT, 0,
                                      d_B, 0, M, tmp, -1, opts.queue, &info );
                    lwork = (magma_int_t)MAGMA_C_REAL( tmp[0] );
                    TESTING_MALLOC_CPU( hwork, magmaFloatComplex, lwork );

                    // solve linear system
                    magma_cgeqrs_gpu( M, N, 1,
                                      d_A, 0, ldda, tau, dT, 0,
                                      d_B, 0, M, hwork, lwork, opts.queue, &info );
                    if (info != 0)
                        printf("magma_cgeqrs returned error %d: %s.\n",
                               (int) info, magma_strerror( info ));
                    TESTING_FREE_CPU( hwork );
                }
                #ifdef HAVE_CUBLAS
                else if ( opts.version == 3 ) {
                    // allocate hwork
                    magma_cgeqrs3_gpu( M, N, 1,
                                       d_A, 0, ldda, tau, dT, 0,
                                       d_B, 0, M, tmp, -1, opts.queue, &info );
                    lwork = (magma_int_t)MAGMA_C_REAL( tmp[0] );
                    TESTING_MALLOC_CPU( hwork, magmaFloatComplex, lwork );

                    // solve linear system
                    magma_cgeqrs3_gpu( M, N, 1,
                                       d_A, 0, ldda, tau, dT, 0,
                                       d_B, 0, M, hwork, lwork, opts.queue, &info );
                    if (info != 0)
                        printf("magma_cgeqrs3 returned error %d: %s.\n",
                               (int) info, magma_strerror( info ));
                    TESTING_FREE_CPU( hwork );
                }
                #endif
                else {
                    printf( "Unknown version %d\n", opts.version );
                    exit(1);
                }
                magma_cgetvector( N, d_B, 0, 1, x, 1, opts.queue );

                // compute r = Ax - b, saved in b
                lapackf77_clarnv( &ione, ISEED2, &n2, h_A );
                blasf77_cgemv( "Notrans", &M, &N, &c_one, h_A, &lda, x, &ione, &c_neg_one, b, &ione );

                // compute residual |Ax - b| / (n*|A|*|x|)
                float norm_x, norm_A, norm_r, work[1];
                norm_A = lapackf77_clange( "F", &M, &N, h_A, &lda, work );
                norm_r = lapackf77_clange( "F", &M, &ione, b, &M, work );
                norm_x = lapackf77_clange( "F", &N, &ione, x, &N, work );

                TESTING_FREE_CPU( x );
                TESTING_FREE_CPU( b );
                TESTING_FREE_DEV( d_B );

                error = norm_r / (N * norm_A * norm_x);
                if ( opts.lapack ) {
                    printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e",
                           (int) M, (int) N, cpu_perf, cpu_time, gpu_perf, gpu_time, error );
                } else {
                    printf("%5d %5d     ---   (  ---  )   %7.2f (%7.2f)   %8.2e",
                           (int) M, (int) N, gpu_perf, gpu_time, error );
                }
                printf("   %s\n", (error < tol ? "ok" : "failed"));
                status += ! (error < tol);
            }
            else {
                if ( opts.lapack ) {
                    printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)   ---",
                           (int) M, (int) N, cpu_perf, cpu_time, gpu_perf, gpu_time );
                } else {
                    printf("%5d %5d     ---   (  ---  )   %7.2f (%7.2f)     ---",
                           (int) M, (int) N, gpu_perf, gpu_time);
                }
                printf("%s\n", (opts.check != 0 ? "  (error check only for M >= N)" : ""));
            }
            
            TESTING_FREE_CPU( tau    );
            TESTING_FREE_CPU( h_A    );
            TESTING_FREE_CPU( h_work );
            
            TESTING_FREE_PIN( h_R );
            
            TESTING_FREE_DEV( d_A );
            
            if ( opts.version != 2 )
                TESTING_FREE_DEV( dT );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    TESTING_FINALIZE();
    return status;
}
示例#16
0
extern "C" magma_int_t
magma_cqr(
    magma_int_t m, magma_int_t n,
    magma_c_matrix A, 
    magma_int_t lda, 
    magma_c_matrix *Q, 
    magma_c_matrix *R,
    magma_queue_t queue )
{
    magma_int_t info = 0;

    // local constants
    const magmaFloatComplex c_zero = MAGMA_C_ZERO;

    // local variables
    magma_int_t inc = 1;
    magma_int_t k = min(m,n);
    magma_int_t ldt;
    magma_int_t nb;
    magmaFloatComplex *tau = NULL;
    magmaFloatComplex *dT = NULL;
    magmaFloatComplex *dA = NULL;
    magma_c_matrix dR1 = {Magma_CSR};

    // allocate CPU resources
    CHECK( magma_cmalloc_pinned( &tau, k ) );

    // query number of blocks required for QR factorization
    nb = magma_get_cgeqrf_nb( m, n );
    ldt = (2 * k + magma_roundup(n, 32)) * nb;
    CHECK( magma_cmalloc( &dT, ldt ) );

    // get copy of matrix array
    if ( A.memory_location == Magma_DEV ) {
        dA = A.dval;
    } else {
        CHECK( magma_cmalloc( &dA, lda * n ) );
        magma_csetvector( lda * n, A.val, inc, dA, inc, queue );
    }

    // QR factorization
    magma_cgeqrf_gpu( m, n, dA, lda, tau, dT, &info );  

    // construct R matrix
    if ( R != NULL ) {
        if ( A.memory_location == Magma_DEV ) {
            CHECK( magma_cvinit( R, Magma_DEV, lda, n, c_zero, queue ) );
            magmablas_clacpy( MagmaUpper, k, n, dA, lda, R->dval, lda, queue );
        } else {
            CHECK( magma_cvinit( &dR1, Magma_DEV, lda, n, c_zero, queue ) );
            magmablas_clacpy( MagmaUpper, k, n, dA, lda, dR1.dval, lda, queue );
            CHECK( magma_cvinit( R, Magma_CPU, lda, n, c_zero, queue ) );
            magma_cgetvector( lda * n, dR1.dval, inc, R->val, inc, queue );
        }
    }

    // construct Q matrix
    if ( Q != NULL ) {
        magma_cungqr_gpu( m, n, k, dA, lda, tau, dT, nb, &info ); 

        if ( A.memory_location == Magma_DEV ) {
            CHECK( magma_cvinit( Q, Magma_DEV, lda, n, c_zero, queue ) );
            magma_ccopyvector( lda * n, dA, inc, Q->dval, inc, queue );
        } else {
            CHECK( magma_cvinit( Q, Magma_CPU, lda, n, c_zero, queue ) );
            magma_cgetvector( lda * n, dA, inc, Q->val, inc, queue );
        }
    }

cleanup:
    if( info != 0 ){
        magma_cmfree( Q, queue );
        magma_cmfree( R, queue );
        magma_cmfree( &dR1, queue );
    }

    // free resources
    magma_free_pinned( tau );
    magma_free( dT );
    if ( A.memory_location == Magma_CPU ) {
        magma_free( dA );
    }

    return info;
}
示例#17
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing ctrsm
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t   gflops, cublas_perf, cublas_time, cpu_perf=0, cpu_time=0;
    float          cublas_error, normA, normx, normr, work[1];
    magma_int_t N, info;
    magma_int_t sizeA;
    magma_int_t lda, ldda;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t *ipiv;

    magmaFloatComplex *h_A, *h_b, *h_x, *h_xcublas;
    magmaFloatComplex *d_A, *d_x;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    printf("uplo = %c, transA = %c, diag = %c\n", opts.uplo, opts.transA, opts.diag );
    printf("    N  CUBLAS Gflop/s (ms)   CPU Gflop/s (ms)   CUBLAS error\n");
    printf("============================================================\n");
    for( int i = 0; i < opts.ntest; ++i ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[i];
            gflops = FLOPS_CTRSM(opts.side, N, 1) / 1e9;
            lda    = N;
            ldda   = ((lda+31)/32)*32;
            sizeA  = lda*N;
            
            TESTING_MALLOC_CPU( ipiv,      magma_int_t,        N     );
            TESTING_MALLOC_CPU( h_A,       magmaFloatComplex, lda*N );
            TESTING_MALLOC_CPU( h_b,       magmaFloatComplex, N     );
            TESTING_MALLOC_CPU( h_x,       magmaFloatComplex, N     );
            TESTING_MALLOC_CPU( h_xcublas, magmaFloatComplex, N     );
            
            TESTING_MALLOC_DEV( d_A, magmaFloatComplex, ldda*N );
            TESTING_MALLOC_DEV( d_x, magmaFloatComplex, N      );
            
            /* Initialize the matrices */
            /* Factor A into LU to get well-conditioned triangular matrix.
             * Copy L to U, since L seems okay when used with non-unit diagonal
             * (i.e., from U), while U fails when used with unit diagonal. */
            lapackf77_clarnv( &ione, ISEED, &sizeA, h_A );
            lapackf77_cgetrf( &N, &N, h_A, &lda, ipiv, &info );
            for( int j = 0; j < N; ++j ) {
                for( int i = 0; i < j; ++i ) {
                    *h_A(i,j) = *h_A(j,i);
                }
            }
            
            lapackf77_clarnv( &ione, ISEED, &N, h_b );
            blasf77_ccopy( &N, h_b, &ione, h_x, &ione );
            
            /* =====================================================================
               Performs operation using CUDA-BLAS
               =================================================================== */
            magma_csetmatrix( N, N, h_A, lda, d_A, ldda );
            magma_csetvector( N, h_x, 1, d_x, 1 );
            
            cublas_time = magma_sync_wtime( NULL );
            cublasCtrsv( opts.uplo, opts.transA, opts.diag,
                         N,
                         d_A, ldda,
                         d_x, 1 );
            cublas_time = magma_sync_wtime( NULL ) - cublas_time;
            cublas_perf = gflops / cublas_time;
            
            magma_cgetvector( N, d_x, 1, h_xcublas, 1 );
            
            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                blasf77_ctrsv( &opts.uplo, &opts.transA, &opts.diag,
                               &N,
                               h_A, &lda,
                               h_x, &ione );
                cpu_time = magma_wtime() - cpu_time;
                cpu_perf = gflops / cpu_time;
            }
            
            /* =====================================================================
               Check the result
               =================================================================== */
            // ||b - Ax|| / (||A||*||x||)
            // error for CUBLAS
            normA = lapackf77_clange( "F", &N, &N, h_A, &lda, work );
            
            normx = lapackf77_clange( "F", &N, &ione, h_xcublas, &ione, work );
            blasf77_ctrmv( &opts.uplo, &opts.transA, &opts.diag,
                           &N,
                           h_A, &lda,
                           h_xcublas, &ione );
            blasf77_caxpy( &N, &c_neg_one, h_b, &ione, h_xcublas, &ione );
            normr = lapackf77_clange( "F", &N, &ione, h_xcublas, &N, work );
            cublas_error = normr / (normA*normx);

            if ( opts.lapack ) {
                printf("%5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e\n",
                        (int) N,
                        cublas_perf, 1000.*cublas_time,
                        cpu_perf,    1000.*cpu_time,
                        cublas_error );
            }
            else {
                printf("%5d   %7.2f (%7.2f)     ---  (  ---  )   %8.2e\n",
                        (int) N,
                        cublas_perf, 1000.*cublas_time,
                        cublas_error );
            }
            
            TESTING_FREE_CPU( ipiv );
            TESTING_FREE_CPU( h_A  );
            TESTING_FREE_CPU( h_b  );
            TESTING_FREE_CPU( h_x  );
            TESTING_FREE_CPU( h_xcublas );
            
            TESTING_FREE_DEV( d_A );
            TESTING_FREE_DEV( d_x );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    TESTING_FINALIZE();
    return 0;
}
示例#18
0
int main(int argc, char **argv)
{
    TESTING_INIT();

    real_Double_t   gflops, magma_perf, magma_time, cublas_perf, cublas_time, cpu_perf, cpu_time;
    float          magma_error, cublas_error, work[1];
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t M, N, Xm, Ym, lda, sizeA, sizeX, sizeY;
    magma_int_t incx = 1;
    magma_int_t incy = 1;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex alpha = MAGMA_C_MAKE(  1.5, -2.3 );
    magmaFloatComplex beta  = MAGMA_C_MAKE( -0.6,  0.8 );
    magmaFloatComplex *A, *X, *Y, *Ycublas, *Ymagma;
    magmaFloatComplex *dA, *dX, *dY;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );

    printf("    M     N   MAGMA Gflop/s (ms)  CUBLAS Gflop/s (ms)   CPU Gflop/s (ms)  MAGMA error  CUBLAS error\n");
    printf("===================================================================================================\n");
    for( int i = 0; i < opts.ntest; ++i ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M = opts.msize[i];
            N = opts.nsize[i];
            lda    = ((M+31)/32)*32;
            gflops = FLOPS_CGEMV( M, N ) / 1e9;

            if ( opts.transA == MagmaNoTrans ) {
                Xm = N;
                Ym = M;
            } else {
                Xm = M;
                Ym = N;
            }

            sizeA = lda*N;
            sizeX = incx*Xm;
            sizeY = incy*Ym;
            
            TESTING_MALLOC_CPU( A,       magmaFloatComplex, sizeA );
            TESTING_MALLOC_CPU( X,       magmaFloatComplex, sizeX );
            TESTING_MALLOC_CPU( Y,       magmaFloatComplex, sizeY );
            TESTING_MALLOC_CPU( Ycublas, magmaFloatComplex, sizeY );
            TESTING_MALLOC_CPU( Ymagma,  magmaFloatComplex, sizeY );
            
            TESTING_MALLOC_DEV( dA, magmaFloatComplex, sizeA );
            TESTING_MALLOC_DEV( dX, magmaFloatComplex, sizeX );
            TESTING_MALLOC_DEV( dY, magmaFloatComplex, sizeY );
            
            /* Initialize the matrix */
            lapackf77_clarnv( &ione, ISEED, &sizeA, A );
            lapackf77_clarnv( &ione, ISEED, &sizeX, X );
            lapackf77_clarnv( &ione, ISEED, &sizeY, Y );
            
            /* =====================================================================
               Performs operation using CUBLAS
               =================================================================== */
            magma_csetmatrix( M, N, A, lda, dA, lda );
            magma_csetvector( Xm, X, incx, dX, incx );
            magma_csetvector( Ym, Y, incy, dY, incy );
            
            cublas_time = magma_sync_wtime( 0 );
            cublasCgemv( opts.transA, M, N, alpha, dA, lda, dX, incx, beta, dY, incy );
            cublas_time = magma_sync_wtime( 0 ) - cublas_time;
            cublas_perf = gflops / cublas_time;
            
            magma_cgetvector( Ym, dY, incy, Ycublas, incy );
            
            /* =====================================================================
               Performs operation using MAGMABLAS
               =================================================================== */
            magma_csetvector( Ym, Y, incy, dY, incy );
            
            magma_time = magma_sync_wtime( 0 );
            magmablas_cgemv( opts.transA, M, N, alpha, dA, lda, dX, incx, beta, dY, incy );
            magma_time = magma_sync_wtime( 0 ) - magma_time;
            magma_perf = gflops / magma_time;
            
            magma_cgetvector( Ym, dY, incx, Ymagma, incx );
            
            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            cpu_time = magma_wtime();
            blasf77_cgemv( &opts.transA, &M, &N,
                           &alpha, A, &lda,
                                   X, &incx,
                           &beta,  Y, &incy );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            
            /* =====================================================================
               Check the result
               =================================================================== */
            blasf77_caxpy( &Ym, &c_neg_one, Y, &incy, Ymagma, &incy );
            magma_error = lapackf77_clange( "M", &Ym, &ione, Ymagma, &Ym, work ) / Ym;
            
            blasf77_caxpy( &Ym, &c_neg_one, Y, &incy, Ycublas, &incy );
            cublas_error = lapackf77_clange( "M", &Ym, &ione, Ycublas, &Ym, work ) / Ym;
            
            printf("%5d %5d   %7.2f (%7.2f)    %7.2f (%7.2f)   %7.2f (%7.2f)    %8.2e     %8.2e\n",
                   (int) M, (int) N,
                   magma_perf,  1000.*magma_time,
                   cublas_perf, 1000.*cublas_time,
                   cpu_perf,    1000.*cpu_time,
                   magma_error, cublas_error );
            
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( X );
            TESTING_FREE_CPU( Y );
            TESTING_FREE_CPU( Ycublas );
            TESTING_FREE_CPU( Ymagma  );
            
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dX );
            TESTING_FREE_DEV( dY );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    TESTING_FINALIZE();
    return 0;
}
示例#19
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cgemm_batched
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t   gflops, magma_perf, magma_time, cpu_perf, cpu_time;
    float          magma_error, magma_err, Ynorm, work[1];
    magma_int_t M, N, Xm, Ym, lda, ldda;
    magma_int_t sizeA, sizeX, sizeY;
    magma_int_t incx = 1;
    magma_int_t incy = 1;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;
    magma_int_t batchCount;

    magmaFloatComplex *h_A, *h_X, *h_Y, *h_Ymagma;
    magmaFloatComplex *d_A, *d_X, *d_Y;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex alpha = MAGMA_C_MAKE(  0.29, -0.86 );
    magmaFloatComplex beta  = MAGMA_C_MAKE( -0.48,  0.38 );
    magmaFloatComplex **A_array = NULL;
    magmaFloatComplex **X_array = NULL;
    magmaFloatComplex **Y_array = NULL;


    magma_opts opts;
    parse_opts( argc, argv, &opts );
    batchCount = opts.batchcount;
    opts.lapack |= opts.check;

    //float tol = opts.tolerance * lapackf77_slamch("E");

    printf("trans = %s\n", lapack_trans_const(opts.transA) );

    printf("BatchCount    M     N     MAGMA Gflop/s (ms)  CPU Gflop/s (ms)  MAGMA error\n");

    printf("===================================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M = opts.msize[itest];
            N = opts.nsize[itest];
            lda    = ((M+31)/32)*32;
            gflops = FLOPS_CGEMV( M, N ) / 1e9 * batchCount;

            if ( opts.transA == MagmaNoTrans ) {
                Xm = N;
                Ym = M;
            } else {
                Xm = M;
                Ym = N;
            }

            sizeA = lda*N*batchCount;
            sizeX = incx*Xm*batchCount;
            sizeY = incy*Ym*batchCount;

            ldda = ((lda+31)/32)*32;

            TESTING_MALLOC_CPU( h_A,  magmaFloatComplex, sizeA );
            TESTING_MALLOC_CPU( h_X,  magmaFloatComplex, sizeX );
            TESTING_MALLOC_CPU( h_Y,  magmaFloatComplex, sizeY  );
            TESTING_MALLOC_CPU( h_Ymagma,  magmaFloatComplex, sizeY  );


            TESTING_MALLOC_DEV( d_A, magmaFloatComplex, ldda*N*batchCount );
            TESTING_MALLOC_DEV( d_X, magmaFloatComplex, sizeX );
            TESTING_MALLOC_DEV( d_Y, magmaFloatComplex, sizeY );

            magma_malloc((void**)&A_array, batchCount * sizeof(*A_array));
            magma_malloc((void**)&X_array, batchCount * sizeof(*X_array));
            magma_malloc((void**)&Y_array, batchCount * sizeof(*Y_array));

            /* Initialize the matrices */
            lapackf77_clarnv( &ione, ISEED, &sizeA, h_A );
            lapackf77_clarnv( &ione, ISEED, &sizeX, h_X );
            lapackf77_clarnv( &ione, ISEED, &sizeY, h_Y );

            /* =====================================================================
               Performs operation using MAGMABLAS
               =================================================================== */
            magma_csetmatrix( M, N*batchCount, h_A, lda, d_A, ldda );
            magma_csetvector( Xm*batchCount, h_X, incx, d_X, incx );
            magma_csetvector( Ym*batchCount, h_Y, incy, d_Y, incy );

            cset_pointer(A_array, d_A, ldda, 0, 0, ldda*N, batchCount, magma_stream);
            cset_pointer(X_array, d_X, 1, 0, 0, incx*Xm, batchCount, magma_stream);
            cset_pointer(Y_array, d_Y, 1, 0, 0, incy*Ym, batchCount, magma_stream);

            magma_time = magma_sync_wtime( NULL );
            magmablas_cgemv_batched(opts.transA, M, N,
                                    alpha, A_array, ldda,
                                    X_array, incx,
                                    beta,  Y_array, incy, batchCount, magma_stream);
            magma_time = magma_sync_wtime( NULL ) - magma_time;
            magma_perf = gflops / magma_time;
            magma_cgetvector( Ym*batchCount, d_Y, incy, h_Ymagma, incy );

            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                for(int i=0; i<batchCount; i++)
                {
                    blasf77_cgemv(
                        lapack_trans_const(opts.transA),
                        &M, &N,
                        &alpha, h_A + i*lda*N, &lda,
                        h_X + i*Xm, &incx,
                        &beta,  h_Y + i*Ym, &incy );
                }
                cpu_time = magma_wtime() - cpu_time;
                cpu_perf = gflops / cpu_time;
            }

            /* =====================================================================
               Check the result
               =================================================================== */
            if ( opts.lapack ) {
                // compute relative error for both magma  relative to lapack,
                // |C_magma - C_lapack| / |C_lapack|
                magma_error = 0.0;

                for(int s=0; s<batchCount; s++)
                {

                    Ynorm = lapackf77_clange( "M", &M, &ione, h_Y + s*Ym, &incy, work );

                    blasf77_caxpy( &Ym, &c_neg_one, h_Y + s*Ym, &ione, h_Ymagma + s*Ym, &ione );
                    magma_err = lapackf77_clange( "M", &M, &ione, h_Ymagma + s*Ym, &incy, work ) / Ynorm;

                    if ( isnan(magma_err) || isinf(magma_err) ) {
                        magma_error = magma_err;
                        break;
                    }
                    magma_error = max(fabs(magma_err), magma_error);

                }

                printf("%10d %5d %5d  %7.2f (%7.2f)    %7.2f (%7.2f)   %8.2e  \n",
                       (int) batchCount, (int) M, (int) N,
                       magma_perf,  1000.*magma_time,
                       cpu_perf,    1000.*cpu_time,
                       magma_error);
            }
            else {

                printf("%10d %5d %5d  %7.2f (%7.2f)    ---   (  ---  )    ---\n",
                       (int) batchCount, (int) M, (int) N,
                       magma_perf,  1000.*magma_time);
            }

            TESTING_FREE_CPU( h_A  );
            TESTING_FREE_CPU( h_X  );
            TESTING_FREE_CPU( h_Y  );
            TESTING_FREE_CPU( h_Ymagma  );


            TESTING_FREE_DEV( d_A );
            TESTING_FREE_DEV( d_X );
            TESTING_FREE_DEV( d_Y );
            TESTING_FREE_DEV( A_array );
            TESTING_FREE_DEV( X_array );
            TESTING_FREE_DEV( Y_array );


            fflush( stdout);

        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    TESTING_FINALIZE();
    return status;
}
示例#20
0
extern "C" magma_int_t
magma_clahr2(
    magma_int_t n, magma_int_t k, magma_int_t nb,
    magmaFloatComplex *dA, magmaFloatComplex *dV,
    magmaFloatComplex *A, magma_int_t lda,
    magmaFloatComplex *tau,
    magmaFloatComplex *T, magma_int_t ldt,
    magmaFloatComplex *Y, magma_int_t ldy )
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    CLAHR2 reduces the first NB columns of a complex general n-BY-(n-k+1)
    matrix A so that elements below the k-th subdiagonal are zero. The
    reduction is performed by an orthogonal similarity transformation
    Q' * A * Q. The routine returns the matrices V and T which determine
    Q as a block reflector I - V*T*V', and also the matrix Y = A * V.
    (Note this is different than LAPACK, which computes Y = A * V * T.)

    This is an auxiliary routine called by CGEHRD.

    Arguments
    =========
    N       (input) INTEGER
            The order of the matrix A.

    K       (input) INTEGER
            The offset for the reduction. Elements below the k-th
            subdiagonal in the first NB columns are reduced to zero.
            K < N.

    NB      (input) INTEGER
            The number of columns to be reduced.

    dA      (input/output) COMPLEX array on the GPU, dimension (LDA,N-K+1)
            On entry, the n-by-(n-k+1) general matrix A.
            On exit, the elements in rows K:N of the first NB columns are
            overwritten with the matrix Y.

    DV      (output) COMPLEX array on the GPU, dimension (N, NB)
            On exit this contains the Householder vectors of the transformation.

    A       (input/output) COMPLEX array, dimension (LDA,N-K+1)
            On entry, the n-by-(n-k+1) general matrix A.
            On exit, the elements on and above the k-th subdiagonal in
            the first NB columns are overwritten with the corresponding
            elements of the reduced matrix; the elements below the k-th
            subdiagonal, with the array TAU, represent the matrix Q as a
            product of elementary reflectors. The other columns of A are
            unchanged. See Further Details.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    TAU     (output) COMPLEX array, dimension (NB)
            The scalar factors of the elementary reflectors. See Further
            Details.

    T       (output) COMPLEX array, dimension (LDT,NB)
            The upper triangular matrix T.

    LDT     (input) INTEGER
            The leading dimension of the array T.  LDT >= NB.

    Y       (output) COMPLEX array, dimension (LDY,NB)
            The n-by-nb matrix Y.

    LDY     (input) INTEGER
            The leading dimension of the array Y. LDY >= N.

    Further Details
    ===============
    The matrix Q is represented as a product of nb elementary reflectors

       Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a complex scalar, and v is a complex vector with
    v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
    A(i+k+1:n,i), and tau in TAU(i).

    The elements of the vectors v together form the (n-k+1)-by-nb matrix
    V which is needed, with T and Y, to apply the transformation to the
    unreduced part of the matrix, using an update of the form:
    A := (I - V*T*V') * (A - Y*T*V').

    The contents of A on exit are illustrated by the following example
    with n = 7, k = 3 and nb = 2:

       ( a   a   a   a   a )
       ( a   a   a   a   a )
       ( a   a   a   a   a )
       ( h   h   a   a   a )
       ( v1  h   a   a   a )
       ( v1  v2  a   a   a )
       ( v1  v2  a   a   a )

    where "a" denotes an element of the original matrix A, h denotes a
    modified element of the upper Hessenberg matrix H, and vi denotes an
    element of the vector defining H(i).

    This implementation follows the hybrid algorithm and notations described in

    S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
    form through hybrid GPU-based computing," University of Tennessee Computer
    Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),
    May 24, 2009.
    =====================================================================    */

    #define  A( i, j ) ( A + (i) + (j)*lda)
    #define  Y( i, j ) ( Y + (i) + (j)*ldy)
    #define  T( i, j ) ( T + (i) + (j)*ldt)
    #define dA( i, j ) (dA + (i) + (j)*ldda)
    #define dV( i, j ) (dV + (i) + (j)*ldda)
    
    magmaFloatComplex c_zero    = MAGMA_C_ZERO;
    magmaFloatComplex c_one     = MAGMA_C_ONE;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;

    magma_int_t ldda = lda;
    magma_int_t ione = 1;
    
    magma_int_t n_k_i_1, n_k;
    magmaFloatComplex scale;

    magma_int_t i;
    magmaFloatComplex ei = MAGMA_C_ZERO;

    // adjust from 1-based indexing
    k -= 1;

    // Function Body
    if (n <= 1)
        return 0;
    
    for (i = 0; i < nb; ++i) {
        n_k_i_1 = n - k - i - 1;
        n_k     = n - k;
        
        if (i > 0) {
            // Update A(k:n-1,i); Update i-th column of A - Y * T * V'
            // This updates one more row than LAPACK does (row k),
            // making the block above the panel an even multiple of nb.
            // Use last column of T as workspace, w.
            // w(0:i-1, nb-1) = VA(k+i, 0:i-1)'
            blasf77_ccopy( &i,
                           A(k+i,0),  &lda,
                           T(0,nb-1), &ione );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            // If complex, conjugate row of V.
            lapackf77_clacgv(&i, T(0,nb-1), &ione);
            #endif
            
            // w = T(0:i-1, 0:i-1) * w
            blasf77_ctrmv( "Upper", "No trans", "No trans", &i,
                           T(0,0),    &ldt,
                           T(0,nb-1), &ione );
            
            // A(k:n-1, i) -= Y(k:n-1, 0:i-1) * w
            blasf77_cgemv( "No trans", &n_k, &i,
                           &c_neg_one, Y(k,0),    &ldy,
                                       T(0,nb-1), &ione,
                           &c_one,     A(k,i),    &ione );
            
            // Apply I - V * T' * V' to this column (call it b) from the
            // left, using the last column of T as workspace, w.
            //
            // Let  V = ( V1 )   and   b = ( b1 )   (first i-1 rows)
            //          ( V2 )             ( b2 )
            // where V1 is unit lower triangular
            
            // w := b1 = A(k+1:k+i, i)
            blasf77_ccopy( &i,
                           A(k+1,i),  &ione,
                           T(0,nb-1), &ione );
            
            // w := V1' * b1 = VA(k+1:k+i, 0:i-1)' * w
            blasf77_ctrmv( "Lower", "Conj", "Unit", &i,
                           A(k+1,0), &lda,
                           T(0,nb-1), &ione );
            
            // w := w + V2'*b2 = w + VA(k+i+1:n-1, 0:i-1)' * A(k+i+1:n-1, i)
            blasf77_cgemv( "Conj", &n_k_i_1, &i,
                           &c_one, A(k+i+1,0), &lda,
                                   A(k+i+1,i), &ione,
                           &c_one, T(0,nb-1),  &ione );
            
            // w := T'*w = T(0:i-1, 0:i-1)' * w
            blasf77_ctrmv( "Upper", "Conj", "Non-unit", &i,
                           T(0,0), &ldt,
                           T(0,nb-1), &ione );
            
            // b2 := b2 - V2*w = A(k+i+1:n-1, i) - VA(k+i+1:n-1, 0:i-1) * w
            blasf77_cgemv( "No trans", &n_k_i_1, &i,
                           &c_neg_one, A(k+i+1,0), &lda,
                                       T(0,nb-1),  &ione,
                           &c_one,     A(k+i+1,i), &ione );
            
            // w := V1*w = VA(k+1:k+i, 0:i-1) * w
            blasf77_ctrmv( "Lower", "No trans", "Unit", &i,
                           A(k+1,0), &lda,
                           T(0,nb-1), &ione );
            
            // b1 := b1 - w = A(k+1:k+i-1, i) - w
            blasf77_caxpy( &i,
                           &c_neg_one, T(0,nb-1), &ione,
                                       A(k+1,i),    &ione );
            
            // Restore diagonal element, saved below during previous iteration
            *A(k+i,i-1) = ei;
        }
        
        // Generate the elementary reflector H(i) to annihilate A(k+i+1:n-1,i)
        lapackf77_clarfg( &n_k_i_1,
                          A(k+i+1,i),
                          A(k+i+2,i), &ione, &tau[i] );
        // Save diagonal element and set to one, to simplify multiplying by V
        ei = *A(k+i+1,i);
        *A(k+i+1,i) = c_one;

        // dV(i+1:n-k-1, i) = VA(k+i+1:n-1, i)
        magma_csetvector( n_k_i_1,
                          A(k+i+1,i), 1,
                          dV(i+1,i),  1 );
        
        // Compute Y(k+1:n,i) = A vi
        // dA(k:n-1, i) = dA(k:n-1, i+1:n-k-1) * dV(i+1:n-k-1, i)
        magma_cgemv( MagmaNoTrans, n_k, n_k_i_1,
                     c_one,  dA(k,i+1), ldda,
                             dV(i+1,i),   ione,
                     c_zero, dA(k,i),     ione );
        
        // Compute T(0:i,i) = [ -tau T V' vi ]
        //                    [  tau         ]
        // T(0:i-1, i) = -tau VA(k+i+1:n-1, 0:i-1)' VA(k+i+1:n-1, i)
        scale = MAGMA_C_NEGATE( tau[i]);
        blasf77_cgemv( "Conj", &n_k_i_1, &i,
                       &scale,  A(k+i+1,0), &lda,
                                A(k+i+1,i), &ione,
                       &c_zero, T(0,i),     &ione );
        // T(0:i-1, i) = T(0:i-1, 0:i-1) * T(0:i-1, i)
        blasf77_ctrmv( "Upper", "No trans", "Non-unit", &i,
                       T(0,0), &ldt,
                       T(0,i), &ione );
        *T(i,i) = tau[i];

        // Y(k:n-1, i) = dA(k:n-1, i)
        magma_cgetvector( n-k,
                          dA(k,i), 1,
                          Y(k,i),  1 );
    }
    // Restore diagonal element
    *A(k+nb,nb-1) = ei;

    return 0;
} // magma_clahr2