extern "C" magma_int_t magma_ssygvd(magma_int_t itype, char jobz, char uplo, magma_int_t n, float *a, magma_int_t lda, float *b, magma_int_t ldb, float *w, float *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { /* -- MAGMA (version 1.3.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver November 2012 Purpose ======= SSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= ITYPE (input) INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N (input) INTEGER The order of the matrices A and B. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T * B * Z = I; if ITYPE = 3, Z**T * inv(B) * Z = I. If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') or the lower triangle (if UPLO='L') of A, including the diagonal, is destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) COMPLEX*16 array, dimension (LDB, N) On entry, the symmetric matrix B. If UPLO = 'U', the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = 'L', the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T * U or B = L * L**T. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= 2*N*nb + 1. If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N*nb + 2*N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: SPOTRF or SSYEVD returned an error code: <= N: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details =============== Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if SSYEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. ===================================================================== */ char uplo_[2] = {uplo, 0}; char jobz_[2] = {jobz, 0}; float d_one = MAGMA_S_ONE; float *da; float *db; magma_int_t ldda = n; magma_int_t lddb = n; magma_int_t lower; char trans[1]; magma_int_t wantz, lquery; magma_int_t lopt, lwmin, liopt, liwmin; cudaStream_t stream; magma_queue_create( &stream ); wantz = lapackf77_lsame(jobz_, MagmaVectorsStr); lower = lapackf77_lsame(uplo_, MagmaLowerStr); lquery = lwork == -1 || liwork == -1; *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVectorsStr))) { *info = -2; } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) { *info = -3; } else if (n < 0) { *info = -4; } else if (lda < max(1,n)) { *info = -6; } else if (ldb < max(1,n)) { *info = -8; } magma_int_t nb = magma_get_ssytrd_nb(n); if (n < 1) { liwmin = 1; lwmin = 1; } else if (wantz) { lwmin = 1 + 6 * n * nb + 2* n * n; liwmin = 5 * n + 3; } else { lwmin = 2 * n * nb + 1; liwmin = 1; } lopt = lwmin; liopt = liwmin; work[ 0] = lopt; iwork[0] = liopt; if (lwork < lwmin && ! lquery) { *info = -11; } else if (liwork < liwmin && ! lquery) { *info = -13; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return MAGMA_ERR_ILLEGAL_VALUE; } else if (lquery) { return MAGMA_SUCCESS; } /* Quick return if possible */ if (n == 0) { return 0; } if (MAGMA_SUCCESS != magma_smalloc( &da, n*ldda ) || MAGMA_SUCCESS != magma_smalloc( &db, n*lddb )) { *info = -17; return MAGMA_ERR_DEVICE_ALLOC; } /* Form a Cholesky factorization of B. */ magma_ssetmatrix( n, n, b, ldb, db, lddb ); magma_ssetmatrix_async( n, n, a, lda, da, ldda, stream ); magma_spotrf_gpu(uplo_[0], n, db, lddb, info); if (*info != 0) { *info = n + *info; return 0; } magma_queue_sync( stream ); magma_sgetmatrix_async( n, n, db, lddb, b, ldb, stream ); /* Transform problem to standard eigenvalue problem and solve. */ magma_ssygst_gpu(itype, uplo_[0], n, da, ldda, db, lddb, info); magma_ssyevd_gpu(jobz_[0], uplo_[0], n, da, ldda, w, a, lda, work, lwork, iwork, liwork, info); lopt = max( lopt, (magma_int_t) work[0]); liopt = max(liopt, iwork[0]); if (wantz && *info == 0) { /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { *(unsigned char *)trans = MagmaTrans; } else { *(unsigned char *)trans = MagmaNoTrans; } magma_strsm(MagmaLeft, uplo_[0], *trans, MagmaNonUnit, n, n, d_one, db, lddb, da, ldda); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { *(unsigned char *)trans = MagmaNoTrans; } else { *(unsigned char *)trans = MagmaTrans; } magma_strmm(MagmaLeft, uplo_[0], *trans, MagmaNonUnit, n, n, d_one, db, lddb, da, ldda); } magma_sgetmatrix( n, n, da, ldda, a, lda ); } magma_queue_sync( stream ); magma_queue_destroy( stream ); work[0] = (float) lopt; iwork[0] = liopt; magma_free( da ); magma_free( db ); return MAGMA_SUCCESS; } /* magma_ssygvd */
int APPLY_SPECIFIC(magma_eigh)(PyGpuArrayObject *A_, PyGpuArrayObject **D, PyGpuArrayObject **V, // may be NULL PARAMS_TYPE *params) { PyGpuArrayObject *A = NULL; magma_int_t N, liwork, *iwork_data = NULL; size_t d_dims[1], v_dims[2]; magma_uplo_t uplo; magma_vec_t jobz; float *w_data = NULL, *wA_data = NULL, *work_data = NULL, lwork; int res = -1, info; if (A_->ga.typecode != GA_FLOAT) { PyErr_SetString(PyExc_TypeError, "GpuMagmaEigh: Unsupported data type"); return -1; } // This is early to match the exit() in the fail label. cuda_enter(params->context->ctx); if (!GpuArray_IS_C_CONTIGUOUS(&A_->ga)) { PyErr_SetString(PyExc_ValueError, "GpuMagmaEigh: requires data to be C-contiguous"); goto fail; } if (PyGpuArray_NDIM(A_) != 2) { PyErr_SetString(PyExc_ValueError, "GpuMagmaEigh: matrix rank error"); goto fail; } if (PyGpuArray_DIM(A_, 0) != PyGpuArray_DIM(A_, 1)) { PyErr_SetString(PyExc_ValueError, "GpuMagmaEigh: matrix is not square"); goto fail; } A = pygpu_copy(A_, GA_F_ORDER); if (A == NULL) { PyErr_SetString(PyExc_RuntimeError, "GpuMagmaEigh: failed to change to column-major order"); return -1; } // magma matrix eigen decomposition of a symmetric matrix N = PyGpuArray_DIM(A, 0); if (params->lower) { uplo = MagmaLower; } else { uplo = MagmaUpper; } if (params->compute_v) { jobz = MagmaVec; } else { jobz = MagmaNoVec; } if (MAGMA_SUCCESS != magma_smalloc_pinned(&w_data, N)) { PyErr_SetString(PyExc_RuntimeError, "GpuMagmaEigh: failed to allocate working memory"); goto fail; } if (MAGMA_SUCCESS != magma_smalloc_pinned(&wA_data, N * N)) { PyErr_SetString(PyExc_RuntimeError, "GpuMagmaEigh: failed to allocate working memory"); goto fail; } // query for workspace size magma_ssyevd_gpu(jobz, uplo, N, NULL, N, NULL, NULL, N, &lwork, -1, &liwork, -1, &info); if (MAGMA_SUCCESS != magma_smalloc_pinned(&work_data, (size_t)lwork)) { PyErr_SetString(PyExc_RuntimeError, "GpuMagmaEigh: failed to allocate working memory"); goto fail; } if (MAGMA_SUCCESS != magma_imalloc_cpu(&iwork_data, liwork)) { PyErr_SetString(PyExc_RuntimeError, "GpuMagmaEigh: failed to allocate working memory"); goto fail; } magma_ssyevd_gpu(jobz, uplo, N, (float *)PyGpuArray_DEV_DATA(A), N, w_data, wA_data, N, work_data, (size_t)lwork, iwork_data, liwork, &info); if (info > 0) { PyErr_Format( PyExc_RuntimeError, "GpuMagmaEigh: %d off-diagonal elements of an didn't converge to zero", info); goto fail; } else if (info < 0) { PyErr_Format( PyExc_RuntimeError, "GpuMagmaEigh: magma_ssyevd_gpu argument %d has an illegal value", -info); goto fail; } d_dims[0] = N; if (theano_prep_output(D, 1, d_dims, A->ga.typecode, GA_C_ORDER, params->context) != 0){ PyErr_SetString(PyExc_RuntimeError, "GpuMagmaEigh: failed to allocate memory for the output"); goto fail; } cudaMemcpy(PyGpuArray_DEV_DATA(*D), w_data, N * sizeof(float), cudaMemcpyDeviceToDevice); if (params->compute_v) { *V = theano_try_copy(*V, A); if (*V == NULL) { PyErr_SetString(PyExc_RuntimeError, "GpuMagmaEigh: failed to allocate memory for the output"); goto fail; } } res = 0; fail: if (w_data != NULL) magma_free_pinned(w_data); if (wA_data != NULL) magma_free_pinned(wA_data); if (work_data != NULL) magma_free_pinned(work_data); if (iwork_data != NULL) magma_free_cpu(iwork_data); Py_XDECREF(A); cuda_exit(params->context->ctx); return res; }
extern "C" magma_int_t magma_slobpcg( magma_s_sparse_matrix A, magma_s_solver_par *solver_par ) { #define residualNorms(i,iter) ( residualNorms + (i) + (iter)*n ) #define magmablas_swap(x, y) { pointer = x; x = y; y = pointer; } #define hresidualNorms(i,iter) (hresidualNorms + (i) + (iter)*n ) #define gramA( m, n) (gramA + (m) + (n)*ldgram) #define gramB( m, n) (gramB + (m) + (n)*ldgram) #define gevectors(m, n) (gevectors + (m) + (n)*ldgram) #define h_gramB( m, n) (h_gramB + (m) + (n)*ldgram) #define magma_s_bspmv_tuned(m, n, alpha, A, X, beta, AX) { \ magmablas_stranspose( m, n, X, m, blockW, n ); \ magma_s_vector x, ax; \ x.memory_location = Magma_DEV; x.num_rows = m*n; x.nnz = m*n; x.val = blockW; \ ax.memory_location= Magma_DEV; ax.num_rows = m*n; ax.nnz = m*n; ax.val = AX; \ magma_s_spmv(alpha, A, x, beta, ax ); \ magmablas_stranspose( n, m, blockW, n, X, m ); \ } //************************************************************** // Memory allocation for the eigenvectors, eigenvalues, and workspace solver_par->solver = Magma_LOBPCG; magma_int_t m = A.num_rows; magma_int_t n =(solver_par->num_eigenvalues); float *blockX = solver_par->eigenvectors; float *evalues = solver_par->eigenvalues; float *dwork, *hwork; float *blockP, *blockAP, *blockR, *blockAR, *blockAX, *blockW; float *gramA, *gramB, *gramM; float *gevectors, *h_gramB; float *pointer, *origX = blockX; float *eval_gpu; magma_int_t lwork = max( 2*n+n*magma_get_dsytrd_nb(n), 1 + 6*3*n + 2* 3*n* 3*n); magma_smalloc_pinned( &hwork , lwork ); magma_smalloc( &blockAX , m*n ); magma_smalloc( &blockAR , m*n ); magma_smalloc( &blockAP , m*n ); magma_smalloc( &blockR , m*n ); magma_smalloc( &blockP , m*n ); magma_smalloc( &blockW , m*n ); magma_smalloc( &dwork , m*n ); magma_smalloc( &eval_gpu , 3*n ); //**********************************************************+ magma_int_t verbosity = 1; magma_int_t *iwork, liwork = 15*n+9; // === Set solver parameters === float residualTolerance = solver_par->epsilon; magma_int_t maxIterations = solver_par->maxiter; // === Set some constants & defaults === float c_one = MAGMA_S_ONE, c_zero = MAGMA_S_ZERO; float *residualNorms, *condestGhistory, condestG; float *gevalues; magma_int_t *activeMask; // === Check some parameters for possible quick exit === solver_par->info = 0; if (m < 2) solver_par->info = -1; else if (n > m) solver_par->info = -2; if (solver_par->info != 0) { magma_xerbla( __func__, -(solver_par->info) ); return solver_par->info; } magma_int_t *info = &(solver_par->info); // local info variable; // === Allocate GPU memory for the residual norms' history === magma_smalloc(&residualNorms, (maxIterations+1) * n); magma_malloc( (void **)&activeMask, (n+1) * sizeof(magma_int_t) ); // === Allocate CPU work space === magma_smalloc_cpu(&condestGhistory, maxIterations+1); magma_smalloc_cpu(&gevalues, 3 * n); magma_malloc_cpu((void **)&iwork, liwork * sizeof(magma_int_t)); float *hW; magma_smalloc_pinned(&hW, n*n); magma_smalloc_pinned(&gevectors, 9*n*n); magma_smalloc_pinned(&h_gramB , 9*n*n); // === Allocate GPU workspace === magma_smalloc(&gramM, n * n); magma_smalloc(&gramA, 9 * n * n); magma_smalloc(&gramB, 9 * n * n); #if defined(PRECISION_z) || defined(PRECISION_c) float *rwork; magma_int_t lrwork = 1 + 5*(3*n) + 2*(3*n)*(3*n); magma_smalloc_cpu(&rwork, lrwork); #endif // === Set activemask to one === for(int k =0; k<n; k++) iwork[k]=1; magma_setmatrix(n, 1, sizeof(magma_int_t), iwork, n ,activeMask, n); magma_int_t gramDim, ldgram = 3*n, ikind = 4; // === Make the initial vectors orthonormal === magma_sgegqr_gpu(ikind, m, n, blockX, m, dwork, hwork, info ); //magma_sorthomgs( m, n, blockX ); magma_s_bspmv_tuned(m, n, c_one, A, blockX, c_zero, blockAX ); // === Compute the Gram matrix = (X, AX) & its eigenstates === magma_sgemm(MagmaTrans, MagmaNoTrans, n, n, m, c_one, blockX, m, blockAX, m, c_zero, gramM, n); magma_ssyevd_gpu( MagmaVec, MagmaUpper, n, gramM, n, evalues, hW, n, hwork, lwork, #if defined(PRECISION_z) || defined(PRECISION_c) rwork, lrwork, #endif iwork, liwork, info ); // === Update X = X * evectors === magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, n, c_one, blockX, m, gramM, n, c_zero, blockW, m); magmablas_swap(blockW, blockX); // === Update AX = AX * evectors === magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, n, c_one, blockAX, m, gramM, n, c_zero, blockW, m); magmablas_swap(blockW, blockAX); condestGhistory[1] = 7.82; magma_int_t iterationNumber, cBlockSize, restart = 1, iter; //Chronometry real_Double_t tempo1, tempo2; magma_device_sync(); tempo1=magma_wtime(); // === Main LOBPCG loop ============================================================ for(iterationNumber = 1; iterationNumber < maxIterations; iterationNumber++) { // === compute the residuals (R = Ax - x evalues ) magmablas_slacpy( MagmaUpperLower, m, n, blockAX, m, blockR, m); /* for(int i=0; i<n; i++){ magma_saxpy(m, MAGMA_S_MAKE(-evalues[i],0), blockX+i*m, 1, blockR+i*m, 1); } */ #if defined(PRECISION_z) || defined(PRECISION_d) magma_dsetmatrix( 3*n, 1, evalues, 3*n, eval_gpu, 3*n ); #else magma_ssetmatrix( 3*n, 1, evalues, 3*n, eval_gpu, 3*n ); #endif magma_slobpcg_res( m, n, eval_gpu, blockX, blockR, eval_gpu); magmablas_snrm2_cols(m, n, blockR, m, residualNorms(0, iterationNumber)); // === remove the residuals corresponding to already converged evectors magma_scompact(m, n, blockR, m, residualNorms(0, iterationNumber), residualTolerance, activeMask, &cBlockSize); if (cBlockSize == 0) break; // === apply a preconditioner P to the active residulas: R_new = P R_old // === for now set P to be identity (no preconditioner => nothing to be done ) // magmablas_slacpy( MagmaUpperLower, m, cBlockSize, blockR, m, blockW, m); /* // === make the preconditioned residuals orthogonal to X magma_sgemm(MagmaTrans, MagmaNoTrans, n, cBlockSize, m, c_one, blockX, m, blockR, m, c_zero, gramB(0,0), ldgram); magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, cBlockSize, n, c_mone, blockX, m, gramB(0,0), ldgram, c_one, blockR, m); */ // === make the active preconditioned residuals orthonormal magma_sgegqr_gpu(ikind, m, cBlockSize, blockR, m, dwork, hwork, info ); //magma_sorthomgs( m, cBlockSize, blockR ); // === compute AR magma_s_bspmv_tuned(m, cBlockSize, c_one, A, blockR, c_zero, blockAR ); if (!restart) { // === compact P & AP as well magma_scompactActive(m, n, blockP, m, activeMask); magma_scompactActive(m, n, blockAP, m, activeMask); /* // === make P orthogonal to X ? magma_sgemm(MagmaTrans, MagmaNoTrans, n, cBlockSize, m, c_one, blockX, m, blockP, m, c_zero, gramB(0,0), ldgram); magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, cBlockSize, n, c_mone, blockX, m, gramB(0,0), ldgram, c_one, blockP, m); // === make P orthogonal to R ? magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, cBlockSize, m, c_one, blockR, m, blockP, m, c_zero, gramB(0,0), ldgram); magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, cBlockSize, cBlockSize, c_mone, blockR, m, gramB(0,0), ldgram, c_one, blockP, m); */ // === Make P orthonormal & properly change AP (without multiplication by A) magma_sgegqr_gpu(ikind, m, cBlockSize, blockP, m, dwork, hwork, info ); //magma_sorthomgs( m, cBlockSize, blockP ); //magma_s_bspmv_tuned(m, cBlockSize, c_one, A, blockP, c_zero, blockAP ); magma_ssetmatrix( cBlockSize, cBlockSize, hwork, cBlockSize, dwork, cBlockSize); // magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit, // m, cBlockSize, c_one, dwork, cBlockSize, blockAP, m); // replacement according to Stan #if defined(PRECISION_s) || defined(PRECISION_d) magmablas_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit, m, cBlockSize, c_one, dwork, cBlockSize, blockAP, m); #else magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit, m, cBlockSize, c_one, dwork, cBlockSize, blockAP, m); #endif } iter = max(1,iterationNumber-10- (int)(log(1.*cBlockSize))); float condestGmean = 0.; for(int i = 0; i<iterationNumber-iter+1; i++) condestGmean += condestGhistory[i]; condestGmean = condestGmean / (iterationNumber-iter+1); if (restart) gramDim = n+cBlockSize; else gramDim = n+2*cBlockSize; /* --- The Raileight-Ritz method for [X R P] ----------------------- [ X R P ]' [AX AR AP] y = evalues [ X R P ]' [ X R P ], i.e., GramA GramB / X'AX X'AR X'AP \ / X'X X'R X'P \ | R'AX R'AR R'AP | y = evalues | R'X R'R R'P | \ P'AX P'AR P'AP / \ P'X P'R P'P / ----------------------------------------------------------------- */ // === assemble GramB; first, set it to I magmablas_slaset(MagmaFull, ldgram, ldgram, c_zero, c_one, gramB, ldgram); // identity if (!restart) { magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, n, m, c_one, blockP, m, blockX, m, c_zero, gramB(n+cBlockSize,0), ldgram); magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, cBlockSize, m, c_one, blockP, m, blockR, m, c_zero, gramB(n+cBlockSize,n), ldgram); } magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, n, m, c_one, blockR, m, blockX, m, c_zero, gramB(n,0), ldgram); // === get GramB from the GPU to the CPU and compute its eigenvalues only magma_sgetmatrix(gramDim, gramDim, gramB, ldgram, h_gramB, ldgram); lapackf77_ssyev("N", "L", &gramDim, h_gramB, &ldgram, gevalues, hwork, &lwork, #if defined(PRECISION_z) || defined(PRECISION_c) rwork, #endif info); // === check stability criteria if we need to restart condestG = log10( gevalues[gramDim-1]/gevalues[0] ) + 1.; if ((condestG/condestGmean>2 && condestG>2) || condestG>8) { // Steepest descent restart for stability restart=1; printf("restart at step #%d\n", (int) iterationNumber); } // === assemble GramA; first, set it to I magmablas_slaset(MagmaFull, ldgram, ldgram, c_zero, c_one, gramA, ldgram); // identity magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, n, m, c_one, blockR, m, blockAX, m, c_zero, gramA(n,0), ldgram); magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, cBlockSize, m, c_one, blockR, m, blockAR, m, c_zero, gramA(n,n), ldgram); if (!restart) { magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, n, m, c_one, blockP, m, blockAX, m, c_zero, gramA(n+cBlockSize,0), ldgram); magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, cBlockSize, m, c_one, blockP, m, blockAR, m, c_zero, gramA(n+cBlockSize,n), ldgram); magma_sgemm(MagmaTrans, MagmaNoTrans, cBlockSize, cBlockSize, m, c_one, blockP, m, blockAP, m, c_zero, gramA(n+cBlockSize,n+cBlockSize), ldgram); } /* // === Compute X' AX or just use the eigenvalues below ? magma_sgemm(MagmaTrans, MagmaNoTrans, n, n, m, c_one, blockX, m, blockAX, m, c_zero, gramA(0,0), ldgram); */ if (restart==0) { magma_sgetmatrix(gramDim, gramDim, gramA, ldgram, gevectors, ldgram); } else { gramDim = n+cBlockSize; magma_sgetmatrix(gramDim, gramDim, gramA, ldgram, gevectors, ldgram); } for(int k=0; k<n; k++) *gevectors(k,k) = MAGMA_S_MAKE(evalues[k], 0); // === the previous eigensolver destroyed what is in h_gramB => must copy it again magma_sgetmatrix(gramDim, gramDim, gramB, ldgram, h_gramB, ldgram); magma_int_t itype = 1; lapackf77_ssygvd(&itype, "V", "L", &gramDim, gevectors, &ldgram, h_gramB, &ldgram, gevalues, hwork, &lwork, #if defined(PRECISION_z) || defined(PRECISION_c) rwork, &lrwork, #endif iwork, &liwork, info); for(int k =0; k<n; k++) evalues[k] = gevalues[k]; // === copy back the result to gramA on the GPU and use it for the updates magma_ssetmatrix(gramDim, gramDim, gevectors, ldgram, gramA, ldgram); if (restart == 0) { // === contribution from P to the new X (in new search direction P) magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize, c_one, blockP, m, gramA(n+cBlockSize,0), ldgram, c_zero, dwork, m); magmablas_swap(dwork, blockP); // === contribution from R to the new X (in new search direction P) magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize, c_one, blockR, m, gramA(n,0), ldgram, c_one, blockP, m); // === corresponding contribution from AP to the new AX (in AP) magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize, c_one, blockAP, m, gramA(n+cBlockSize,0), ldgram, c_zero, dwork, m); magmablas_swap(dwork, blockAP); // === corresponding contribution from AR to the new AX (in AP) magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize, c_one, blockAR, m, gramA(n,0), ldgram, c_one, blockAP, m); } else { // === contribution from R (only) to the new X magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize, c_one, blockR, m, gramA(n,0), ldgram, c_zero, blockP, m); // === corresponding contribution from AR (only) to the new AX magma_sgemm(MagmaNoTrans, MagmaNoTrans,m, n, cBlockSize, c_one, blockAR, m, gramA(n,0), ldgram, c_zero, blockAP, m); } // === contribution from old X to the new X + the new search direction P magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, n, c_one, blockX, m, gramA, ldgram, c_zero, dwork, m); magmablas_swap(dwork, blockX); //magma_saxpy(m*n, c_one, blockP, 1, blockX, 1); magma_slobpcg_maxpy( m, n, blockP, blockX ); // === corresponding contribution from old AX to new AX + AP magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, n, c_one, blockAX, m, gramA, ldgram, c_zero, dwork, m); magmablas_swap(dwork, blockAX); //magma_saxpy(m*n, c_one, blockAP, 1, blockAX, 1); magma_slobpcg_maxpy( m, n, blockAP, blockAX ); condestGhistory[iterationNumber+1]=condestG; if (verbosity==1) { // float res; // magma_sgetmatrix(1, 1, // (float*)residualNorms(0, iterationNumber), 1, // (float*)&res, 1); // // printf("Iteration %4d, CBS %4d, Residual: %10.7f\n", // iterationNumber, cBlockSize, res); printf("%4d-%2d ", (int) iterationNumber, (int) cBlockSize); magma_sprint_gpu(1, n, residualNorms(0, iterationNumber), 1); } restart = 0; } // === end for iterationNumber = 1,maxIterations ======================= // fill solver info magma_device_sync(); tempo2=magma_wtime(); solver_par->runtime = (real_Double_t) tempo2-tempo1; solver_par->numiter = iterationNumber; if( solver_par->numiter < solver_par->maxiter) { solver_par->info = 0; } else if( solver_par->init_res > solver_par->final_res ) solver_par->info = -2; else solver_par->info = -1; // ============================================================================= // === postprocessing; // ============================================================================= // === compute the real AX and corresponding eigenvalues magma_s_bspmv_tuned(m, n, c_one, A, blockX, c_zero, blockAX ); magma_sgemm(MagmaTrans, MagmaNoTrans, n, n, m, c_one, blockX, m, blockAX, m, c_zero, gramM, n); magma_ssyevd_gpu( MagmaVec, MagmaUpper, n, gramM, n, gevalues, dwork, n, hwork, lwork, #if defined(PRECISION_z) || defined(PRECISION_c) rwork, lrwork, #endif iwork, liwork, info ); for(int k =0; k<n; k++) evalues[k] = gevalues[k]; // === update X = X * evectors magmablas_swap(blockX, dwork); magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, n, c_one, dwork, m, gramM, n, c_zero, blockX, m); // === update AX = AX * evectors to compute the final residual magmablas_swap(blockAX, dwork); magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, n, c_one, dwork, m, gramM, n, c_zero, blockAX, m); // === compute R = AX - evalues X magmablas_slacpy( MagmaUpperLower, m, n, blockAX, m, blockR, m); for(int i=0; i<n; i++) magma_saxpy(m, MAGMA_S_MAKE(-evalues[i], 0), blockX+i*m, 1, blockR+i*m, 1); // === residualNorms[iterationNumber] = || R || magmablas_snrm2_cols(m, n, blockR, m, residualNorms(0, iterationNumber)); // === restore blockX if needed if (blockX != origX) magmablas_slacpy( MagmaUpperLower, m, n, blockX, m, origX, m); printf("Eigenvalues:\n"); for(int i =0; i<n; i++) printf("%e ", evalues[i]); printf("\n\n"); printf("Final residuals:\n"); magma_sprint_gpu(1, n, residualNorms(0, iterationNumber), 1); printf("\n\n"); //=== Print residual history in a file for plotting ==== float *hresidualNorms; magma_smalloc_cpu(&hresidualNorms, (iterationNumber+1) * n); magma_sgetmatrix(n, iterationNumber, (float*)residualNorms, n, (float*)hresidualNorms, n); printf("Residuals are stored in file residualNorms\n"); printf("Plot the residuals using: myplot \n"); FILE *residuals_file; residuals_file = fopen("residualNorms", "w"); for(int i =1; i<iterationNumber; i++) { for(int j = 0; j<n; j++) fprintf(residuals_file, "%f ", *hresidualNorms(j,i)); fprintf(residuals_file, "\n"); } fclose(residuals_file); magma_free_cpu(hresidualNorms); // === free work space magma_free( residualNorms ); magma_free_cpu( condestGhistory ); magma_free_cpu( gevalues ); magma_free_cpu( iwork ); magma_free_pinned( hW ); magma_free_pinned( gevectors ); magma_free_pinned( h_gramB ); magma_free( gramM ); magma_free( gramA ); magma_free( gramB ); magma_free( activeMask ); magma_free( blockAX ); magma_free( blockAR ); magma_free( blockAP ); magma_free( blockR ); magma_free( blockP ); magma_free( blockW ); magma_free( dwork ); magma_free( eval_gpu ); magma_free_pinned( hwork ); #if defined(PRECISION_z) || defined(PRECISION_c) magma_free_cpu( rwork ); #endif return MAGMA_SUCCESS; }
/** Purpose ------- SSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A REAL array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T * B * Z = I; if ITYPE = 3, Z**T * inv(B) * Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B REAL array, dimension (LDB, N) On entry, the symmetric matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T * U or B = L * L**T. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: SPOTRF or SSYEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if SSYEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_ssygv_driver ********************************************************************/ extern "C" magma_int_t magma_ssygvd( magma_int_t itype, magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, float *B, magma_int_t ldb, float *w, float *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); float d_one = MAGMA_S_ONE; float *dA=NULL, *dB=NULL; magma_int_t ldda = magma_roundup( n, 32 ); magma_int_t lddb = ldda; magma_int_t lower; magma_trans_t trans; magma_int_t wantz, lquery; magma_int_t lwmin, liwmin; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (lda < max(1,n)) { *info = -6; } else if (ldb < max(1,n)) { *info = -8; } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -11; } else if (liwork < liwmin && ! lquery) { *info = -13; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { lapackf77_ssygvd( &itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, iwork, &liwork, info ); return *info; } if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda ) || MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb )) { magma_free( dA ); magma_free( dB ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_queue_t queue; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queue ); /* Form a Cholesky factorization of B. */ magma_ssetmatrix( n, n, B, ldb, dB, lddb, queue ); magma_ssetmatrix_async( n, n, A, lda, dA, ldda, queue ); magma_timer_t time=0; timer_start( time ); magma_spotrf_gpu( uplo, n, dB, lddb, info ); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf( "time spotrf_gpu = %6.2f\n", time ); magma_queue_sync( queue ); magma_sgetmatrix_async( n, n, dB, lddb, B, ldb, queue ); timer_start( time ); /* Transform problem to standard eigenvalue problem and solve. */ magma_ssygst_gpu( itype, uplo, n, dA, ldda, dB, lddb, info ); timer_stop( time ); timer_printf( "time ssygst_gpu = %6.2f\n", time ); /* simple fix to be able to run bigger size. * set dB=NULL so we know to re-allocate below * TODO: have dwork here that will be used as dB and then passed to ssyevd. */ if (n > 5000) { magma_queue_sync( queue ); magma_free( dB ); dB=NULL; } timer_start( time ); magma_ssyevd_gpu( jobz, uplo, n, dA, ldda, w, A, lda, work, lwork, iwork, liwork, info ); timer_stop( time ); timer_printf( "time ssyevd_gpu = %6.2f\n", time ); if (wantz && *info == 0) { timer_start( time ); /* allocate and copy dB back */ if (dB == NULL) { if (MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb ) ) { magma_free( dA ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_ssetmatrix( n, n, B, ldb, dB, lddb, queue ); } /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaTrans; } else { trans = MagmaNoTrans; } magma_strsm( MagmaLeft, uplo, trans, MagmaNonUnit, n, n, d_one, dB, lddb, dA, ldda, queue ); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaTrans; } magma_strmm( MagmaLeft, uplo, trans, MagmaNonUnit, n, n, d_one, dB, lddb, dA, ldda, queue ); } magma_sgetmatrix( n, n, dA, ldda, A, lda, queue ); timer_stop( time ); timer_printf( "time strsm/mm + getmatrix = %6.2f\n", time ); } magma_queue_sync( queue ); magma_queue_destroy( queue ); work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; magma_free( dA ); dA=NULL; magma_free( dB ); dB=NULL; return *info; } /* magma_ssygvd */