int superMi::harmonic_mapping(Solid* mesh, double deltaE, double deltaT) { double oldEnergy = 0; double newEnergy = 0; int error = 0; bool flag = false; error = energy(mesh, &oldEnergy, HARMONIC); std::cout << "Initial Harmonic energy: " << oldEnergy << std::endl; for (int i = 0; (i < 13) && !flag; i++){ error = gradient(mesh, HARMONIC); error = absolute_derivative(mesh); error = update_mesh(mesh, deltaT); error = mass_center(mesh); error = energy(mesh, &newEnergy, HARMONIC); if (i % 1 == 0) std::cout << i + 1 << ": " << newEnergy << std::endl; error = check_energy_change(&oldEnergy, &newEnergy, deltaE, &flag); } return 0; }
int main(int argc,char** argv){ if (argc < 2){ std::cout<<"Please enter <input.pcd> file"<<std::endl; return 0; } if (pcl::io::loadPCDFile (argv[1], *model) < 0) { std::cout << "Error loading model cloud." << std::endl; return (-1); } model_name = argv[1]; model_name = model_name.substr(0,model_name.size()-4); if(pcl::console::find_switch(argc,argv,"-vfh")){ vfh = true; } else if(pcl::console::find_switch(argc,argv,"-rv")){ std::cout<<"performing Resultant vector feature calculation"<<std::endl; rv = true; }else{ std::cout<<"no algorithm specified using default algorithm vfh"<<std::endl; vfh = true; } if (pcl::console::find_switch (argc, argv, "-ds")) { _downsample = true; std::cout<<"performing downsampling on the input file"<<std::endl; } if (pcl::console::find_switch (argc, argv, "-sn")) { show_normals = true; std::cout<<"showing calclated normals"<<std::endl; } if(_downsample){ rec.setInputCloud(model,_leaf_size); std::cout<<"saving downsampled file to model_down.pcd"<<std::endl; pcl::io::savePCDFileASCII ("model_down.pcd", *(rec.getCloud())); } else{ rec.setInputCloud(model); std::cout<<"setting input model without further downsampling"<<std::endl; } if(pcl::console::find_switch(argc,argv,"--showaxis")){ _show_axis = true; } if(vfh){ std::cout<<"estimating VFH features"<<std::endl; rec.Estimate_VFH_Features(); } else if(rv){ std::cout<<"estimating features using the resultant vector"<<std::endl; rec.Estimate_RV_Features(); PointNormalCloudT::Ptr cloud (new PointNormalCloudT); pcl::PointCloud<pcl::Normal>::Ptr norm_cloud (new pcl::PointCloud<pcl::Normal>); cloud = rec.getPointNormalCloud(); norm_cloud = rec.getNormalCloud(); pcl::PointCloud<pcl::PointXYZ>::Ptr plaincloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::copyPointCloud(*cloud,*plaincloud); //pcl::PointXYZ mass_center(rec.rv_centroid.x,rec.rv_centroid.y,rec.rv_centroid.z); pcl::PointXYZ mass_center(0,0,0); pcl::PointXYZ kinectZ(0,0,-1); pcl::PointXYZ res_vec (rec.rv_resultant.normal_x,rec.rv_resultant.normal_y,rec.rv_resultant.normal_z); //pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZ> rgb(plaincloud); //viewer.addPointCloud<pcl::PointXYZ> (plaincloud, rgb, "model_cloud"); pcl::visualization::PointCloudColorHandlerCustom<pcl::PointNormal> single_color(cloud, double(0), double(255), double(0)); viewer.addPointCloud(cloud,single_color,"sample cloud"); if(_show_axis){ viewer.addLine(mass_center,res_vec,1.0f,0.0f,0.0f,"resultantvector"); viewer.addLine(mass_center,kinectZ,1.0f,1.0f,0.0f,"KinectZ"); } std::cout<<"resultant vector :"<<res_vec.x<<" i"<<" + "<<res_vec.y<<" j"<<" + "<<res_vec.z<<" k"<<std::endl; if(show_normals){ std::cout<<"showing 1 in "<<normalsratio<<" normals"<<std::endl; viewer.addPointCloudNormals<pcl::PointNormal,pcl::Normal>(cloud, norm_cloud,normalsratio, 0.05, "normalscloud"); } while(!viewer.wasStopped()) viewer.spinOnce(); } std::cout<<"feature calculation complete"<<std::endl; ofstream myfile; if (vfh){ std::stringstream ss; ss<<"vfh_"<<model_name<<".txt"; myfile.open(ss.str().c_str()); for(size_t k =0 ;k<308;k++){ if(k != 307) myfile << rec._vfh_features->points[0].histogram[k]<<","; else myfile << rec._vfh_features->points[0].histogram[k]; } std::cout<<"wrote the histogram to file :" <<ss.str()<<std::endl; myfile.close(); }else if(rv){ std::stringstream ss; ss<<"rv_"<<model_name<<".txt"; myfile.open(ss.str().c_str()); for(int k = 0;k<181;k++){ if(k != 180) myfile << rec._rv_features_181[k]<<","; else myfile << rec._rv_features_181[k]; } std::cout<<"wrote the histogram to file: "<< ss.str()<<std::endl; //myfile.open(ss.c_str()); } }
static int moment_of_inertia_features(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& inputCluster) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ()); // Get cloud from publisher pcl::copyPointCloud(*inputCluster, *cloud); std::cout << "Hello1" << std::endl; //* pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor; std::cout << "Hello2" << std::endl; //* feature_extractor.setInputCloud (cloud); std::cout << "Hello3" << std::endl; //* feature_extractor.compute (); std::cout << "Hello4" << std::endl; //* std::vector <float> moment_of_inertia; std::vector <float> eccentricity; pcl::PointXYZ min_point_AABB; pcl::PointXYZ max_point_AABB; pcl::PointXYZ min_point_OBB; pcl::PointXYZ max_point_OBB; pcl::PointXYZ position_OBB; Eigen::Matrix3f rotational_matrix_OBB; float major_value, middle_value, minor_value; Eigen::Vector3f major_vector, middle_vector, minor_vector; Eigen::Vector3f mass_center; feature_extractor.getMomentOfInertia (moment_of_inertia); std::cout << "Hello5" << std::endl; //* feature_extractor.getEccentricity (eccentricity); std::cout << "Hello6" << std::endl; //* feature_extractor.getAABB (min_point_AABB, max_point_AABB); std::cout << "Hello7" << std::endl; //* feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB); std::cout << "Hello8" << std::endl; //* feature_extractor.getEigenValues (major_value, middle_value, minor_value); std::cout << "Hello9" << std::endl; //* feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector); std::cout << "Hello10" << std::endl; //* feature_extractor.getMassCenter (mass_center); std::cout << "Hello11" << std::endl; //* boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer")); viewer->setBackgroundColor (0, 0, 0); viewer->addCoordinateSystem (1.0); viewer->initCameraParameters (); viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud"); viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB"); Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z); Eigen::Quaternionf quat (rotational_matrix_OBB); viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB"); pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2)); pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2)); pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2)); pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2)); viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector"); viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector"); viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector"); while(!viewer->wasStopped()) { viewer->spinOnce (100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } return (0); }
int main (int argc, char** argv) { if (argc != 3) return (0); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ()); if (pcl::io::loadPLYFile (argv[1], *cloud) == -1) return (-1); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2 (new pcl::PointCloud<pcl::PointXYZ> ()); pcl::io::loadPLYFile(argv[2], *cloud2); pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor; feature_extractor.setInputCloud (cloud); feature_extractor.compute (); std::vector <float> moment_of_inertia; std::vector <float> eccentricity; pcl::PointXYZ min_point_AABB; pcl::PointXYZ max_point_AABB; pcl::PointXYZ min_point_OBB; pcl::PointXYZ max_point_OBB; pcl::PointXYZ position_OBB; Eigen::Matrix3f rotational_matrix_OBB; float major_value, middle_value, minor_value; Eigen::Vector3f major_vector, middle_vector, minor_vector; Eigen::Vector3f mass_center; feature_extractor.getMomentOfInertia (moment_of_inertia); feature_extractor.getEccentricity (eccentricity); feature_extractor.getAABB (min_point_AABB, max_point_AABB); feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB); feature_extractor.getEigenValues (major_value, middle_value, minor_value); feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector); feature_extractor.getMassCenter (mass_center); boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer")); viewer->setBackgroundColor (0, 0, 0); viewer->addCoordinateSystem (2.0, 0); viewer->initCameraParameters (); viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud"); viewer->addPointCloud<pcl::PointXYZ> (cloud2, "object cloud"); viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB"); Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z); Eigen::Quaternionf quat (rotational_matrix_OBB); viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB"); pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2)); pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2)); pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2)); pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2)); viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector"); viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector"); viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector"); while(!viewer->wasStopped()) { viewer->spinOnce (100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } return (0); }