void get_model_matrix(float result[16])
{
	mat4f_identity(result);
	if(FIT_TO_VIEW_AND_ROTATE == 0)
	{
		/* Translate the model to where we were asked to put it */
		float translate[16];
		mat4f_translateVec_new(translate, placeToPutModel);

		/* Do inches to meters conversion if we are asked to. */
		float scale[16];
		mat4f_identity(scale);
		if(INCHES_TO_METERS)
		{
			float inchesToMeters=1/39.3701;
			mat4f_scale_new(scale, inchesToMeters, inchesToMeters, inchesToMeters);
		}
		mat4f_mult_mat4f_new(result, translate, scale);
		
		
		return;
	}
	
	/* Change angle for animation. */
	int count = glutGet(GLUT_ELAPSED_TIME) % 10000; // get a counter that repeats every 10 seconds
	/* Animate the model if there is animation information available. */
	kuhl_update_model_file_ogl3(modelFilename, 0, count/1000.0);
	dgr_setget("count", &count, sizeof(int));

	/* Calculate the width/height/depth of the bounding box and
	 * determine which one of the three is the largest. Then, scale
	 * the scene by 1/(largest value) to ensure that it fits in our
	 * view frustum. */
	float bb_min[3], bb_max[3], bb_center[3];
	kuhl_model_bounding_box(modelFilename, bb_min, bb_max, bb_center);
#define mymax(a,b) (a>b?a:b)
	float tmp;
	tmp = bb_max[0] - bb_min[0];
	tmp = mymax(bb_max[1] - bb_min[1], tmp);
	tmp = mymax(bb_max[2] - bb_min[2], tmp);
	tmp = 1.f / tmp;
#undef mymax
	float scaleBoundBox[16], moveToOrigin[16], moveToLookPoint[16];
	mat4f_translate_new(moveToOrigin, -bb_center[0], -bb_center[1], -bb_center[2]); // move to origin
//	printf("Scaling by factor %f\n", tmp); 
	mat4f_scale_new(scaleBoundBox, tmp, tmp, tmp); // scale model based on bounding box size
	mat4f_translateVec_new(moveToLookPoint, placeToPutModel);

	mat4f_mult_mat4f_new(result, moveToOrigin, result);
	mat4f_mult_mat4f_new(result, scaleBoundBox, result);
	mat4f_mult_mat4f_new(result, moveToLookPoint, result);
}
示例#2
0
static void viewmat_get_vrpn(float viewmatrix[16], int viewportNum)
{
	if(viewmat_vrpn_obj == NULL)
		return;
			
	float pos[3] = { 0,0,0 };
	float rotMat[16], posMat[16];
	vrpn_get(viewmat_vrpn_obj, NULL, pos, rotMat);
	mat4f_translate_new(posMat, -pos[0], -pos[1], -pos[2]); // position
	viewmat_fix_rotation(rotMat);
	mat4f_transpose(rotMat); /* orientation sensor rotates camera, not world */

	float cyclopsViewMatrix[16];
	mat4f_mult_mat4f_new(cyclopsViewMatrix, rotMat, posMat);

	viewmat_get_generic(viewmatrix, cyclopsViewMatrix, viewportNum);
}
示例#3
0
/** Given a view matrix for a single eye, return a new view matrix. If
 * there are two viewports (one for each eye) different matrices will
 * be returned depending on the viewport.
 *
 * @param viewmatrix The new view matrix (filled in by this function)
 *
 * @param cyclopsViewMatrix A single view matrix. If two eyes, this
 * view matrix represents the point between the eyes.
 *
 * @param viewportNum The viewport number.
 */
static void viewmat_get_generic(float viewmatrix[16], const float cyclopsViewMatrix[16], const int viewportNum)
{
	/* Update the view matrix based on which eye we are rendering */
	float eyeDist = 0.055;  // TODO: Make this configurable.
	viewmat_eye eye = viewmat_viewport_to_eye(viewportNum);
	float eyeShift = 0;
	if(eye == VIEWMAT_EYE_LEFT)
		eyeShift = -eyeDist/2.0;
	else if(eye == VIEWMAT_EYE_RIGHT)
		eyeShift = eyeDist/2.0;
	float shiftMatrix[16];
	// Negate eyeShift because the matrix would shift the world, not
	// the eye by default.
	mat4f_translate_new(shiftMatrix, -eyeShift, 0, 0);

	/* Adjust the view matrix by the eye offset */
	mat4f_mult_mat4f_new(viewmatrix, shiftMatrix, cyclopsViewMatrix);
}
示例#4
0
void display()
{
	/* If we are using DGR, send or receive data to keep multiple
	 * processes/computers synchronized. */
	dgr_update();

	/* Get current frames per second calculations. */
	float fps = kuhl_getfps(&fps_state);

	if(dgr_is_enabled() == 0 || dgr_is_master())
	{
		// If DGR is being used, only display dgr counter if we are
		// the master process.

		// Check if FPS value was just updated by kuhl_getfps()
		if(fps_state.frame == 0)
		{
			char label[1024];
			snprintf(label, 1024, "FPS: %0.1f", fps);

			/* Delete old label if it exists */
			if(fpsLabel != 0) 
				glDeleteTextures(1, &fpsLabel);

			/* Make a new label */
			float labelColor[3] = { 1,1,1 };
			float labelBg[4] = { 0,0,0,.3 };
			/* Change the last parameter (point size) to adjust the
			 * size of the texture that the text is rendered in to. */
			fpsLabelAspectRatio = kuhl_make_label(label,
			                                      &fpsLabel,
			                                      labelColor, labelBg, 24);

			if(fpsLabel != 0)
				kuhl_geometry_texture(&labelQuad, fpsLabel, "tex", 1);
		}
	}
	
	/* Ensure the slaves use the same render style as the master
	 * process. */
	dgr_setget("style", &renderStyle, sizeof(int));

	
	/* Render the scene once for each viewport. Frequently one
	 * viewport will fill the entire screen. However, this loop will
	 * run twice for HMDs (once for the left eye and once for the
	 * right. */
	viewmat_begin_frame();
	for(int viewportID=0; viewportID<viewmat_num_viewports(); viewportID++)
	{
		viewmat_begin_eye(viewportID);

		/* Where is the viewport that we are drawing onto and what is its size? */
		int viewport[4]; // x,y of lower left corner, width, height
		viewmat_get_viewport(viewport, viewportID);
		glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);

		/* Clear the current viewport. Without glScissor(), glClear()
		 * clears the entire screen. We could call glClear() before
		 * this viewport loop---but on order for all variations of
		 * this code to work (Oculus support, etc), we can only draw
		 * after viewmat_begin_eye(). */
		glScissor(viewport[0], viewport[1], viewport[2], viewport[3]);
		glEnable(GL_SCISSOR_TEST);
		glClearColor(.2,.2,.2,0); // set clear color to grey
		glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
		glDisable(GL_SCISSOR_TEST);
		glEnable(GL_DEPTH_TEST); // turn on depth testing
		kuhl_errorcheck();

		/* Turn on blending (note, if you are using transparent textures,
		   the transparency may not look correct unless you draw further
		   items before closer items.). */
		glEnable(GL_BLEND);
		glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
		glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ZERO);

		/* Get the view or camera matrix; update the frustum values if needed. */
		float viewMat[16], perspective[16];
		viewmat_get(viewMat, perspective, viewportID);

		glUseProgram(program);
		kuhl_errorcheck();
		/* Send the perspective projection matrix to the vertex program. */
		glUniformMatrix4fv(kuhl_get_uniform("Projection"),
		                   1, // number of 4x4 float matrices
		                   0, // transpose
		                   perspective); // value

		float modelMat[16];
		get_model_matrix(modelMat);
		float modelview[16];
		mat4f_mult_mat4f_new(modelview, viewMat, modelMat); // modelview = view * model

		/* Send the modelview matrix to the vertex program. */
		glUniformMatrix4fv(kuhl_get_uniform("ModelView"),
		                   1, // number of 4x4 float matrices
		                   0, // transpose
		                   modelview); // value

		glUniform1i(kuhl_get_uniform("renderStyle"), renderStyle);
		// Copy far plane value into vertex program so we can render depth buffer.
		float f[6]; // left, right, bottom, top, near>0, far>0
		projmat_get_frustum(f, viewport[2], viewport[3]);
		glUniform1f(kuhl_get_uniform("farPlane"), f[5]);

		kuhl_errorcheck();
		kuhl_geometry_draw(modelgeom); /* Draw the model */
		kuhl_errorcheck();
		if(showOrigin)
		{
			/* Save current line width */
			GLfloat origLineWidth;
			glGetFloatv(GL_LINE_WIDTH, &origLineWidth);
			glLineWidth(4); // make lines thick
			
			/* Object coordinate system origin */
			kuhl_geometry_draw(origingeom); /* Draw the origin marker */

			/* World coordinate origin */
			mat4f_copy(modelview, viewMat);
			glUniformMatrix4fv(kuhl_get_uniform("ModelView"),
			                   1, // number of 4x4 float matrices
			                   0, // transpose
			                   modelview); // value
			kuhl_geometry_draw(origingeom); /* Draw the origin marker */

			/* Restore line width */
			glLineWidth(origLineWidth);
		}


		if(dgr_is_enabled() == 0 || dgr_is_master())
		{

			/* The shape of the frames per second quad depends on the
			 * aspect ratio of the label texture and the aspect ratio of
			 * the window (because we are placing the quad in normalized
			 * device coordinates). */
			int windowWidth, windowHeight;
			viewmat_window_size(&windowWidth, &windowHeight);
			float windowAspect = windowWidth / (float)windowHeight;
			
			float stretchLabel[16];
			mat4f_scale_new(stretchLabel, 1/8.0 * fpsLabelAspectRatio / windowAspect, 1/8.0, 1);

			/* Position label in the upper left corner of the screen */
			float transLabel[16];
			mat4f_translate_new(transLabel, -.9, .8, 0);
			mat4f_mult_mat4f_new(modelview, transLabel, stretchLabel);
			glUniformMatrix4fv(kuhl_get_uniform("ModelView"), 1, 0, modelview);

			/* Make sure we don't use a projection matrix */
			float identity[16];
			mat4f_identity(identity);
			glUniformMatrix4fv(kuhl_get_uniform("Projection"), 1, 0, identity);

			/* Don't use depth testing and make sure we use the texture
			 * rendering style */
			glDisable(GL_DEPTH_TEST);
			glUniform1i(kuhl_get_uniform("renderStyle"), 1);
			kuhl_geometry_draw(&labelQuad); /* Draw the quad */
			glEnable(GL_DEPTH_TEST);
			kuhl_errorcheck();
		}

		glUseProgram(0); // stop using a GLSL program.

	} // finish viewport loop
	viewmat_end_frame();
	
	/* Update the model for the next frame based on the time. We
	 * convert the time to seconds and then use mod to cause the
	 * animation to repeat. */
	int time = glutGet(GLUT_ELAPSED_TIME);
	dgr_setget("time", &time, sizeof(int));
	kuhl_update_model(modelgeom, 0, ((time%10000)/1000.0));

	/* Check for errors. If there are errors, consider adding more
	 * calls to kuhl_errorcheck() in your code. */
	kuhl_errorcheck();

	//kuhl_video_record("videoout", 30);
	
	/* Ask GLUT to call display() again. We shouldn't call display()
	 * ourselves recursively because it will not leave time for GLUT
	 * to call other callback functions for when a key is pressed, the
	 * window is resized, etc. */
	glutPostRedisplay();
}
示例#5
0
/** Get view and projection matrices appropriate for the Oculus HMD */
static void viewmat_get_hmd_oculus(float viewmatrix[16], float projmatrix[16], int viewportID)
{
#ifndef MISSING_OVR
	/* Oculus recommends the order that we should render eyes. We
	 * assume that smaller viewportIDs are rendered first. So, we need
	 * to map the viewportIDs to the specific Oculus HMD eye. The
	 * "eye" variable will be set to either ovrEye_Left (if we are
	 * rendering the left eye) or ovrEye_Right (if we are rendering
	 * the right eye). */
	ovrEyeType eye = hmd->EyeRenderOrder[viewportID];

	/* Oculus doesn't provide us with easy access to the view
	 * frustum information. We get the projection matrix directly
	 * from libovr. */
	ovrMatrix4f ovrpersp = ovrMatrix4f_Projection(hmd->DefaultEyeFov[eye], 0.5, 500, 1);
	mat4f_setRow(projmatrix, &(ovrpersp.M[0][0]), 0);
	mat4f_setRow(projmatrix, &(ovrpersp.M[1][0]), 1);
	mat4f_setRow(projmatrix, &(ovrpersp.M[2][0]), 2);
	mat4f_setRow(projmatrix, &(ovrpersp.M[3][0]), 3);
	
	float offsetMat[16], rotMat[16], posMat[16], initPosMat[16];
	mat4f_identity(offsetMat);  // Viewpoint offset (IPD, etc);
	mat4f_identity(rotMat);     // tracking system rotation
	mat4f_identity(posMat);     // tracking system position
	mat4f_identity(initPosMat); // camera starting location
	
	/* Construct posMat and rotMat matrices which indicate the
	 * position and orientation of the HMD. */
	if(viewmat_vrpn_obj) // get position from VRPN
	{
		/* Get the offset for the left and right eyes from
		 * Oculus. If you are using a separate tracking system, you
		 * may also want to apply an offset here between the tracked
		 * point and the eye location. */
		mat4f_translate_new(offsetMat,
		                    eye_rdesc[eye].HmdToEyeViewOffset.x, // left & right IPD offset
		                    eye_rdesc[eye].HmdToEyeViewOffset.y, // vertical offset
		                    eye_rdesc[eye].HmdToEyeViewOffset.z); // forward/back offset

		float pos[3] = { 0,0,0 };
		vrpn_get(viewmat_vrpn_obj, NULL, pos, rotMat);
		mat4f_translate_new(posMat, -pos[0], -pos[1], -pos[2]); // position
		viewmat_fix_rotation(rotMat);
	}
	else // get position from Oculus tracker
	{
		pose[eye] = ovrHmd_GetHmdPosePerEye(hmd, eye);
		mat4f_translate_new(posMat,                           // position (includes IPD offset)
		                    -pose[eye].Position.x,
		                    -pose[eye].Position.y,
		                    -pose[eye].Position.z);
		mat4f_rotateQuat_new(rotMat,                          // rotation
		                     pose[eye].Orientation.x,
		                     pose[eye].Orientation.y,
		                     pose[eye].Orientation.z,
		                     pose[eye].Orientation.w);

		// Starting point:
		
		// Translate the world based on the initial camera position
		// specified in viewmat_init(). You may choose to initialize the
		// camera position with y=1.5 meters to approximate a normal
		// standing eyeheight.
		float initPosVec[3];
		vec3f_scalarMult_new(initPosVec, oculus_initialPos, -1.0f);
		mat4f_translateVec_new(initPosMat, initPosVec);
		// TODO: Could also get eyeheight via ovrHmd_GetFloat(hmd, OVR_KEY_EYE_HEIGHT, 1.65)
	}
	mat4f_transpose(rotMat); /* orientation sensor rotates camera, not world */

	// viewmatrix = offsetMat * rotMat *  posMat * initposmat
	mat4f_mult_mat4f_new(viewmatrix, offsetMat, rotMat); // offset is identity if we are using Oculus tracker
	mat4f_mult_mat4f_new(viewmatrix, viewmatrix, posMat);
	mat4f_mult_mat4f_new(viewmatrix, viewmatrix, initPosMat);

	if(0)
	{
		printf("ViewportID=%d; eye=%s\n", viewportID, eye == ovrEye_Left ? "left" : "right");
		printf("Eye offset according to OVR (only used if VRPN is used): ");
		mat4f_print(offsetMat);
		printf("Rotation sensing (from OVR or VRPN): ");
		mat4f_print(rotMat);
		printf("Position tracking (from OVR or VRPN): ");
		mat4f_print(posMat);
		printf("Initial position (from set in viewmat_init()): ");
		mat4f_print(initPosMat);
		printf("Final view matrix: ");
		mat4f_print(viewmatrix);
	}
#else
	/* We shouldn't ever get here, but we'll generate a generic view
	 * and projection matrix just in case... */
	mat4f_lookat_new(viewmatrix,
	                 0,1.55,0,
	                 0,1.55,-1,
	                 0,1,0);
	mat4f_perspective_new(projmatrix, 50, 1, 0.5, 500);
#endif
}