vaddr_t initarm_common(vaddr_t kvm_base, vsize_t kvm_size, const struct boot_physmem *bp, size_t nbp) { struct bootmem_info * const bmi = &bootmem_info; #ifdef VERBOSE_INIT_ARM printf("nfreeblocks = %u, free_pages = %d (%#x)\n", bmi->bmi_nfreeblocks, bmi->bmi_freepages, bmi->bmi_freepages); #endif /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init. */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif #ifdef VERBOSE_INIT_ARM printf("vectors"); #endif arm32_vector_init(systempage.pv_va, ARM_VEC_ALL); #ifdef VERBOSE_INIT_ARM printf(" %#"PRIxVADDR"\n", vector_page); #endif /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ #ifdef VERBOSE_INIT_ARM printf("pmap_physload "); #endif KASSERT(bp != NULL || nbp == 0); KASSERT(bp == NULL || nbp != 0); for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) { pv_addr_t * const pv = &bmi->bmi_freeblocks[i]; paddr_t start = atop(pv->pv_pa); const paddr_t end = start + atop(pv->pv_size); while (start < end) { int vm_freelist = VM_FREELIST_DEFAULT; paddr_t segend = end; /* * This assumes the bp list is sorted in ascending * order. */ for (size_t j = 0; j < nbp; j++) { paddr_t bp_start = bp[j].bp_start; paddr_t bp_end = bp_start + bp[j].bp_pages; if (start < bp_start) { if (segend > bp_start) { segend = bp_start; } break; } if (start < bp_end) { if (segend > bp_end) { segend = bp_end; } vm_freelist = bp[j].bp_freelist; break; } } uvm_page_physload(start, segend, start, segend, vm_freelist); start = segend; } } /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(kvm_base, kvm_base + kvm_size); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #ifdef BOOTHOWTO boothowto |= BOOTHOWTO; #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif /* We return the new stack pointer address */ return kernelstack.pv_va + USPACE_SVC_STACK_TOP; }
u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; extern int etext __asm("_etext"); extern int end __asm("_end"); int progress_counter = 0; #ifdef DO_MEMORY_DISK vm_offset_t md_root_start; #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE) #endif #define gpio8(reg) (*(volatile uint8_t *)(ioreg_vaddr(S3C2800_GPIO_BASE) + (reg))) #define LEDSTEP() __LED(progress_counter++) #define pdatc gpio8(GPIO_PDATC) #define __LED(x) (pdatc = (pdatc & ~0x07) | (~(x) & 0x07)) LEDSTEP(); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("CPU not recognized!"); LEDSTEP(); /* Disable all peripheral interrupts */ ioreg32(S3C2800_INTCTL_BASE + INTCTL_INTMSK) = 0; consinit(); #ifdef VERBOSE_INIT_ARM printf("consinit done\n"); #endif #ifdef KGDB LEDSTEP(); kgdb_port_init(); #endif LEDSTEP(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (SMDK2800) booting ...\n"); #endif /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * 0x00000000 - 0x00ffffff Intel flash Memory (16MB) * 0x02000000 - 0x020fffff AMD flash Memory (1MB) * or (depend on DIPSW setting) * 0x00000000 - 0x000fffff AMD flash Memory (1MB) * 0x02000000 - 0x02ffffff Intel flash Memory (16MB) * * 0x08000000 - 0x09ffffff SDRAM (32MB) * 0x20000000 - 0x3fffffff PCI space * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = SDRAM_START; bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0x08200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the bottom of SDRAM, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); #if DO_MEMORY_DISK #ifdef MEMORY_DISK_ROOT_ROM md_root_start = MEMORY_DISK_ROOT_ADDR; boothowto |= RB_RDONLY; #else /* Reserve physmem for ram disk */ md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1)); printf("Reserve %ld bytes for memory disk\n", physical_end - md_root_start); /* copy fs contents */ memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR, MD_ROOT_SIZE); physical_end = md_root_start; #endif #endif physical_freestart = 0x08000000UL; /* XXX */ physical_freeend = 0x08200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * XXX * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory\n"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); LEDSTEP(); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); #endif #ifdef MEMORY_DISK_DYNAMIC /* map MD root image */ pmap_map_chunk(l1pagetable, SMDK2800_MEMORY_DISK_VADDR, md_root_start, MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); md_root_setconf((void *)md_root_start, MD_ROOT_SIZE); #endif /* MEMORY_DISK_DYNAMIC */ /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, smdk2800_devmap); /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { physical_freestart = physical_start + (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif LEDSTEP(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #if 0 /* * The IFPGA registers have just moved. * Detach the diagnostic serial port and reattach at the new address. */ plcomcndetach(); /* * XXX this should only be done in main() but it useful to * have output earlier ... */ consinit(); #endif LEDSTEP(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); LEDSTEP(); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); LEDSTEP(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); LEDSTEP(); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); LEDSTEP(); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif /* XXX irq_init(); */ #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO_INIT boothowto |= BOOTHOWTO_INIT; #endif { uint8_t gpio = ~gpio8(GPIO_PDATF); if (gpio & (1<<5)) /* SW3 */ boothowto ^= RB_SINGLE; if (gpio & (1<<7)) /* SW7 */ boothowto ^= RB_KDB; #ifdef VERBOSE_INIT_ARM printf( "sw: %x boothowto: %x\n", gpio, boothowto ); #endif } #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
void machine_startup(int argc, char *argv[], struct bootinfo *bi) { extern char edata[], end[]; vaddr_t kernend; size_t symbolsize; int i; char *p; /* * this routines stack is never polluted since stack pointer * is lower than kernel text segment, and at exiting, stack pointer * is changed to proc0. */ struct kloader_bootinfo kbi; /* Symbol table size */ symbolsize = 0; if (memcmp(&end, ELFMAG, SELFMAG) == 0) { Elf_Ehdr *eh = (void *)end; Elf_Shdr *sh = (void *)(end + eh->e_shoff); for(i = 0; i < eh->e_shnum; i++, sh++) if (sh->sh_offset > 0 && (sh->sh_offset + sh->sh_size) > symbolsize) symbolsize = sh->sh_offset + sh->sh_size; } /* Clear BSS */ memset(edata, 0, end - edata); /* Setup bootinfo */ bootinfo = &kbi.bootinfo; memcpy(bootinfo, bi, sizeof(struct bootinfo)); if (bootinfo->magic == BOOTINFO_MAGIC) { platid.dw.dw0 = bootinfo->platid_cpu; platid.dw.dw1 = bootinfo->platid_machine; } /* CPU initialize */ if (platid_match(&platid, &platid_mask_CPU_SH_3)) sh_cpu_init(CPU_ARCH_SH3, CPU_PRODUCT_7709A); else if (platid_match(&platid, &platid_mask_CPU_SH_4)) sh_cpu_init(CPU_ARCH_SH4, CPU_PRODUCT_7750); /* Start to determine heap area */ kernend = (vaddr_t)sh3_round_page(end + symbolsize); /* Setup bootstrap options */ makebootdev("wd0"); /* default boot device */ boothowto = 0; for (i = 1; i < argc; i++) { /* skip 1st arg (kernel name). */ char *cp = argv[i]; switch (*cp) { case 'b': /* boot device: -b=sd0 etc. */ p = cp + 2; #ifdef NFS if (strcmp(p, "nfs") == 0) mountroot = nfs_mountroot; else makebootdev(p); #else /* NFS */ makebootdev(p); #endif /* NFS */ break; default: BOOT_FLAG(*cp, boothowto); break; } } #ifdef MFS /* * Check to see if a mini-root was loaded into memory. It resides * at the start of the next page just after the end of BSS. */ if (boothowto & RB_MINIROOT) { size_t fssz; fssz = sh3_round_page(mfs_initminiroot((void *)kernend)); #ifdef MEMORY_DISK_DYNAMIC md_root_setconf((caddr_t)kernend, fssz); #endif kernend += fssz; } #endif /* MFS */ /* Console */ consinit(); #ifdef HPC_DEBUG_LCD dbg_lcd_test(); #endif /* copy boot parameter for kloader */ kloader_bootinfo_set(&kbi, argc, argv, bi, TRUE); /* Find memory cluster. and load to UVM */ physmem = mem_cluster_init(SH3_P1SEG_TO_PHYS(kernend)); _DPRINTF("total memory = %dMbyte\n", (int)(sh3_ptob(physmem) >> 20)); mem_cluster_load(); /* Initialize proc0 u-area */ sh_proc0_init(); /* Initialize pmap and start to address translation */ pmap_bootstrap(); /* Debugger. */ #ifdef DDB if (symbolsize) { ddb_init(symbolsize, &end, end + symbolsize); _DPRINTF("symbol size = %d byte\n", symbolsize); } if (boothowto & RB_KDB) Debugger(); #endif /* DDB */ #ifdef KGDB if (boothowto & RB_KDB) { if (kgdb_dev == NODEV) { printf("no kgdb console.\n"); } else { kgdb_debug_init = 1; kgdb_connect(1); } } #endif /* KGDB */ /* Jump to main */ __asm__ __volatile__( "jmp @%0;" "mov %1, sp" :: "r"(main),"r"(proc0.p_md.md_pcb->pcb_sf.sf_r7_bank)); /* NOTREACHED */ while (1) ; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern vaddr_t xscale_cache_clean_addr; int loop; int loop1; u_int l1pagetable; #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ #endif /* Register devmap for devices we mapped in start */ pmap_devmap_register(viper_devmap); /* start 32.768 kHz OSC */ ioreg_write(VIPER_CLKMAN_VBASE + 0x08, 2); /* Get ready for splfoo() */ pxa2x0_intr_bootstrap(VIPER_INTCTL_VBASE); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); #if 0 /* Calibrate the delay loop. */ #endif /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ pxa2x0_gpio_bootstrap(VIPER_GPIO_VBASE); pxa2x0_gpio_config(viper_gpioconf); /* turn on clock to UART block. XXX: this should not be done here. */ ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART | ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN)); consinit(); #ifdef KGDB kgdb_port_init(); #endif /* Talk to the user */ printf("\nNetBSD/evbarm (viper) booting ...\n"); #if 0 /* * Examine the boot args string for options we need to know about * now. */ process_kernel_args((char *)nwbootinfo.bt_args); #endif printf("initarm: Configuring system ...\n"); /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = MEMSTART; bootconfig.dram[0].pages = MEMSIZE / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the page tables that RedBoot * set up, we will panic. We will update physical_freestart * and physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. * (now that would be truly hardcore XXX) */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xa0009000UL; physical_freeend = 0xa0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, viper_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ proc0paddr = (struct user *)kernelstack.pv_va; lwp0.l_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); /* Load memory into UVM. */ printf("page "); uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern char _end[]; extern vaddr_t startup_pagetable; extern struct btinfo_common bootinfo; struct btinfo_common *btinfo = &bootinfo; struct btinfo_model *model = NULL; struct btinfo_memory *memory = NULL; struct btinfo_video *video = NULL; struct btinfo_bootargs *args = NULL; u_int l1pagetable, _end_physical; int loop, loop1, n, i; /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* map some peripheral registers at static I/O area. */ pmap_devmap_bootstrap(startup_pagetable, epoc32_devmap); bootconfig.dramblocks = 0; while (btinfo->type != BTINFO_NONE) { switch (btinfo->type) { case BTINFO_MODEL: model = (struct btinfo_model *)btinfo; btinfo = &(model + 1)->common; strncpy(epoc32_model, model->model, sizeof(epoc32_model)); break; case BTINFO_MEMORY: memory = (struct btinfo_memory *)btinfo; btinfo = &(memory + 1)->common; /* * Fake bootconfig structure for the benefit of pmap.c */ i = bootconfig.dramblocks; bootconfig.dram[i].address = memory->address; bootconfig.dram[i].pages = memory->size / PAGE_SIZE; bootconfig.dramblocks++; break; case BTINFO_VIDEO: video = (struct btinfo_video *)btinfo; btinfo = &(video + 1)->common; epoc32_fb_width = video->width; epoc32_fb_height = video->height; break; case BTINFO_BOOTARGS: args = (struct btinfo_bootargs *)btinfo; btinfo = &(args + 1)->common; memcpy(bootargs, args->bootargs, min(sizeof(bootargs), sizeof(args->bootargs))); bootargs[sizeof(bootargs) - 1] = '\0'; boot_args = bootargs; break; default: #define NEXT_BOOTINFO(bi) (struct btinfo_common *)((char *)bi + (bi)->len) btinfo = NEXT_BOOTINFO(btinfo); } } if (bootconfig.dramblocks == 0) panic("BTINFO_MEMORY not found"); consinit(); if (boot_args != NULL) parse_mi_bootargs(boot_args); physical_start = bootconfig.dram[0].address; physical_freestart = bootconfig.dram[0].address; physical_freeend = KERNEL_TEXT_BASE; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNEL_BASE, &kernel_pt_table[KERNEL_PT_KERNEL]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE; /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; size_t datasize; PhysMem *dram = bootconfig.dram; u_int logical, physical, size; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; datasize = totalsize - textsize; /* data and bss */ logical = KERNEL_OFFSET; /* offset of kernel in RAM */ physical = KERNEL_OFFSET; i = 0; size = dram[i].pages * PAGE_SIZE - physical; /* Map kernel text section. */ while (1 /*CONSTINT*/) { size = pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, dram[i].address + physical, textsize < size ? textsize : size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += size; physical += size; textsize -= size; if (physical >= dram[i].pages * PAGE_SIZE) { i++; size = dram[i].pages * PAGE_SIZE; physical = 0; } if (textsize == 0) break; } size = dram[i].pages * PAGE_SIZE - physical; /* Map data and bss section. */ while (1 /*CONSTINT*/) { size = pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, dram[i].address + physical, datasize < size ? datasize : size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += size; physical += size; datasize -= size; if (physical >= dram[i].pages * PAGE_SIZE) { i++; size = dram[i].pages * PAGE_SIZE; physical = 0; } if (datasize == 0) break; } _end_physical = dram[i].address + physical; n = i; physical_end = dram[n].address + dram[n].pages * PAGE_SIZE; n++; } /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_devmap_bootstrap(l1pagetable, epoc32_devmap); pmap_devmap_bootstrap(l1pagetable, epoc32_fb_devmap); epoc32_fb_addr = ARM7XX_FB_VBASE; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. Until then we will use a handler that just panics but * tells us why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ undefined_init(); /* Load memory into UVM. */ uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload( atop(_end_physical), atop(physical_end), atop(_end_physical), atop(physical_end), VM_FREELIST_DEFAULT); physmem = bootconfig.dram[0].pages; for (i = 1; i < n; i++) physmem += bootconfig.dram[i].pages; if (physmem < 0x400000) physical_end = 0; for (loop = n; loop < bootconfig.dramblocks; loop++) { size_t start = bootconfig.dram[loop].address; size_t size = bootconfig.dram[loop].pages * PAGE_SIZE; uvm_page_physload(atop(start), atop(start + size), atop(start), atop(start + size), VM_FREELIST_DEFAULT); physmem += bootconfig.dram[loop].pages; if (physical_end == 0 && physmem >= 0x400000 / PAGE_SIZE) /* Fixup physical_end for Series5. */ physical_end = start + size; } /* Boot strap pmap telling it where the kernel page table is */ pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return kernelstack.pv_va + USPACE_SVC_STACK_TOP; }