示例#1
0
static void
filter_midi_enforcescale(MidiFilter* self,
		uint32_t tme,
		const uint8_t* const buffer,
		uint32_t size)
{
	const int chs = midi_limit_chn(floorf(*self->cfg[0]) -1);
	const int scale = RAIL(floorf(*self->cfg[1]), 0, 11);
	const int mode  = RAIL(floorf(*self->cfg[2]), 0, 2);

	const uint8_t chn = buffer[0] & 0x0f;
	const uint8_t key = buffer[1] & 0x7f;
	uint8_t mst = buffer[0] & 0xf0;

	if (midi_is_panic(buffer, size)) {
		filter_enforcescale_panic(self, chn, tme);
	}

	if (size != 3
			|| !(mst == MIDI_NOTEON || mst == MIDI_NOTEOFF || mst == MIDI_POLYKEYPRESSURE)
			|| !(floorf(*self->cfg[0]) == 0 || chs == chn)
			)
	{
		forge_midimessage(self, tme, buffer, size);
		return;
	}

	int transp = 0;

	if (!filter_enforcescale_check(scale, key)) {
		switch (mode) {
			case 1:
					transp = -1;
				break;
			case 2:
					transp = +1;
				break;
			case 0: /* discard */
			default:
				return;
		}
	}

	if (!midi_valid(key + transp)) {
		return;
	}

	if (!filter_enforcescale_check(scale, key + transp)) {
		return;
	}

	int note;
	uint8_t buf[3];
	memcpy(buf, buffer, 3);

	switch (mst) {
		case MIDI_NOTEON:
			note = key + transp;
			if (midi_valid(note)) {
				buf[1] = note;
				self->memCS[chn][note]++;
				if (self->memCS[chn][note] == 1)
					forge_midimessage(self, tme, buf, size);
			}
			self->memCI[chn][key] = transp;
			break;
		case MIDI_NOTEOFF:
			note = key + self->memCI[chn][key];
			if (midi_valid(note)) {
				buf[1] = note;
				if (self->memCS[chn][note] > 0) {
					self->memCS[chn][note]--;
					if (self->memCS[chn][note] == 0)
						forge_midimessage(self, tme, buf, size);
					self->memCI[chn][key] = 0;
				}
			}
			break;
		case MIDI_POLYKEYPRESSURE:
			note = key + transp;
			if (midi_valid(note)) {
				buf[1] = note;
				forge_midimessage(self, tme, buf, size);
			}
			break;
	}
}
示例#2
0
static void
filter_midi_mapkeyscale(MidiFilter* self,
		uint32_t tme,
		const uint8_t* const buffer,
		uint32_t size)
{
	int i;
	const int chs = midi_limit_chn(floorf(*self->cfg[0]) -1);
	int keymap[12];
	for (i=0; i < 12; ++i) {
		keymap[i] = RAIL(floorf(*self->cfg[i+1]), -13, 12);
	}

	const uint8_t chn = buffer[0] & 0x0f;
	uint8_t mst = buffer[0] & 0xf0;

	if (midi_is_panic(buffer, size)) {
		filter_mapkeyscale_panic(self, chn, tme);
	}

	if (size != 3
			|| !(mst == MIDI_NOTEON || mst == MIDI_NOTEOFF || mst == MIDI_POLYKEYPRESSURE)
			|| !(floorf(*self->cfg[0]) == 0 || chs == chn)
			)
	{
		forge_midimessage(self, tme, buffer, size);
		return;
	}

	const uint8_t key = buffer[1] & 0x7f;
	const uint8_t vel = buffer[2] & 0x7f;

	if (mst == MIDI_NOTEON && vel ==0 ) {
		mst = MIDI_NOTEOFF;
	}

	int note;
	uint8_t buf[3];
	memcpy(buf, buffer, 3);

	switch (mst) {
		case MIDI_NOTEON:
			if (keymap[key%12] < -12) return;
			note = key + keymap[key%12];
			// TODO keep track of dup result note-on -- see enforcescale.c
			if (midi_valid(note)) {
				buf[1] = note;
				self->memCS[chn][note]++;
				if (self->memCS[chn][note] == 1) {
					forge_midimessage(self, tme, buf, size);
				}
				self->memCM[chn][key] = vel;
				self->memCI[chn][key] = note - key;
			}
			break;
		case MIDI_NOTEOFF:
			note = key + self->memCI[chn][key];
			if (midi_valid(note)) {
				buf[1] = note;
				if (self->memCS[chn][note] > 0) {
					self->memCS[chn][note]--;
					if (self->memCS[chn][note] == 0)
						forge_midimessage(self, tme, buf, size);
				}
			}
			self->memCM[chn][key] = 0;
			self->memCI[chn][key] = -1000;
			break;
		case MIDI_POLYKEYPRESSURE:
			if (keymap[key%12] < -12) return;
			note = key + keymap[key%12];
			if (midi_valid(note)) {
				buf[1] = note;
				forge_midimessage(self, tme, buf, size);
			}
			break;
	}
}
示例#3
0
void
filter_midi_midistrum(MidiFilter* self,
		const uint32_t tme,
		const uint8_t* const buffer,
		const uint32_t size)
{
	uint8_t mst = buffer[0] & 0xf0;

	if (size > 3) {
		forge_midimessage(self, tme, buffer, size);
		return;
	}

	if (midi_is_panic(buffer, size)) {
		filter_midistrum_panic(self, buffer[0]&0x0f, tme);
	}

	if (size != 3 || !(mst == MIDI_NOTEON || mst == MIDI_NOTEOFF)) {
		if ((self->memI[2] + 1) % self->memI[0] == self->memI[1]) {
			return; // queue full
		}
		MidiEventQueue *qm = &(self->memQ[self->memI[2]]);
		memcpy(qm->buf, buffer, size);
		qm->size = size;
		qm->reltime = tme;
		self->memI[2] = (self->memI[2] + 1) % self->memI[0];
		return;
	}

	float bpm = (*self->cfg[1]);
	if (*self->cfg[0] && (self->available_info & NFO_BPM)) {
		bpm = self->bpm;
	}
	if (bpm <= 0) bpm = 60;

	const int strum_time = floor(self->samplerate * (*self->cfg[4]) * 60.0 / bpm);
	const int max_collect = 1 + rintf(self->samplerate * (*self->cfg[3]) / 1000.0);

	const uint8_t key = buffer[1] & 0x7f;
	const uint8_t vel = buffer[2] & 0x7f;

	if (mst == MIDI_NOTEON && vel ==0 ) {
		mst = MIDI_NOTEOFF;
	}

	// check if we're overdue -> process collected notes, reset collection mode
	filter_midistrum_process(self, tme);

	/* add note-ons to collection */
	if (mst == MIDI_NOTEON) {
		int i;
		if (self->memI[5] == 0) {
			self->memI[4] = (tme + max_collect + self->memI[3]) % MSC_MAX;
		}
#if 0
		if ((self->available_info & NFO_BEAT)) {
			const double samples_per_beat = 60.0 / self->bpm * self->samplerate;
			printf("NOTE ON: %ld, %f  || %f\n",
					self->pos_frame + tme,
					self->bar_beats + (float)tme / samples_per_beat,
					self->beat_beats + (float)tme / samples_per_beat);
		}
#endif

		// check if note-on for this key is already queued -> skip
		for (i=0; i < self->memI[5]; ++i) {
			if (self->memS[i].size == 3 && self->memS[i].buf[2] == key) {
				return;
			}
		}

		MidiEventQueue *qm = &(self->memS[self->memI[5]]);
		memcpy(qm->buf, buffer, size);
		qm->size = size;
		self->memI[5]++;
	}

	/* delay note-off by max-latency (= collection-time + strum-time) */
	else if (mst == MIDI_NOTEOFF) {
#if 0 // TODO -- shorten delay time IF possible
		int delay = strum_time + 1;
		if (self->memI[5] > 0) {
			delay += 1 + MSC_DIFF(self->memI[4], (self->memI[3] + tme)%MSC_MAX);
			printf("add.. %d\n" , MSC_DIFF(self->memI[4], (self->memI[3] + tme)%MSC_MAX));
		}
#else
		const int delay = strum_time + max_collect;
#endif
		// TODO filter out ignored dups from (ignored note-on) above
		MidiEventQueue *qm = &(self->memQ[self->memI[2]]);
		memcpy(qm->buf, buffer, size);
		qm->size = size;
		qm->reltime = tme + delay;
		self->memI[2] = (self->memI[2] + 1) % self->memI[0];
	}
}
示例#4
0
static void
filter_midi_midichord(MidiFilter* self,
		uint32_t tme,
		const uint8_t* const buffer,
		uint32_t size)
{
	int i;
	const int chs = midi_limit_chn(floor(*self->cfg[0]) -1);
	const int scale = RAIL(floor(*self->cfg[1]), 0, 11);

	int chord = 0;
	for (i=0; i < 10 ; ++i) {
		if ((*self->cfg[i+2]) != 0) chord |= 1<<i;
	}

	const uint8_t chn = buffer[0] & 0x0f;
	uint8_t mst = buffer[0] & 0xf0;

	if (midi_is_panic(buffer, size)) {
		filter_midichord_panic(self, chn, tme);
	}

	if (size != 3
			|| !(mst == MIDI_NOTEON || mst == MIDI_NOTEOFF || mst == MIDI_POLYKEYPRESSURE)
			|| !(floor(*self->cfg[0]) == 0 || chs == chn)
			)
	{
		forge_midimessage(self, tme, buffer, size);
		return;
	}

	const uint8_t key = buffer[1] & 0x7f;
	const uint8_t vel = buffer[2] & 0x7f;
	const int tonika = (key + 12 - scale) % 12;

	if (! filter_midichord_isonscale(tonika)) {
		chord = 1;
	}

	switch (mst) {
		case MIDI_NOTEON:
			self->memCI[chn][key] = chord;
			self->memCM[chn][key] = vel;
			for (i=0; i < 10 ; ++i) {
				if (!(chord & (1<<i))) continue;
				filter_midichord_noteon(self, tme, chn, key + filter_midichord_halftoneoffset(tonika, i), vel);
			}
			break;
		case MIDI_NOTEOFF:
			chord = self->memCI[chn][key];
			for (i=0; i < 10 ; ++i) {
				if (!(chord & (1<<i))) continue;
				filter_midichord_noteoff(self, tme, chn, key + filter_midichord_halftoneoffset(tonika, i), vel);
			}
			self->memCI[chn][key] = -1000;
			self->memCM[chn][key] = 0;
			break;
		case MIDI_POLYKEYPRESSURE:
			for (i=0; i < 10 ; ++i) {
				uint8_t buf[3];
				if (!(chord & (1<<i))) continue;
				int note = key + filter_midichord_halftoneoffset(tonika, i);
				if (midi_valid(note)) {
					buf[0] = buffer[0];
					buf[1] = note;
					buf[2] = buffer[2];
					forge_midimessage(self, tme, buf, size);
				}
			}
			break;
	}
}
示例#5
0
void
filter_midi_ntabdelay(MidiFilter* self,
		const uint32_t tme,
		const uint8_t* const buffer,
		const uint32_t size)
{
	int i;
	float bpm = MAX(*self->cfg[2], 1.0);
	if (*self->cfg[1] && (self->available_info & NFO_BPM)) {
		bpm = self->bpm;
	}
	if (bpm <= 0) bpm = 60;

	if (midi_is_panic(buffer, size)) {
		filter_ntapdelay_panic(self, buffer[0]&0x0f, tme);
	}

	forge_midimessage(self, tme, buffer, size);

	const uint8_t chs = midi_limit_chn(floor(*self->cfg[0]) -1);
	const uint8_t chn = buffer[0] & 0x0f;
	uint8_t mst = buffer[0] & 0xf0;

	if (size != 3
			|| !(mst == MIDI_NOTEON || mst == MIDI_NOTEOFF || mst == MIDI_POLYKEYPRESSURE)
			|| !(floor(*self->cfg[0]) == 0 || chs == chn)
		 )
	{
		return;
	}

	if ((self->memI[2] + 1) % self->memI[0] == self->memI[1]) {
		return;
	}

	const float grid = RAIL((*self->cfg[3]), 1/256.0, 4.0);
	const double samples_per_beat = 60.0 / bpm * self->samplerate;
	const uint8_t key = buffer[1] & 0x7f;
	const uint8_t vel = buffer[2] & 0x7f;

	uint8_t buf[3];
	memcpy(buf, buffer, 3);

	/* treat note-on w/velocity==0 as note-off */
	if (mst == MIDI_NOTEON && vel == 0) {
		mst = MIDI_NOTEOFF;
		buf[0] = MIDI_NOTEOFF | chn;
	}

	if (mst == MIDI_NOTEON) {
		self->memCI[chn][key] = tme + rint(grid * samples_per_beat);
		self->memCM[chn][key] = vel;
	}
	else if (mst == MIDI_NOTEOFF) {
		self->memCI[chn][key] = -1;
		self->memCM[chn][key] = 0;
	}

	for (i=0; i < RAIL(*self->cfg[4], 0, 128); ++i) {
		int delay = rint( grid * samples_per_beat * (i+1.0));
		buf[2] = RAIL(rint(vel + (i+1.0) * (*self->cfg[5])), 1, 127);
		MidiEventQueue *qm = &(self->memQ[self->memI[2]]);
		memcpy(qm->buf, buf, 3);
		qm->size = size;
		qm->reltime = tme + delay;
		self->memI[2] = (self->memI[2] + 1) % self->memI[0];

		if ((self->memI[2] + 1) % self->memI[0] == self->memI[1]) {
			return;
		}
	}
}