示例#1
0
文件: copy_data.c 项目: BIC-MNI/minc
/* ----------------------------- MNI Header -----------------------------------
@NAME       : handle_normalization
@INPUT      : reshape_info - information for reshaping volume
              block_start - start of current block
              block_count - count for current block
              minmax_buffer - buffer space for getting min and max
                 values
@OUTPUT     : fillvalue - pixel fill value to use for this block
@RETURNS    : (none)
@DESCRIPTION: Sets up icv for normalization to ensure that block is
              internally normalized. Output image-max and min are set.
              The appropriate pixel fill value is calculated for this
              min and max (applies to the whole block).
@METHOD     :
@GLOBALS    :
@CALLS      :
@CREATED    : October 25, 1994 (Peter Neelin)
@MODIFIED   :
---------------------------------------------------------------------------- */
static void handle_normalization(Reshape_info *reshape_info,
                                 long *block_start,
                                 long *block_count,
                                 double *minmax_buffer,
                                 double *fillvalue)
{
   int iloop;
   int inmincid, inimgid, varid, icvid;
   long minmax_start[MAX_VAR_DIMS];
   double minimum, maximum, *extreme, valid_min, valid_max, denom;
   char *varname;

   /* Get input minc id, image id and icv id*/
   inmincid = reshape_info->inmincid;
   inimgid = ncvarid(inmincid, MIimage);
   icvid = reshape_info->icvid;

   /* Get input min and max for block */
   get_block_min_and_max(reshape_info, block_start, block_count,
                         minmax_buffer, &minimum, &maximum);

   /* Modify the icv if necessary */
   if (reshape_info->do_block_normalization) {
      (void) miicv_detach(icvid);
      (void) miicv_setdbl(icvid, MI_ICV_IMAGE_MIN, minimum);
      (void) miicv_setdbl(icvid, MI_ICV_IMAGE_MAX, maximum);
      (void) miicv_setint(icvid, MI_ICV_USER_NORM, TRUE);
      (void) miicv_setint(icvid, MI_ICV_DO_NORM, TRUE);
      (void) miicv_attach(icvid, inmincid, inimgid);
   }

   /* Save the image max and min for the block */
   for (iloop=0; iloop < 2; iloop++) {

      /* Get varid and pointer to min or max value */
      switch (iloop) {
      case 0: 
         varname = MIimagemin;
         extreme = &minimum;
         break;
      case 1: 
         varname = MIimagemax;
         extreme = &maximum;
         break;
      }

      /* Save the value */
      ncopts = 0;
      varid = ncvarid(reshape_info->outmincid, varname);
      ncopts = NCOPTS_DEFAULT;
      if (varid != MI_ERROR) {
         (void) mitranslate_coords(reshape_info->outmincid, 
                                   reshape_info->outimgid, block_start,
                                   varid, minmax_start);
         (void) mivarput1(reshape_info->outmincid, varid, 
                          minmax_start, NC_DOUBLE, NULL, extreme);
      }
   }

   /* Calculate the pixel fill value */
   *fillvalue = ((reshape_info->fillvalue == NOFILL) ? 0.0 :
                 reshape_info->fillvalue);
   if ((reshape_info->output_datatype != NC_FLOAT) &&
       (reshape_info->output_datatype != NC_DOUBLE) &&
       (*fillvalue != FILL)) {
      (void) miicv_inqdbl(icvid, MI_ICV_VALID_MIN, &valid_min);
      (void) miicv_inqdbl(icvid, MI_ICV_VALID_MAX, &valid_max);
      denom = maximum - minimum;
      if (denom == 0.0) {
         *fillvalue = valid_min;
      }
      else {
         *fillvalue = (*fillvalue - minimum) * 
            (valid_max - valid_min) / denom + valid_min;
      }
   }


}
示例#2
0
MNCAPI int
minc_save_data(int fd, void *dataptr, int datatype,
               long st, long sz, long sy, long sx,
               long ct, long cz, long cy, long cx)
{
    nc_type nctype;
    char *signstr;
    int i;
    int var_id;
    int var_ndims;
    int var_dims[MAX_NC_DIMS];
    int icv;
    long start[MI_S_NDIMS];
    long count[MI_S_NDIMS];
    int old_ncopts;
    int r;
    double min, max;
    long slice_size;
    long index;
    int dtbytes;                /* Length of datatype in bytes */

    old_ncopts =get_ncopts();
    set_ncopts(0);

    var_id = ncvarid(fd, MIimage);

    ncvarinq(fd, var_id, NULL, NULL, &var_ndims, var_dims, NULL);

    set_ncopts(old_ncopts);
    
    if (var_ndims < 2 || var_ndims > 4) {
        return (MINC_STATUS_ERROR);
    }
    
    r = minc_simple_to_nc_type(datatype, &nctype, &signstr);
    if (r == MINC_STATUS_ERROR) {
        return (MINC_STATUS_ERROR);
    }

    dtbytes = nctypelen(nctype);

    /* Update the image-min and image-max values */
    if (ct > 0) {
        slice_size = cz * cy * cx;
        index = st;

        for (i = 0; i < ct; i++) {
            find_minmax((char *) dataptr + (dtbytes * slice_size * i), 
                        slice_size, datatype, &min, &max);
        
            mivarput1(fd, ncvarid(fd, MIimagemin), &index, 
                      NC_DOUBLE, MI_SIGNED, &min);
            mivarput1(fd, ncvarid(fd, MIimagemax), &index, 
                      NC_DOUBLE, MI_SIGNED, &max);
            index++;
        }
    }
    else {
        slice_size = cy * cx;
        index = sz;

        for (i = 0; i < cz; i++) {
            find_minmax((char *) dataptr + (dtbytes * slice_size * i), 
                        slice_size, datatype, &min, &max);
            mivarput1(fd, ncvarid(fd, MIimagemin), &index, 
                      NC_DOUBLE, MI_SIGNED, &min);
            mivarput1(fd, ncvarid(fd, MIimagemax), &index, 
                      NC_DOUBLE, MI_SIGNED, &max);
            index++;
        }
    }

    /* We want the data to wind up in t, x, y, z order. */

    icv = miicv_create();
    if (icv < 0) {
        return (MINC_STATUS_ERROR);
    }

    r = miicv_setint(icv, MI_ICV_TYPE, nctype);
    if (r < 0) {
        return (MINC_STATUS_ERROR);
    }

    r = miicv_setstr(icv, MI_ICV_SIGN, signstr);
    if (r < 0) {
        return (MINC_STATUS_ERROR);
    }

    r = miicv_setint(icv, MI_ICV_DO_NORM, 1);
    if (r < 0) {
        return (MINC_STATUS_ERROR);
    }

    r = miicv_setint(icv, MI_ICV_DO_FILLVALUE, 1);
    if (r < 0) {
        return (MINC_STATUS_ERROR);
    }

    r = miicv_attach(icv, fd, var_id);
    if (r < 0) {
        return (MINC_STATUS_ERROR);
    }

    i = 0;
    switch (var_ndims) {
    case 4:
        count[i] = ct;
        start[i] = st;
        i++;
        /* fall through */
    case 3:
        count[i] = cz;
        start[i] = sz;
        i++;
        /* fall through */
    case 2:
        count[i] = cy;
        start[i] = sy;
        i++;
        
        count[i] = cx;
        start[i] = sx;
        i++;
        break;
    }

    r = miicv_put(icv, start, count, dataptr);
    if (r < 0) {
        return (MINC_STATUS_ERROR);
    }

    miicv_detach(icv);
    miicv_free(icv);
    return (MINC_STATUS_OK);
}
示例#3
0
int
main(int argc, char **argv)
{
    /* NIFTI stuff */
    nifti_image *nii_ptr;
    nifti_image nii_rec;
    int nii_dimids[MAX_NII_DIMS];
    int nii_dir[MAX_NII_DIMS];
    int nii_map[MAX_NII_DIMS];
    unsigned long nii_lens[MAX_NII_DIMS];
    int nii_ndims;
    static int nifti_filetype;
    static int nifti_datatype;
    static int nifti_signed = 1;

    /* MINC stuff */
    int mnc_fd;                 /* MINC file descriptor */
    nc_type mnc_type;           /* MINC data type as read */
    int mnc_ndims;              /* MINC image dimension count */
    int mnc_dimids[MAX_VAR_DIMS]; /* MINC image dimension identifiers */
    long mnc_dlen;              /* MINC dimension length value */
    double mnc_dstep;           /* MINC dimension step value */
    int mnc_icv;                /* MINC image conversion variable */
    int mnc_vid;                /* MINC Image variable ID */
    long mnc_start[MAX_VAR_DIMS]; /* MINC data starts */
    long mnc_count[MAX_VAR_DIMS]; /* MINC data counts */
    int mnc_signed;             /* MINC if output voxels are signed */
    double real_range[2];       /* MINC real range (min, max) */
    double input_valid_range[2]; /* MINC valid range (min, max) */
    double output_valid_range[2]; /* Valid range of output data. */
    double nifti_slope;         /* Slope to be applied to output voxels. */
    double nifti_inter;         /* Intercept to be applied to output voxels. */
    double total_valid_range;   /* Overall valid range (max - min). */
    double total_real_range;    /* Overall real range (max - min). */

    /* Other stuff */
    char out_str[1024];         /* Big string for filename */
    char att_str[1024];         /* Big string for attribute values */
    int i;                      /* Generic loop counter the first */
    int j;                      /* Generic loop counter the second */
    char *str_ptr;              /* Generic ASCIZ string pointer */
    int r;                      /* Result code. */
    static int vflag = 0;       /* Verbose flag (default is quiet) */

    static ArgvInfo argTable[] = {
        {NULL, ARGV_HELP, NULL, NULL,
         "Output voxel data type specification"},
        {"-byte", ARGV_CONSTANT, (char *)DT_INT8, (char *)&nifti_datatype,
         "Write voxel data in 8-bit signed integer format."},
        {"-short", ARGV_CONSTANT, (char *)DT_INT16, (char *)&nifti_datatype,
         "Write voxel data in 16-bit signed integer format."},
        {"-int", ARGV_CONSTANT, (char *)DT_INT32, (char *)&nifti_datatype,
         "Write voxel data in 32-bit signed integer format."},
        {"-float", ARGV_CONSTANT, (char *)DT_FLOAT32, (char *)&nifti_datatype,
         "Write voxel data in 32-bit floating point format."},
        {"-double", ARGV_CONSTANT, (char *)DT_FLOAT64, (char *)&nifti_datatype,
         "Write voxel data in 64-bit floating point format."},
        {"-signed", ARGV_CONSTANT, (char *)1, (char *)&nifti_signed,
         "Write integer voxel data in signed format."},
        {"-unsigned", ARGV_CONSTANT, (char *)0, (char *)&nifti_signed,
         "Write integer voxel data in unsigned format."},
        {NULL, ARGV_HELP, NULL, NULL,
         "Output file format specification"},
        {"-dual", ARGV_CONSTANT, (char *)FT_NIFTI_DUAL, 
         (char *)&nifti_filetype,
         "Write NIfTI-1 two-file format (.img and .hdr)"},
        {"-ASCII", ARGV_CONSTANT, (char *)FT_NIFTI_ASCII, 
         (char *)&nifti_filetype,
         "Write NIfTI-1 ASCII header format (.nia)"},
        {"-nii", ARGV_CONSTANT, (char *)FT_NIFTI_SINGLE, 
         (char *)&nifti_filetype,
         "Write NIfTI-1 one-file format (.nii)"},
        {"-analyze", ARGV_CONSTANT, (char *)FT_ANALYZE, 
         (char *)&nifti_filetype,
         "Write an Analyze two-file format file (.img and .hdr)"},
        {NULL, ARGV_HELP, NULL, NULL,
         "Other options"},
        {"-quiet", ARGV_CONSTANT, (char *)0, 
         (char *)&vflag,
         "Quiet operation"},
        {"-verbose", ARGV_CONSTANT, (char *)1, 
         (char *)&vflag,
         "Quiet operation"},
        {NULL, ARGV_END, NULL, NULL, NULL}
    };

    ncopts = 0;                 /* Clear global netCDF error reporting flag */

    /* Default NIfTI file type is "NII", single binary file
     */
    nifti_filetype = FT_UNSPECIFIED;
    nifti_datatype = DT_UNKNOWN;

    if (ParseArgv(&argc, argv, argTable, 0) || (argc < 2)) {
        fprintf(stderr, "Too few arguments\n");
        return usage();
    }

    if (!nifti_signed) {
        switch (nifti_datatype) {
        case DT_INT8:
            nifti_datatype = DT_UINT8;
            break;
        case DT_INT16:
            nifti_datatype = DT_UINT16;
            break;
        case DT_INT32:
            nifti_datatype = DT_UINT32;
            break;
        }
    }
    switch (nifti_datatype){
    case DT_INT8:
    case DT_UINT8:
        mnc_type = NC_BYTE;
        break;
    case DT_INT16:
    case DT_UINT16:
        mnc_type = NC_SHORT;
        break;
    case DT_INT32:
    case DT_UINT32:
        mnc_type = NC_INT;
        break;
    case DT_FLOAT32:
        mnc_type = NC_FLOAT;
        break;
    case DT_FLOAT64:
        mnc_type = NC_DOUBLE;
        break;
    }

    if (argc == 2) {
        strcpy(out_str, argv[1]);
        str_ptr = strrchr(out_str, '.');
        if (str_ptr != NULL && !strcmp(str_ptr, ".mnc")) {
            *str_ptr = '\0';
        }
    }
    else if (argc == 3) {
        strcpy(out_str, argv[2]);
        str_ptr = strrchr(out_str, '.');
        if (str_ptr != NULL) {
            /* See if a recognized file extension was specified.  If so,
             * we trim it off and set the output file type if none was
             * specified.  If the extension is not recognized, assume
             * that we will form the filename by just adding the right
             * extension for the selected output format.
             */
            if (!strcmp(str_ptr, ".nii")) {
                if (nifti_filetype == FT_UNSPECIFIED) {
                    nifti_filetype = FT_NIFTI_SINGLE;
                }
                *str_ptr = '\0';
            }
            else if (!strcmp(str_ptr, ".img") || 
                     !strcmp(str_ptr, ".hdr")) {
                if (nifti_filetype == FT_UNSPECIFIED) {
                    nifti_filetype = FT_NIFTI_DUAL;
                }
                *str_ptr = '\0';
            }
            else if (!strcmp(str_ptr, ".nia")) {
                if (nifti_filetype == FT_UNSPECIFIED) {
                    nifti_filetype = FT_NIFTI_ASCII;
                }
                *str_ptr = '\0';
            }
        }
    }
    else {
        fprintf(stderr, "Filename argument required\n");
        return usage();
    }

    /* Open the MINC file.  It needs to exist.
     */
    mnc_fd = miopen(argv[1], NC_NOWRITE);
    if (mnc_fd < 0) {
        fprintf(stderr, "Can't find input file '%s'\n", argv[1]);
        return (-1);
    }

    /* Find the MINC image variable.  If we can't find it, there is no
     * further processing possible...
     */
    mnc_vid = ncvarid(mnc_fd, MIimage);
    if (mnc_vid < 0) {
        fprintf(stderr, "Can't locate the image variable (mnc_vid=%d)\n", mnc_vid);
        return (-1);
    }

    /* Find out about the MINC image variable - specifically, how many
     * dimensions, and which dimensions.
     */
    r = ncvarinq(mnc_fd, mnc_vid, NULL, NULL, &mnc_ndims, mnc_dimids, NULL);
    if (r < 0) {
        fprintf(stderr, "Can't read information from image variable\n");
        return (-1);
    }
    if (mnc_ndims > MAX_NII_DIMS) {
        fprintf(stderr, "NIfTI-1 files may contain at most %d dimensions\n", 
                MAX_NII_DIMS);
        return (-1);
    }

    /* Initialize the NIfTI structure 
     */
    nii_ptr = &nii_rec;

    init_nifti_header(nii_ptr);

    /* For now we just use the mnc2nii command line as the description
     * field.  Probably we should use something better, perhaps a
     * combination of some other standard MINC fields that might
     * provide more information.
     */
    str_ptr = nii_ptr->descrip;
    for (i = 0; i < argc; i++) {
        char *arg_ptr = argv[i];

        if ((str_ptr - nii_ptr->descrip) >= MAX_NII_DESCRIP) {
            break;
        }

        if (i != 0) {
            *str_ptr++ = ' ';
        }

        while (*arg_ptr != '\0' && 
               (str_ptr - nii_ptr->descrip) < MAX_NII_DESCRIP) {
            *str_ptr++ = *arg_ptr++;
        }
        *str_ptr = '\0';
    }

    nii_ptr->fname = malloc(strlen(out_str) + 4 + 1);
    nii_ptr->iname = malloc(strlen(out_str) + 4 + 1);
    strcpy(nii_ptr->fname, out_str);
    strcpy(nii_ptr->iname, out_str);

    switch (nifti_filetype) {
    case FT_ANALYZE:
        strcat(nii_ptr->fname, ".hdr");
        strcat(nii_ptr->iname, ".img");
        break;
    case FT_NIFTI_SINGLE:
        strcat(nii_ptr->fname, ".nii");
        strcat(nii_ptr->iname, ".nii");
        break;
    case FT_NIFTI_DUAL:
        strcat(nii_ptr->fname, ".hdr");
        strcat(nii_ptr->iname, ".img");
        break;
    case FT_NIFTI_ASCII:
        strcat(nii_ptr->fname, ".nia");
        strcat(nii_ptr->iname, ".nia");
        break;
    default:
        fprintf(stderr, "Unknown output file type %d\n", nifti_filetype);
        return (-1);
    }

    /* Get real voxel range for the input file.
     */
    miget_image_range(mnc_fd, real_range);

    /* Get the actual valid voxel value range.
     */
    miget_valid_range(mnc_fd, mnc_vid, input_valid_range);

    /* Find the default range for the output type. Our output file
     * will use the full legal range of the output type if it is
     * an integer.
     */

    if (nifti_datatype == DT_UNKNOWN) {
        nii_ptr->datatype = DT_FLOAT32; /* Default */
        mnc_type = NC_FLOAT;
        mnc_signed = 1;
    }
    else {
        nii_ptr->datatype = nifti_datatype;
        mnc_signed = nifti_signed;
    }

    if (vflag) {
        fprintf(stderr, "MINC type %d signed %d\n", mnc_type, mnc_signed);
    }

    miget_default_range(mnc_type, mnc_signed, output_valid_range);

    total_valid_range = input_valid_range[1] - input_valid_range[0];
    total_real_range = real_range[1] - real_range[0];

    if ((output_valid_range[1] - output_valid_range[0]) > total_valid_range) {
        /* Empirically, forcing the valid range to be the nearest power
         * of two greater than the existing valid range seems to improve
         * the behavior of the conversion. This is at least in part because
         * of the limited precision of the NIfTI-1 voxel scaling fields.
         */
        double new_range = nearest_power_of_two(total_valid_range);
        if (new_range - 1.0 >= total_valid_range) {
            new_range -= 1.0;
        }

        if (output_valid_range[1] > total_valid_range) {
            output_valid_range[0] = 0;
            output_valid_range[1] = new_range;
        }
        else {
            output_valid_range[1] = output_valid_range[0] + new_range;
        }
    }
    else {
        /* The new range can't fully represent the input range. Use the 
         * full available range, and warn the user that they may have a
         * problem.
         */
        printf("WARNING: Range of input exceeds range of output format.\n");
    }

    if (vflag) {
        printf("Real range: %f %f Input valid range: %f %f Output valid range: %f %f\n",
               real_range[0], real_range[1],
               input_valid_range[0], input_valid_range[1],
               output_valid_range[0], output_valid_range[1]);
    }

    /* If the output type is not floating point, we may need to scale the
     * voxel values.
     */

    if (mnc_type != NC_FLOAT && mnc_type != NC_DOUBLE) {

        /* Figure out how to map pixel values into the range of the 
         * output datatype.
         */
        nifti_slope = ((real_range[1] - real_range[0]) / 
                       (output_valid_range[1] - output_valid_range[0]));

        if (nifti_slope == 0.0) {
            nifti_slope = 1.0;
        }
        nifti_inter = real_range[0] - (output_valid_range[0] * nifti_slope);

        /* One problem with NIfTI-1 is the limited precision of the 
         * scl_slope and scl_inter fields (they are just 32-bits). So
         * we look for possible issues and warn about that here.
         */
        if (nifti_inter != (float) nifti_inter || 
            nifti_slope != (float) nifti_slope) {
            double epsilon_i = nifti_inter - (float) nifti_inter;
            double epsilon_s = nifti_slope - (float) nifti_slope;

            /* If the loss in precision is more than one part per thousand
             * of the real range, flag this as a problem!
             */
            if ((epsilon_i > total_real_range / 1.0e3) ||
                (epsilon_s > total_real_range / 1.0e3)) {
                fprintf(stderr, "ERROR: Slope and intercept cannot be represented in the NIfTI-1 header.\n");
                fprintf(stderr, "      slope %f (%f), intercept %f (%f)\n", 
                        nifti_slope, (float) nifti_slope,
                        nifti_inter, (float) nifti_inter);
                return (-1);
            }
        }
    }
    else {
        nifti_slope = 0.0;
    }

    nii_ptr->scl_slope = nifti_slope;
    nii_ptr->scl_inter = nifti_inter;

    nii_ptr->nvox = 1;          /* Initial value for voxel count */

    /* Find all of the dimensions of the MINC file, in the order they 
     * will be listed in the NIfTI-1/Analyze file.  We use this to build
     * a map for restructuring the data according to the normal rules
     * of NIfTI-1.
     */
    nii_ndims = 0;
    for (i = 0; i < MAX_NII_DIMS; i++) {
        if (dimnames[i] == NULL) {
            nii_dimids[nii_ndims] = -1;
            continue;
        }

        nii_dimids[nii_ndims] = ncdimid(mnc_fd, dimnames[i]);
        if (nii_dimids[nii_ndims] == -1) {
            continue;
        }

        /* Make sure the dimension is actually used to define the image.
         */
        for (j = 0; j < mnc_ndims; j++) {
            if (nii_dimids[nii_ndims] == mnc_dimids[j]) {
                nii_map[nii_ndims] = j;
                break;
            }
        }

        if (j < mnc_ndims) {
            mnc_dlen = 1;
            mnc_dstep = 0;

            ncdiminq(mnc_fd, nii_dimids[nii_ndims], NULL, &mnc_dlen);
            ncattget(mnc_fd, ncvarid(mnc_fd, dimnames[i]), MIstep, &mnc_dstep);

            if (mnc_dstep < 0) {
                nii_dir[nii_ndims] = -1;
                mnc_dstep = -mnc_dstep;
            }
            else {
                nii_dir[nii_ndims] = 1;
            }

            nii_lens[nii_ndims] = mnc_dlen;
            nii_ndims++;
        }

        nii_ptr->dim[dimmap[i]] = (int) mnc_dlen;
        nii_ptr->nvox *= mnc_dlen;

        nii_ptr->pixdim[dimmap[i]] = (float) mnc_dstep;
    }

    /* Here we do some "post-processing" of the results. Make certain that
     * the nt value is never zero, and make certain that ndim is set to
     * 4 if there is a time dimension and 5 if there is a vector dimension
     */

    if (nii_ptr->dim[3] > 1 && nii_ndims < 4) {
        nii_ndims = 4;
    }

    if (nii_ptr->dim[4] > 1) {
        nii_ptr->intent_code = NIFTI_INTENT_VECTOR;
        nii_ndims = 5;
    }

    nii_ptr->ndim = nii_ndims; /* Total number of dimensions in file */
    nii_ptr->nx = nii_ptr->dim[0];
    nii_ptr->ny = nii_ptr->dim[1];
    nii_ptr->nz = nii_ptr->dim[2];
    nii_ptr->nt = nii_ptr->dim[3];
    nii_ptr->nu = nii_ptr->dim[4];

    nii_ptr->dx = nii_ptr->pixdim[0];
    nii_ptr->dy = nii_ptr->pixdim[1];
    nii_ptr->dz = nii_ptr->pixdim[2];
    nii_ptr->dt = nii_ptr->pixdim[3];
    nii_ptr->du = 1; /* MINC files don't define a sample size for a vector_dimension */

    nii_ptr->nifti_type = nifti_filetype;

    /* Load the direction_cosines and start values into the NIfTI-1 
     * sform structure.
     *
     */
    for (i = 0; i < MAX_SPACE_DIMS; i++) {
        int id = ncvarid(mnc_fd, mnc_spatial_names[i]);
        double start;
        double step;
        double dircos[MAX_SPACE_DIMS];
        int tmp;

        if (id < 0) {
            continue;
        }

        /* Set default values */
        start = 0.0;
        step = 1.0;
        dircos[DIM_X] = dircos[DIM_Y] = dircos[DIM_Z] = 0.0;
        dircos[i] = 1.0;

        miattget(mnc_fd, id, MIstart, NC_DOUBLE, 1, &start, &tmp);
        miattget(mnc_fd, id, MIstep, NC_DOUBLE, 1, &step, &tmp);
        miattget(mnc_fd, id, MIdirection_cosines, NC_DOUBLE, MAX_SPACE_DIMS, 
                 dircos, &tmp);
        ncdiminq(mnc_fd, ncdimid(mnc_fd, mnc_spatial_names[i]), NULL, 
                 &mnc_dlen);

        if (step < 0) {
            step = -step;
            start = start - step * (mnc_dlen - 1);
        }

        nii_ptr->sto_xyz.m[0][i] = step * dircos[0];
        nii_ptr->sto_xyz.m[1][i] = step * dircos[1];
        nii_ptr->sto_xyz.m[2][i] = step * dircos[2];

        nii_ptr->sto_xyz.m[0][3] += start * dircos[0];
        nii_ptr->sto_xyz.m[1][3] += start * dircos[1];
        nii_ptr->sto_xyz.m[2][3] += start * dircos[2];

        miattgetstr(mnc_fd, id, MIspacetype, sizeof(att_str), att_str);

        /* Try to set the S-transform code correctly.
         */
        if (!strcmp(att_str, MI_TALAIRACH)) {
            nii_ptr->sform_code = NIFTI_XFORM_TALAIRACH;
        }
        else if (!strcmp(att_str, MI_CALLOSAL)) {
            /* TODO: Not clear what do do here... */
            nii_ptr->sform_code = NIFTI_XFORM_SCANNER_ANAT;
        }
        else {                  /* MI_NATIVE or unknown */
            nii_ptr->sform_code = NIFTI_XFORM_SCANNER_ANAT;
        }
    }

    /* So the last row is right... */
    nii_ptr->sto_xyz.m[3][0] = 0.0;
    nii_ptr->sto_xyz.m[3][1] = 0.0;
    nii_ptr->sto_xyz.m[3][2] = 0.0;
    nii_ptr->sto_xyz.m[3][3] = 1.0;

    nii_ptr->sto_ijk = nifti_mat44_inverse(nii_ptr->sto_xyz);

    nifti_datatype_sizes(nii_ptr->datatype, 
                         &nii_ptr->nbyper, &nii_ptr->swapsize);


    if (vflag) {
        nifti_image_infodump(nii_ptr);
    }

    /* Now load the actual MINC data. */

    nii_ptr->data = malloc(nii_ptr->nbyper * nii_ptr->nvox);
    if (nii_ptr->data == NULL) {
        fprintf(stderr, "Out of memory.\n");
        return (-1);
    }

    mnc_icv = miicv_create();
    miicv_setint(mnc_icv, MI_ICV_TYPE, mnc_type);
    miicv_setstr(mnc_icv, MI_ICV_SIGN, (mnc_signed) ? MI_SIGNED : MI_UNSIGNED);
    miicv_setdbl(mnc_icv, MI_ICV_VALID_MAX, output_valid_range[1]);
    miicv_setdbl(mnc_icv, MI_ICV_VALID_MIN, output_valid_range[0]);
    miicv_setdbl(mnc_icv, MI_ICV_IMAGE_MAX, real_range[1]);
    miicv_setdbl(mnc_icv, MI_ICV_IMAGE_MIN, real_range[0]);
    miicv_setdbl(mnc_icv, MI_ICV_DO_NORM, TRUE);
    miicv_setdbl(mnc_icv, MI_ICV_USER_NORM, TRUE);

    miicv_attach(mnc_icv, mnc_fd, mnc_vid);

    /* Read in the entire hyperslab from the file.
     */
    for (i = 0; i < mnc_ndims; i++) {
        ncdiminq(mnc_fd, mnc_dimids[i], NULL, &mnc_count[i]);
        mnc_start[i] = 0;
    }

    r = miicv_get(mnc_icv, mnc_start, mnc_count, nii_ptr->data);
    if (r < 0) {
        fprintf(stderr, "Read error\n");
        return (-1);
    }

    /* Shut down the MINC stuff now that it has done its work. 
     */
    miicv_detach(mnc_icv);
    miicv_free(mnc_icv);
    miclose(mnc_fd);

    if (vflag) {
        /* Debugging stuff - just to check the contents of these arrays.
         */
        for (i = 0; i < nii_ndims; i++) {
            printf("%d: %ld %d %d\n", 
                   i, nii_lens[i], nii_map[i], nii_dir[i]);
        }
        printf("bytes per voxel %d\n", nii_ptr->nbyper);
        printf("# of voxels %ld\n", nii_ptr->nvox);
    }

    /* Rearrange the data to correspond to the NIfTI dimension ordering.
     */
    restructure_array(nii_ndims,
                      nii_ptr->data,
                      nii_lens,
                      nii_ptr->nbyper,
                      nii_map,
                      nii_dir);

    if (vflag) {
        /* More debugging stuff - check coordinate transform.
         */
        test_xform(nii_ptr->sto_xyz, 0, 0, 0);
        test_xform(nii_ptr->sto_xyz, 10, 0, 0);
        test_xform(nii_ptr->sto_xyz, 0, 10, 0);
        test_xform(nii_ptr->sto_xyz, 0, 0, 10);
        test_xform(nii_ptr->sto_xyz, 10, 10, 10);
    }

    if (vflag) {
        fprintf(stdout, "Writing NIfTI-1 file...");
    }
    nifti_image_write(nii_ptr);
    if (vflag) {
        fprintf(stdout, "done.\n");
    }

    return (0);
}
示例#4
0
MNCAPI int
minc_load_data(char *path, void *dataptr, int datatype,
               long *ct, long *cz, long *cy, long *cx,
               double *dt, double *dz, double *dy, double *dx,
               void **infoptr)
{
    int fd;                     /* MINC file descriptor */
    nc_type nctype;             /* netCDF type */
    char *signstr;              /* MI_SIGNED or MI_UNSIGNED */
    int length;
    int dim_id[MI_S_NDIMS];
    long dim_len[MI_S_NDIMS];
    int i, j;                   /* Generic loop counters */
    int var_id;
    int var_ndims;
    int var_dims[MAX_NC_DIMS];
    int icv;                    /* MINC image conversion variable */
    long start[MI_S_NDIMS];
    long count[MI_S_NDIMS];
    size_t ucount[MI_S_NDIMS];
    int dir[MI_S_NDIMS];        /* Dimension "directions" */
    int map[MI_S_NDIMS];        /* Dimension mapping */
    int old_ncopts;             /* For storing the old state of ncopts */
    double *p_dtmp;
    long *p_ltmp;
    struct file_info *p_file;
    struct att_info *p_att;
    int r;                      /* Generic return code */
    
    *infoptr = NULL;

    fd = miopen(path, NC_NOWRITE);
    if (fd < 0) {
        return (MINC_STATUS_ERROR);
    }

    old_ncopts =get_ncopts();
    set_ncopts(0);

    for (i = 0; i < MI_S_NDIMS; i++) {
        dim_id[i] = ncdimid(fd, minc_dimnames[i]);
        if (dim_id[i] >= 0) {
            ncdiminq(fd, dim_id[i], NULL, &dim_len[i]);
            var_id = ncvarid(fd, minc_dimnames[i]);
            ncattinq(fd, var_id, MIstep, &nctype, &length);

            switch (i) {
            case MI_S_T:
                p_ltmp = ct;
                p_dtmp = dt;
                break;
            case MI_S_X:
                p_ltmp = cx;
                p_dtmp = dx;
                break;
            case MI_S_Y:
                p_ltmp = cy;
                p_dtmp = dy;
                break;
            case MI_S_Z:
                p_ltmp = cz;
                p_dtmp = dz;
                break;
            default:
                return (MINC_STATUS_ERROR);
            }
                
            if (nctype == NC_DOUBLE && length == 1) {
                ncattget(fd, var_id, MIstep, p_dtmp);
            }
            else {
                *p_dtmp = 0;    /* Unknown/not set */
            }
            *p_ltmp = dim_len[i];
        }
        else {
            dim_len[i] = 0;
        }
    }

    set_ncopts(old_ncopts);

    var_id = ncvarid(fd, MIimage);

    ncvarinq(fd, var_id, NULL, &nctype, &var_ndims, var_dims, NULL);

    if (var_ndims != 3 && var_ndims != 4) {
        return (MINC_STATUS_ERROR);
    }

    /* We want the data to wind up in t, x, y, z order. */

    for (i = 0; i < MI_S_NDIMS; i++) {
        map[i] = -1;
    }

    for (i = 0; i < var_ndims; i++) {
        if (var_dims[i] == dim_id[MI_S_T]) {
            map[MI_S_T] = i;
        }
        else if (var_dims[i] == dim_id[MI_S_X]) {
            map[MI_S_X] = i;
        }
        else if (var_dims[i] == dim_id[MI_S_Y]) {
            map[MI_S_Y] = i;
        }
        else if (var_dims[i] == dim_id[MI_S_Z]) {
            map[MI_S_Z] = i;
        }
    }

    icv = miicv_create();

    minc_simple_to_nc_type(datatype, &nctype, &signstr);
    miicv_setint(icv, MI_ICV_TYPE, nctype);
    miicv_setstr(icv, MI_ICV_SIGN, signstr);
    miicv_attach(icv, fd, var_id);

    for (i = 0; i < var_ndims; i++) {
        start[i] = 0;
    }

    for (i = 0; i < MI_S_NDIMS; i++) {
        if (map[i] >= 0) {
            count[map[i]] = dim_len[i];
        }
    }

    r = miicv_get(icv, start, count, dataptr);
    if (r < 0) {
        return (MINC_STATUS_ERROR);
    }

    if (map[MI_S_T] >= 0) {
        if (*dt < 0) {
            dir[MI_S_T] = -1;
            *dt = -*dt;
        }
        else {
            dir[MI_S_T] = 1;
        }
    }

    if (map[MI_S_X] >= 0) {
        if (*dx < 0) {
            dir[MI_S_X] = -1;
            *dx = -*dx;
        }
        else {
            dir[MI_S_X] = 1;
        }
    }

    if (map[MI_S_Y] >= 0) {
        if (*dy < 0) {
            dir[MI_S_Y] = -1;
            *dy = -*dy;
        }
        else {
            dir[MI_S_Y] = 1;
        }
    }

    if (map[MI_S_Z] >= 0) {
        if (*dz < 0) {
            dir[MI_S_Z] = -1;
            *dz = -*dz;
        }
        else {
            dir[MI_S_Z] = 1;
        }
    }

    if (var_ndims == 3) {
        for (i = 1; i < MI_S_NDIMS; i++) {
            map[i-1] = map[i];
            dir[i-1] = dir[i];
        }
    }

    j = 0;
    for (i = 0; i < MI_S_NDIMS; i++) {
        if (dim_len[i] > 0) {
            ucount[j++] = dim_len[i];
        }
    }

    restructure_array(var_ndims, dataptr, ucount, nctypelen(nctype),
                      map, dir);

    miicv_detach(icv);
    miicv_free(icv);

    old_ncopts =get_ncopts();
    set_ncopts(0);

    /* Generate the complete infoptr array.
     * This is essentially an in-memory copy of the variables and attributes
     * in the file.
     */

    p_file = (struct file_info *) malloc(sizeof (struct file_info));

    ncinquire(fd, &p_file->file_ndims, &p_file->file_nvars,
              &p_file->file_natts, NULL);

    p_file->file_atts = (struct att_info *) malloc(sizeof (struct att_info) * 
                                                   p_file->file_natts);

    p_file->file_vars = (struct var_info *) malloc(sizeof (struct var_info) *
                                                   p_file->file_nvars);

    for (i = 0; i < p_file->file_natts; i++) {
        p_att = &p_file->file_atts[i];

        ncattname(fd, NC_GLOBAL, i, p_att->att_name);
        ncattinq(fd, NC_GLOBAL, 
                 p_att->att_name, 
                 &p_att->att_type, 
                 &p_att->att_len);

        p_att->att_val = malloc(p_att->att_len * nctypelen(p_att->att_type));

        ncattget(fd, NC_GLOBAL, p_att->att_name, p_att->att_val);
    }

    for (i = 0; i < p_file->file_nvars; i++) {
        struct var_info *p_var = &p_file->file_vars[i];

        ncvarinq(fd, i, 
                 p_var->var_name, 
                 &p_var->var_type, 
                 &p_var->var_ndims, 
                 p_var->var_dims,
                 &p_var->var_natts);

        p_var->var_atts = malloc(p_var->var_natts *
                                 sizeof (struct att_info));

        if (ncdimid(fd, p_var->var_name) >= 0) {
            /* It's a dimension variable, have to treat it specially... */
        }

        for (j = 0; j < p_var->var_natts; j++) {
            p_att = &p_var->var_atts[j];

            ncattname(fd, i, j, p_att->att_name);
            ncattinq(fd, i, 
                     p_att->att_name, 
                     &p_att->att_type, 
                     &p_att->att_len);

            p_att->att_val = malloc(p_att->att_len * nctypelen(p_att->att_type));
            ncattget(fd, i, p_att->att_name, p_att->att_val);
        }
    }

    *infoptr = p_file;

    set_ncopts(old_ncopts);

    miclose(fd);

    return (MINC_STATUS_OK);
}
示例#5
0
文件: mincapi.c 项目: BIC-MNI/minc
int
test7(struct testinfo *ip, struct dimdef *dims, int ndims)
{
    size_t total;
    long coords[3];
    long lengths[3];

    void *buf_ptr;
    int *int_ptr;
    int i, j, k;
    int stat;
    int icv;

    total = 1;
    for (i = 0; i < ndims; i++) {
        total *= dims[i].length;
    }

    buf_ptr = malloc(total * sizeof (float));

    if (buf_ptr == NULL) {
        fprintf(stderr, "Oops, malloc failed\n");
        return (-1);
    }

    icv = miicv_create();
    if (icv < 0) {
        FUNC_ERROR("miicv_create");
    }

    /* Test range conversion. */
    stat = miicv_setint(icv, MI_ICV_DO_DIM_CONV, 0);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }
    stat = miicv_setint(icv, MI_ICV_DO_RANGE, 1);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }
    stat = miicv_setstr(icv, MI_ICV_SIGN, MI_UNSIGNED);
    if (stat < 0) {
        FUNC_ERROR("miicv_setstr");
    }
    stat = miicv_setint(icv, MI_ICV_TYPE, NC_INT);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }
    stat = miicv_setint(icv, MI_ICV_VALID_MAX, 1000);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }
    stat = miicv_setint(icv, MI_ICV_VALID_MIN, -1000);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_attach(icv, ip->fd, ip->imgid);
    if (stat < 0) {
        FUNC_ERROR("miicv_attach");
    }

    coords[TST_X] = 0;
    coords[TST_Y] = 0;
    coords[TST_Z] = 0;
    lengths[TST_X] = dims[TST_X].length;
    lengths[TST_Y] = dims[TST_Y].length;
    lengths[TST_Z] = dims[TST_Z].length;

    stat = miicv_get(icv, coords, lengths, buf_ptr);
    if (stat < 0) {
        FUNC_ERROR("miicv_get");
    }

    int_ptr = (int *) buf_ptr;
    for (i = 0; i < dims[TST_X].length; i++) {
        for (j = 0; j < dims[TST_Y].length; j++) {
            for (k = 0; k < dims[TST_Z].length; k++, int_ptr++) {
                int tmp = (i * 10000) + (j * 100) + (k);
                int rng = (XSIZE * 10000) / 1000;
                /* Round tmp properly. */
                tmp = (tmp + (rng / 2)) / rng;
                if (*int_ptr != tmp) {
                    fprintf(stderr, "5. Data error at (%d,%d,%d) %d != %d\n",
                            i,j,k, *int_ptr, tmp);
                    errors++;
                }
            }
        }
    }

    stat = miicv_detach(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_detach");
    }

    /* Free the ICV */
    stat = miicv_free(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_free");
    }

    free(buf_ptr);
    return (0);
}
示例#6
0
文件: mincapi.c 项目: BIC-MNI/minc
int
test6(struct testinfo *ip, struct dimdef *dims, int ndims)
{
    size_t total;
    long coords[3];
    long lengths[3];

    void *buf_ptr;
    int *int_ptr;
    int i, j, k;
    int stat;
    int icv;

    total = 1;
    total *= dims[TST_X].length;
    total *= dims[TST_Y].length - YBOOST;
    total *= dims[TST_Z].length - ZBOOST;

    buf_ptr = malloc(total * sizeof (int));

    if (buf_ptr == NULL) {
        fprintf(stderr, "Oops, malloc failed\n");
        return (-1);
    }

    icv = miicv_create();
    if (icv < 0) {
        FUNC_ERROR("miicv_create");
    }
    /* Now try reading the image with reduced size.
     */

    stat = miicv_setint(icv, MI_ICV_BDIM_SIZE, dims[TST_Y].length - YBOOST);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_ADIM_SIZE, dims[TST_Z].length - ZBOOST);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_DO_DIM_CONV, 1);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_attach(icv, ip->fd, ip->imgid);
    if (stat < 0) {
        FUNC_ERROR("miicv_attach");
    }

    coords[TST_X] = 0;
    coords[TST_Y] = 0;
    coords[TST_Z] = 0;
    lengths[TST_X] = dims[TST_X].length;
    lengths[TST_Y] = dims[TST_Y].length - YBOOST;
    lengths[TST_Z] = dims[TST_Z].length - ZBOOST;

    stat = miicv_get(icv, coords, lengths, buf_ptr);
    if (stat < 0) {
        FUNC_ERROR("miicv_get");
    }

    int_ptr = (int *) buf_ptr;
    for (i = 0; i < dims[TST_X].length; i++) {
        for (j = 0; j < dims[TST_Y].length - YBOOST; j++) {
            for (k = 0; k < dims[TST_Z].length - ZBOOST; k++, int_ptr++) {
                int tmp;

                tmp = (i * 10000) + (j * 100) + (k);

                if (*int_ptr != (int) tmp) {
                    fprintf(stderr, "4. Data error at (%d,%d,%d) %d != %d\n",
                            i,j,k, *int_ptr, tmp);
                    errors++;
                }
            }
        }
    }

    stat = miicv_detach(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_detach");
    }

    stat = miicv_free(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_free");
    }

    free(buf_ptr);

    return (0);
}
示例#7
0
文件: mincapi.c 项目: BIC-MNI/minc
int
test5(struct testinfo *ip, struct dimdef *dims, int ndims)
{
    /* Get the same variable again, but this time use an ICV to scale it.
     */
    size_t total;
    long coords[3];
    long lengths[3];

    void *buf_ptr;
    int *int_ptr;
    int i, j, k;
    int stat;
    int icv;

    total = 1;
    total *= dims[TST_X].length;
    total *= dims[TST_Y].length + YBOOST;
    total *= dims[TST_Z].length + ZBOOST;

    buf_ptr = malloc(total * sizeof (int));

    if (buf_ptr == NULL) {
        fprintf(stderr, "Oops, malloc failed\n");
        return (-1);
    }

    icv = miicv_create();
    if (icv < 0) {
        FUNC_ERROR("miicv_create");
    }

    /* Now set up a dimension conversion. */
    stat = miicv_setint(icv, MI_ICV_DO_NORM, 0);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_DO_RANGE, 0);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_TYPE, NC_INT);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_YDIM_DIR, MI_ICV_NEGATIVE);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_ZDIM_DIR, MI_ICV_NEGATIVE);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_BDIM_SIZE, dims[TST_Y].length + YBOOST);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_ADIM_SIZE, dims[TST_Z].length + ZBOOST);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_DO_DIM_CONV, 1);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_attach(icv, ip->fd, ip->imgid);
    if (stat < 0) {
        FUNC_ERROR("miicv_attach");
    }

    coords[TST_X] = 0;
    coords[TST_Y] = 0;
    coords[TST_Z] = 0;
    lengths[TST_X] = dims[TST_X].length;
    lengths[TST_Y] = dims[TST_Y].length + YBOOST;
    lengths[TST_Z] = dims[TST_Z].length + ZBOOST;

    stat = miicv_get(icv, coords, lengths, buf_ptr);
    if (stat < 0) {
        FUNC_ERROR("miicv_get");
    }

    int_ptr = (int *) buf_ptr;
    for (i = 0; i < dims[TST_X].length; i++) {
        for (j = 0; j < dims[TST_Y].length + YBOOST; j++) {
            for (k = 0; k < dims[TST_Z].length + ZBOOST; k++, int_ptr++) {
                int x;
                int y;
                int z;
                int tmp;

                if (j < YBOOST/2 || j >= dims[TST_Y].length + YBOOST/2)
                    continue;

                if (k < ZBOOST/2 || k >= dims[TST_Z].length + ZBOOST/2)
                    continue;

                x = i;
                y = (YSIZE + YBOOST - 1) - j;
                z = (ZSIZE + ZBOOST - 1) - k;

                y -= YBOOST / 2;
                z -= ZBOOST / 2;

                tmp = (x * 10000) + (y * 100) + (z);

                if (*int_ptr != (int) tmp) {
                    fprintf(stderr, "3. Data error at (%d,%d,%d) %d != %d\n",
                            i,j,k, *int_ptr, tmp);
                    errors++;
                }
            }
        }
    }

    stat = miicv_detach(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_detach");
    }

    stat = miicv_free(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_free");
    }

    free(buf_ptr);

    return (0);
}
示例#8
0
文件: mincapi.c 项目: BIC-MNI/minc
int
test4(struct testinfo *ip, struct dimdef *dims, int ndims)
{
    /* Get the same variable again, but this time use an ICV to scale it.
     */
    size_t total;
    long coords[3];
    long lengths[3];
    double range[2];

    void *buf_ptr;
    float *flt_ptr;
    int i, j, k;
    int stat;
    int icv;
    double dbl;

    total = 1;
    for (i = 0; i < ndims; i++) {
        total *= dims[i].length;
    }

    buf_ptr = malloc(total * sizeof (float));

    if (buf_ptr == NULL) {
        fprintf(stderr, "Oops, malloc failed\n");
        return (-1);
    }

    coords[TST_X] = 0;
    coords[TST_Y] = 0;
    coords[TST_Z] = 0;
    lengths[TST_X] = dims[TST_X].length;
    lengths[TST_Y] = dims[TST_Y].length;
    lengths[TST_Z] = dims[TST_Z].length;

    icv = miicv_create();
    if (icv < 0) {
        FUNC_ERROR("miicv_create");
    }

    stat = miicv_setint(icv, MI_ICV_TYPE, NC_FLOAT);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_setint(icv, MI_ICV_DO_NORM, 1);
    if (stat < 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_attach(icv, ip->fd, ip->imgid);
    if (stat < 0) {
        FUNC_ERROR("miicv_attach");
    }

    /* This next call _should_ fail, since the ICV has been attached.
     */
    stat = miicv_setint(icv, MI_ICV_DO_NORM, 0);
    if (stat >= 0) {
        FUNC_ERROR("miicv_setint");
    }

    stat = miicv_inqdbl(icv, MI_ICV_DO_NORM, &dbl);
    if (stat < 0) {
        FUNC_ERROR("miicv_inqdbl");
    }

    if (dbl != 1.0) {
        fprintf(stderr, "miicv_inqdbl: Bad value returned\n");
        errors++;
    }

    stat = miicv_get(icv, coords, lengths, buf_ptr);
    if (stat < 0) {
        FUNC_ERROR("miicv_get");
    }

    stat = miget_image_range(ip->fd, range);
    if (stat < 0) {
        FUNC_ERROR("miget_image_range");
    }

    if (range[0] != -(XSIZE * 100000.0) || range[1] != (XSIZE * 100000.00)) {
        fprintf(stderr, "miget_image_range: bad result\n");
        errors++;
    }

    stat = miget_valid_range(ip->fd, ip->imgid, range);
    if (stat < 0) {
        FUNC_ERROR("miget_valid_range");
    }

    if (range[0] != -(XSIZE * 10000.0) || range[1] != (XSIZE * 10000.0)) {
        fprintf(stderr, "miget_valid_range: bad result\n");
        errors++;
    }

    flt_ptr = (float *) buf_ptr;
    for (i = 0; i < dims[TST_X].length; i++) {
        for (j = 0; j < dims[TST_Y].length; j++) {
            for (k = 0; k < dims[TST_Z].length; k++) {
                float tmp = (i * 10000) + (j * 100) + k;
                if (*flt_ptr != (float) tmp * 10.0) {
                    fprintf(stderr, "2. Data error at (%d,%d,%d) %f != %f\n",
                            i,j,k, *flt_ptr, tmp);
                    errors++;
                }
                flt_ptr++;
            }
        }
    }

    stat = miicv_detach(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_detach");
    }

    /* Try it again, to make certain we fail gracefully.
     */
    stat = miicv_detach(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_detach");
    }

    /* Try to detach a completely random number.
     */
    stat = miicv_detach(rand());
    if (stat >= 0) {
        FUNC_ERROR("miicv_detach");
    }

    stat = miicv_free(icv);
    if (stat < 0) {
        FUNC_ERROR("miicv_free");
    }

    free(buf_ptr);

    return (0);
}