示例#1
0
文件: audio_mix.c 项目: ebichu/dd-wrt
int ff_audio_mix_set_matrix(AudioMix *am, const double *matrix, int stride)
{
    int i, o;

    if ( am->in_channels <= 0 ||  am->in_channels > AVRESAMPLE_MAX_CHANNELS ||
        am->out_channels <= 0 || am->out_channels > AVRESAMPLE_MAX_CHANNELS) {
        av_log(am->avr, AV_LOG_ERROR, "Invalid channel counts\n");
        return AVERROR(EINVAL);
    }

    if (am->matrix) {
        av_free(am->matrix[0]);
        am->matrix = NULL;
    }

#define CONVERT_MATRIX(type, expr)                                          \
    am->matrix_## type[0] = av_mallocz(am->out_channels * am->in_channels * \
                                       sizeof(*am->matrix_## type[0]));     \
    if (!am->matrix_## type[0])                                             \
        return AVERROR(ENOMEM);                                             \
    for (o = 0; o < am->out_channels; o++) {                                \
        if (o > 0)                                                          \
            am->matrix_## type[o] = am->matrix_## type[o - 1] +             \
                                    am->in_channels;                        \
        for (i = 0; i < am->in_channels; i++) {                             \
            double v = matrix[o * stride + i];                              \
            am->matrix_## type[o][i] = expr;                                \
        }                                                                   \
    }                                                                       \
    am->matrix = (void **)am->matrix_## type;

    switch (am->coeff_type) {
    case AV_MIX_COEFF_TYPE_Q8:
        CONVERT_MATRIX(q8, av_clip_int16(lrint(256.0 * v)))
        break;
    case AV_MIX_COEFF_TYPE_Q15:
        CONVERT_MATRIX(q15, av_clipl_int32(llrint(32768.0 * v)))
        break;
    case AV_MIX_COEFF_TYPE_FLT:
        CONVERT_MATRIX(flt, v)
        break;
    default:
        av_log(am->avr, AV_LOG_ERROR, "Invalid mix coeff type\n");
        return AVERROR(EINVAL);
    }

    return mix_function_init(am);
}
示例#2
0
int ff_audio_mix_set_matrix(AudioMix *am, const double *matrix, int stride)
{
    int i, o, i0, o0, ret;
    char in_layout_name[128];
    char out_layout_name[128];

    if ( am->in_channels <= 0 ||  am->in_channels > AVRESAMPLE_MAX_CHANNELS ||
        am->out_channels <= 0 || am->out_channels > AVRESAMPLE_MAX_CHANNELS) {
        av_log(am->avr, AV_LOG_ERROR, "Invalid channel counts\n");
        return AVERROR(EINVAL);
    }

    if (am->matrix) {
        av_free(am->matrix[0]);
        am->matrix = NULL;
    }

    am->in_matrix_channels  = am->in_channels;
    am->out_matrix_channels = am->out_channels;

    reduce_matrix(am, matrix, stride);

#define CONVERT_MATRIX(type, expr)                                          \
    am->matrix_## type[0] = av_mallocz(am->out_matrix_channels *            \
                                       am->in_matrix_channels  *            \
                                       sizeof(*am->matrix_## type[0]));     \
    if (!am->matrix_## type[0])                                             \
        return AVERROR(ENOMEM);                                             \
    for (o = 0, o0 = 0; o < am->out_channels; o++) {                        \
        if (am->output_zero[o] || am->output_skip[o])                       \
            continue;                                                       \
        if (o0 > 0)                                                         \
            am->matrix_## type[o0] = am->matrix_## type[o0 - 1] +           \
                                     am->in_matrix_channels;                \
        for (i = 0, i0 = 0; i < am->in_channels; i++) {                     \
            double v;                                                       \
            if (am->input_skip[i])                                          \
                continue;                                                   \
            v = matrix[o * stride + i];                                     \
            am->matrix_## type[o0][i0] = expr;                              \
            i0++;                                                           \
        }                                                                   \
        o0++;                                                               \
    }                                                                       \
    am->matrix = (void **)am->matrix_## type;

    if (am->in_matrix_channels && am->out_matrix_channels) {
        switch (am->coeff_type) {
        case AV_MIX_COEFF_TYPE_Q8:
            CONVERT_MATRIX(q8, av_clip_int16(lrint(256.0 * v)))
            break;
        case AV_MIX_COEFF_TYPE_Q15:
            CONVERT_MATRIX(q15, av_clipl_int32(llrint(32768.0 * v)))
            break;
        case AV_MIX_COEFF_TYPE_FLT:
            CONVERT_MATRIX(flt, v)
            break;
        default:
            av_log(am->avr, AV_LOG_ERROR, "Invalid mix coeff type\n");
            return AVERROR(EINVAL);
        }
    }

    ret = mix_function_init(am);
    if (ret < 0)
        return ret;

    av_get_channel_layout_string(in_layout_name, sizeof(in_layout_name),
                                 am->in_channels, am->in_layout);
    av_get_channel_layout_string(out_layout_name, sizeof(out_layout_name),
                                 am->out_channels, am->out_layout);
    av_log(am->avr, AV_LOG_DEBUG, "audio_mix: %s to %s\n",
           in_layout_name, out_layout_name);
    av_log(am->avr, AV_LOG_DEBUG, "matrix size: %d x %d\n",
           am->in_matrix_channels, am->out_matrix_channels);
    for (o = 0; o < am->out_channels; o++) {
        for (i = 0; i < am->in_channels; i++) {
            if (am->output_zero[o])
                av_log(am->avr, AV_LOG_DEBUG, "  (ZERO)");
            else if (am->input_skip[i] || am->output_skip[o])
                av_log(am->avr, AV_LOG_DEBUG, "  (SKIP)");
            else
                av_log(am->avr, AV_LOG_DEBUG, "  %0.3f ",
                       matrix[o * am->in_channels + i]);
        }
        av_log(am->avr, AV_LOG_DEBUG, "\n");
    }

    return 0;
}
示例#3
0
int ff_audio_mix_set_matrix(AudioMix *am, const double *matrix, int stride)
{
    int i, o, i0, o0;

    if ( am->in_channels <= 0 ||  am->in_channels > AVRESAMPLE_MAX_CHANNELS ||
            am->out_channels <= 0 || am->out_channels > AVRESAMPLE_MAX_CHANNELS) {
        av_log(am->avr, AV_LOG_ERROR, "Invalid channel counts\n");
        return AVERROR(EINVAL);
    }

    if (am->matrix) {
        av_free(am->matrix[0]);
        am->matrix = NULL;
    }

    memset(am->output_zero, 0, sizeof(am->output_zero));
    memset(am->input_skip,  0, sizeof(am->input_skip));
    memset(am->output_skip, 0, sizeof(am->output_zero));
    am->in_matrix_channels  = am->in_channels;
    am->out_matrix_channels = am->out_channels;

    /* exclude output channels if they can be zeroed instead of mixed */
    for (o = 0; o < am->out_channels; o++) {
        int zero = 1;

        /* check if the output is always silent */
        for (i = 0; i < am->in_channels; i++) {
            if (matrix[o * stride + i] != 0.0) {
                zero = 0;
                break;
            }
        }
        /* check if the corresponding input channel makes a contribution to
           any output channel */
        if (o < am->in_channels) {
            for (i = 0; i < am->out_channels; i++) {
                if (matrix[i * stride + o] != 0.0) {
                    zero = 0;
                    break;
                }
            }
        }
        if (zero) {
            am->output_zero[o] = 1;
            am->out_matrix_channels--;
        }
    }
    if (am->out_matrix_channels == 0) {
        am->in_matrix_channels = 0;
        return 0;
    }

    /* skip input channels that contribute fully only to the corresponding
       output channel */
    for (i = 0; i < FFMIN(am->in_channels, am->out_channels); i++) {
        int skip = 1;

        for (o = 0; o < am->out_channels; o++) {
            if ((o != i && matrix[o * stride + i] != 0.0) ||
                    (o == i && matrix[o * stride + i] != 1.0)) {
                skip = 0;
                break;
            }
        }
        if (skip) {
            am->input_skip[i] = 1;
            am->in_matrix_channels--;
        }
    }
    /* skip input channels that do not contribute to any output channel */
    for (; i < am->in_channels; i++) {
        int contrib = 0;

        for (o = 0; o < am->out_channels; o++) {
            if (matrix[o * stride + i] != 0.0) {
                contrib = 1;
                break;
            }
        }
        if (!contrib) {
            am->input_skip[i] = 1;
            am->in_matrix_channels--;
        }
    }
    if (am->in_matrix_channels == 0) {
        am->out_matrix_channels = 0;
        return 0;
    }

    /* skip output channels that only get full contribution from the
       corresponding input channel */
    for (o = 0; o < FFMIN(am->in_channels, am->out_channels); o++) {
        int skip = 1;

        for (i = 0; i < am->in_channels; i++) {
            if ((o != i && matrix[o * stride + i] != 0.0) ||
                    (o == i && matrix[o * stride + i] != 1.0)) {
                skip = 0;
                break;
            }
        }
        if (skip) {
            am->output_skip[o] = 1;
            am->out_matrix_channels--;
        }
    }
    if (am->out_matrix_channels == 0) {
        am->in_matrix_channels = 0;
        return 0;
    }

#define CONVERT_MATRIX(type, expr)                                          \
    am->matrix_## type[0] = av_mallocz(am->out_matrix_channels *            \
                                       am->in_matrix_channels  *            \
                                       sizeof(*am->matrix_## type[0]));     \
    if (!am->matrix_## type[0])                                             \
        return AVERROR(ENOMEM);                                             \
    for (o = 0, o0 = 0; o < am->out_channels; o++) {                        \
        if (am->output_zero[o] || am->output_skip[o])                       \
            continue;                                                       \
        if (o0 > 0)                                                         \
            am->matrix_## type[o0] = am->matrix_## type[o0 - 1] +           \
                                     am->in_matrix_channels;                \
        for (i = 0, i0 = 0; i < am->in_channels; i++) {                     \
            double v;                                                       \
            if (am->input_skip[i])                                          \
                continue;                                                   \
            v = matrix[o * stride + i];                                     \
            am->matrix_## type[o0][i0] = expr;                              \
            i0++;                                                           \
        }                                                                   \
        o0++;                                                               \
    }                                                                       \
    am->matrix = (void **)am->matrix_## type;

    switch (am->coeff_type) {
    case AV_MIX_COEFF_TYPE_Q8:
        CONVERT_MATRIX(q8, av_clip_int16(lrint(256.0 * v)))
        break;
    case AV_MIX_COEFF_TYPE_Q15:
        CONVERT_MATRIX(q15, av_clipl_int32(llrint(32768.0 * v)))
        break;
    case AV_MIX_COEFF_TYPE_FLT:
        CONVERT_MATRIX(flt, v)
        break;
    default:
        av_log(am->avr, AV_LOG_ERROR, "Invalid mix coeff type\n");
        return AVERROR(EINVAL);
    }

    return mix_function_init(am);
}