示例#1
0
Node SharedTermsDatabase::explain(TNode literal) const {
  bool polarity = literal.getKind() != kind::NOT;
  TNode atom = polarity ? literal : literal[0];
  Assert(atom.getKind() == kind::EQUAL);
  std::vector<TNode> assumptions;
  d_equalityEngine.explainEquality(atom[0], atom[1], polarity, assumptions);
  return mkAnd(assumptions);
}
示例#2
0
void SharedTermsDatabase::checkForConflict() {
  if (d_inConflict) {
    d_inConflict = false;
    std::vector<TNode> assumptions;
    d_equalityEngine.explainEquality(d_conflictLHS, d_conflictRHS, d_conflictPolarity, assumptions);
    Node conflict = mkAnd(assumptions);
    d_theoryEngine->conflict(conflict, THEORY_BUILTIN);
    d_conflictLHS = d_conflictRHS = Node::null();
  }
}
示例#3
0
Enode * Egraph::canonizeDTC( Enode * formula
                           , bool split_eqs )
{
  assert( config.sat_lazy_dtc != 0 );
  assert( config.logic == QF_UFLRA
       || config.logic == QF_UFIDL );

  list< Enode * > dtc_axioms;
  vector< Enode * > unprocessed_enodes;
  initDupMap1( );

  unprocessed_enodes.push_back( formula );
  //
  // Visit the DAG of the formula from the leaves to the root
  //
  while( !unprocessed_enodes.empty( ) )
  {
    Enode * enode = unprocessed_enodes.back( );
    //
    // Skip if the node has already been processed before
    //
    if ( valDupMap1( enode ) != NULL )
    {
      unprocessed_enodes.pop_back( );
      continue;
    }

    bool unprocessed_children = false;
    Enode * arg_list;
    for ( arg_list = enode->getCdr( )
	; arg_list != enil
	; arg_list = arg_list->getCdr( ) )
    {
      Enode * arg = arg_list->getCar( );
      assert( arg->isTerm( ) );
      //
      // Push only if it is unprocessed
      //
      if ( valDupMap1( arg ) == NULL )
      {
	unprocessed_enodes.push_back( arg );
	unprocessed_children = true;
      }
    }
    //
    // SKip if unprocessed_children
    //
    if ( unprocessed_children )
      continue;

    unprocessed_enodes.pop_back( );
    Enode * result = NULL;
    //
    // Replace arithmetic atoms with canonized version
    //
    if (  enode->isTAtom( ) 
      && !enode->isIff( )
      && !enode->isUp( ) )
    {
      // No need to do anything if node is purely UF
      if ( isRootUF( enode ) )
      {
	if ( config.verbosity > 2 )
	  cerr << "# Egraph::Skipping canonization of " << enode << " as it's root is purely UF" << endl;
	result = enode;
      }
      else
      {
	LAExpression a( enode );
	result = a.toEnode( *this );
      
	if ( split_eqs && result->isEq( ) )
	{
#ifdef PRODUCE_PROOF
	  if ( config.produce_inter != 0 )
	    opensmt_error2( "can't compute interpolant for equalities at the moment ", enode );
#endif
	  LAExpression aa( enode );
	  Enode * e = aa.toEnode( *this );
	  Enode * lhs = e->get1st( );
	  Enode * rhs = e->get2nd( );
	  Enode * leq = mkLeq( cons( lhs, cons( rhs ) ) );
	  LAExpression b( leq );
	  leq = b.toEnode( *this );
	  Enode * geq = mkGeq( cons( lhs, cons( rhs ) ) );
	  LAExpression c( geq );
	  geq = c.toEnode( *this );
	  Enode * not_e = mkNot( cons( enode ) );
	  Enode * not_l = mkNot( cons( leq ) );
	  Enode * not_g = mkNot( cons( geq ) );
	  // Add clause ( !x=y v x<=y )
	  Enode * c1 = mkOr( cons( not_e
		           , cons( leq ) ) );
	  // Add clause ( !x=y v x>=y )
	  Enode * c2 = mkOr( cons( not_e
		           , cons( geq ) ) );
	  // Add clause ( x=y v !x>=y v !x<=y )
	  Enode * c3 = mkOr( cons( enode
		           , cons( not_l
		           , cons( not_g ) ) ) );
	  // Add conjunction of clauses
	  Enode * ax = mkAnd( cons( c1
		            , cons( c2
		            , cons( c3 ) ) ) );

	  dtc_axioms.push_back( ax );
	  result = enode;
	}
      }
    }
    //
    // If nothing have been done copy and simplify
    //
    if ( result == NULL )
      result = copyEnodeEtypeTermWithCache( enode );

    assert( valDupMap1( enode ) == NULL );
    storeDupMap1( enode, result );
  }

  Enode * new_formula = valDupMap1( formula );
  assert( new_formula );
  doneDupMap1( );

  if ( !dtc_axioms.empty( ) )
  {
    dtc_axioms.push_back( new_formula );
    new_formula = mkAnd( cons( dtc_axioms ) );
  }

  return new_formula;
}