// Strict case // p1^{2*k1} * p2^{2*k2 + 1} >< 0 // --> // p1 != 0 and p2 >< 0 // // Nonstrict // p1^{2*k1} * p2^{2*k2 + 1} >=< 0 // --> // p1 = 0 or p2 >=< 0 // void mk_split_comp(decl_kind k, polynomial::factors const & fs, expr_ref & result) { SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE); bool strict = (k == OP_LT) || (k == OP_GT); expr_ref_buffer args(m); expr_ref_buffer odd_factors(m); split_even_odd(strict, fs, args, odd_factors); if (odd_factors.empty()) { if (k == OP_LT) { result = m.mk_false(); return; } if (k == OP_GE) { result = m.mk_true(); return; } } else { args.push_back(m.mk_app(m_util.get_family_id(), k, mk_mul(odd_factors.size(), odd_factors.c_ptr()), mk_zero_for(odd_factors[0]))); } SASSERT(!args.empty()); if (args.size() == 1) result = args[0]; else if (strict) result = m.mk_and(args.size(), args.c_ptr()); else result = m.mk_or(args.size(), args.c_ptr()); }
// p1^k1 * p2^k2 = 0 --> p1*p2 = 0 void mk_eq(polynomial::factors const & fs, expr_ref & result) { expr_ref_buffer args(m); expr_ref arg(m); for (unsigned i = 0; i < fs.distinct_factors(); i++) { m_expr2poly.to_expr(fs[i], true, arg); args.push_back(arg); } result = m.mk_eq(mk_mul(args.size(), args.c_ptr()), mk_zero_for(arg)); }
// p1^{2*k1} * p2^{2*k2 + 1} >=< 0 // --> // (p1^2)*p2 >=<0 void mk_comp(decl_kind k, polynomial::factors const & fs, expr_ref & result) { SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE); expr_ref_buffer args(m); expr_ref arg(m); for (unsigned i = 0; i < fs.distinct_factors(); i++) { m_expr2poly.to_expr(fs[i], true, arg); if (fs.get_degree(i) % 2 == 0) arg = m_util.mk_power(arg, m_util.mk_numeral(rational(2), m_util.is_int(arg))); args.push_back(arg); } expr * lhs = mk_mul(args.size(), args.c_ptr()); result = m.mk_app(m_util.get_family_id(), k, lhs, mk_zero_for(lhs)); }
void arith_simplifier_plugin::div_monomial(expr_ref_vector& monomials, numeral const& g) { numeral n; for (unsigned i = 0; i < monomials.size(); ++i) { expr* e = monomials[i].get(); if (is_numeral(e, n)) { SASSERT((n/g).is_int()); monomials[i] = mk_numeral(n/g); } else if (is_mul(e) && is_numeral(to_app(e)->get_arg(0), n)) { SASSERT((n/g).is_int()); monomials[i] = mk_mul(n/g, to_app(e)->get_arg(1)); } else { UNREACHABLE(); } } }
expr * poly_simplifier_plugin::mk_mul(numeral const & c, expr * body) { numeral c_prime, d; c_prime = norm(c); if (c_prime.is_zero()) return 0; if (body == 0) return mk_numeral(c_prime); if (c_prime.is_one()) return body; if (is_numeral(body, d)) { c_prime = norm(c_prime*d); if (c_prime.is_zero()) return 0; return mk_numeral(c_prime); } set_curr_sort(body); expr * args[2] = { mk_numeral(c_prime), body }; return mk_mul(2, args); }
br_status float_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { br_status st = BR_FAILED; SASSERT(f->get_family_id() == get_fid()); switch (f->get_decl_kind()) { case OP_TO_FLOAT: st = mk_to_fp(f, num_args, args, result); break; case OP_FLOAT_ADD: SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break; case OP_FLOAT_SUB: SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break; case OP_FLOAT_NEG: SASSERT(num_args == 1); st = mk_neg(args[0], result); break; case OP_FLOAT_MUL: SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break; case OP_FLOAT_DIV: SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break; case OP_FLOAT_REM: SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break; case OP_FLOAT_ABS: SASSERT(num_args == 1); st = mk_abs(args[0], result); break; case OP_FLOAT_MIN: SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break; case OP_FLOAT_MAX: SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break; case OP_FLOAT_FMA: SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break; case OP_FLOAT_SQRT: SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break; case OP_FLOAT_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round(args[0], args[1], result); break; case OP_FLOAT_EQ: SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break; case OP_FLOAT_LT: SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break; case OP_FLOAT_GT: SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break; case OP_FLOAT_LE: SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break; case OP_FLOAT_GE: SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break; case OP_FLOAT_IS_ZERO: SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break; case OP_FLOAT_IS_NZERO: SASSERT(num_args == 1); st = mk_is_nzero(args[0], result); break; case OP_FLOAT_IS_PZERO: SASSERT(num_args == 1); st = mk_is_pzero(args[0], result); break; case OP_FLOAT_IS_NAN: SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break; case OP_FLOAT_IS_INF: SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break; case OP_FLOAT_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break; case OP_FLOAT_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break; case OP_FLOAT_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break; case OP_FLOAT_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break; case OP_FLOAT_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(args[0], result); break; case OP_FLOAT_FP: SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break; case OP_FLOAT_TO_UBV: SASSERT(num_args == 2); st = mk_to_ubv(args[0], args[1], result); break; case OP_FLOAT_TO_SBV: SASSERT(num_args == 2); st = mk_to_sbv(args[0], args[1], result); break; case OP_FLOAT_TO_REAL: SASSERT(num_args == 1); st = mk_to_real(args[0], result); break; } return st; }
br_status fpa_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { br_status st = BR_FAILED; SASSERT(f->get_family_id() == get_fid()); fpa_op_kind k = (fpa_op_kind)f->get_decl_kind(); switch (k) { case OP_FPA_RM_NEAREST_TIES_TO_EVEN: case OP_FPA_RM_NEAREST_TIES_TO_AWAY: case OP_FPA_RM_TOWARD_POSITIVE: case OP_FPA_RM_TOWARD_NEGATIVE: case OP_FPA_RM_TOWARD_ZERO: SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break; case OP_FPA_PLUS_INF: case OP_FPA_MINUS_INF: case OP_FPA_NAN: case OP_FPA_PLUS_ZERO: case OP_FPA_MINUS_ZERO: SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break; case OP_FPA_NUM: SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break; case OP_FPA_ADD: SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break; case OP_FPA_SUB: SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break; case OP_FPA_NEG: SASSERT(num_args == 1); st = mk_neg(args[0], result); break; case OP_FPA_MUL: SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break; case OP_FPA_DIV: SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break; case OP_FPA_REM: SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break; case OP_FPA_ABS: SASSERT(num_args == 1); st = mk_abs(args[0], result); break; case OP_FPA_MIN: SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break; case OP_FPA_MAX: SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break; case OP_FPA_FMA: SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break; case OP_FPA_SQRT: SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break; case OP_FPA_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round_to_integral(args[0], args[1], result); break; case OP_FPA_EQ: SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break; case OP_FPA_LT: SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break; case OP_FPA_GT: SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break; case OP_FPA_LE: SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break; case OP_FPA_GE: SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break; case OP_FPA_IS_ZERO: SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break; case OP_FPA_IS_NAN: SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break; case OP_FPA_IS_INF: SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break; case OP_FPA_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break; case OP_FPA_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break; case OP_FPA_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break; case OP_FPA_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break; case OP_FPA_FP: SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break; case OP_FPA_TO_FP: st = mk_to_fp(f, num_args, args, result); break; case OP_FPA_TO_FP_UNSIGNED: SASSERT(num_args == 2); st = mk_to_fp_unsigned(f, args[0], args[1], result); break; case OP_FPA_TO_UBV: SASSERT(num_args == 2); st = mk_to_ubv(f, args[0], args[1], result); break; case OP_FPA_TO_SBV: SASSERT(num_args == 2); st = mk_to_sbv(f, args[0], args[1], result); break; case OP_FPA_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(f, args[0], result); break; case OP_FPA_TO_REAL: SASSERT(num_args == 1); st = mk_to_real(args[0], result); break; case OP_FPA_INTERNAL_MIN_I: case OP_FPA_INTERNAL_MAX_I: case OP_FPA_INTERNAL_MIN_UNSPECIFIED: case OP_FPA_INTERNAL_MAX_UNSPECIFIED: SASSERT(num_args == 2); st = BR_FAILED; break; case OP_FPA_INTERNAL_RM: SASSERT(num_args == 1); st = mk_rm(args[0], result); break; case OP_FPA_INTERNAL_TO_UBV_UNSPECIFIED: SASSERT(num_args == 0); st = mk_to_ubv_unspecified(f, result); break; case OP_FPA_INTERNAL_TO_SBV_UNSPECIFIED: SASSERT(num_args == 0); st = mk_to_sbv_unspecified(f, result); break; case OP_FPA_INTERNAL_TO_REAL_UNSPECIFIED: SASSERT(num_args == 0); st = mk_to_real_unspecified(result); break; case OP_FPA_INTERNAL_BVWRAP: case OP_FPA_INTERNAL_BVUNWRAP: st = BR_FAILED; break; default: NOT_IMPLEMENTED_YET(); } return st; }