int findkey(char *keyfile, char *host, RSApub *key) { char *h; Biobuf *b; RSApub *k; if((b = Bopen(keyfile, OREAD)) == nil) return NoKeyFile; for(;;){ if((k = readpublickey(b, &h)) == nil){ Bterm(b); return NoKey; } if(match(h, host) != 0){ free(h); rsapubfree(k); continue; } if(mpcmp(k->n, key->n) != 0 || mpcmp(k->ek, key->ek) != 0){ free(h); rsapubfree(k); Bterm(b); return KeyWrong; } free(h); rsapubfree(k); Bterm(b); return KeyOk; } }
void ecdsasign(ECdomain *dom, ECpriv *priv, uchar *dig, int len, mpint *r, mpint *s) { ECpriv tmp; mpint *E, *t; tmp.x = mpnew(0); tmp.y = mpnew(0); tmp.d = mpnew(0); E = betomp(dig, len, nil); t = mpnew(0); if(mpsignif(dom->n) < 8*len) mpright(E, 8*len - mpsignif(dom->n), E); for(;;){ ecgen(dom, &tmp); mpmod(tmp.x, dom->n, r); if(mpcmp(r, mpzero) == 0) continue; mpmul(r, priv->d, s); mpadd(E, s, s); mpinvert(tmp.d, dom->n, t); mpmul(s, t, s); mpmod(s, dom->n, s); if(mpcmp(s, mpzero) != 0) break; } mpfree(t); mpfree(E); mpfree(tmp.x); mpfree(tmp.y); mpfree(tmp.d); }
int egverify(EGpub *pub, EGsig *sig, mpint *m) { mpint *p = pub->p, *alpha = pub->alpha; mpint *r = sig->r, *s = sig->s; mpint *v1, *v2, *rs; int rv = -1; if(mpcmp(r, mpone) < 0 || mpcmp(r, p) >= 0) return rv; v1 = mpnew(0); rs = mpnew(0); v2 = mpnew(0); mpexp(pub->key, r, p, v1); mpexp(r, s, p, rs); mpmul(v1, rs, v1); mpmod(v1, p, v1); mpexp(alpha, m, p, v2); if(mpcmp(v1, v2) == 0) rv = 0; mpfree(v1); mpfree(rs); mpfree(v2); return rv; }
void ecmul(ECdomain *dom, ECpoint *a, mpint *k, ECpoint *s) { ECpoint ns, na; mpint *l; if(a->inf || mpcmp(k, mpzero) == 0){ s->inf = 1; return; } ns.inf = 1; ns.x = mpnew(0); ns.y = mpnew(0); na.x = mpnew(0); na.y = mpnew(0); ecassign(dom, a, &na); l = mpcopy(k); l->sign = 1; while(mpcmp(l, mpzero) != 0){ if(l->p[0] & 1) ecadd(dom, &na, &ns, &ns); ecadd(dom, &na, &na, &na); mpright(l, 1, l); } if(k->sign < 0){ ns.y->sign = -1; mpmod(ns.y, dom->p, ns.y); } ecassign(dom, &ns, s); mpfree(ns.x); mpfree(ns.y); mpfree(na.x); mpfree(na.y); }
int findkey(char *keyfile, char *host, RSApub *key) { char *h; Biobuf *b; RSApub *k; int res; if ((b = Bopen(keyfile, OREAD)) == nil) return NoKeyFile; for (res = NoKey; res != KeyOk;) { if ((k = readpublickey(b, &h)) == nil) break; if (match(h, host) == 0) { if (mpcmp(k->n, key->n) == 0 && mpcmp(k->ek, key->ek) == 0) res = KeyOk; else res = KeyWrong; } free(h); free(k->ek); free(k->n); free(k); } Bterm(b); return res; }
// find a prime p of length n and a generator alpha of Z^*_p // Alg 4.86 Menezes et al () Handbook, p.164 void gensafeprime(mpint *p, mpint *alpha, int n, int accuracy) { mpint *q, *b; q = mpnew(n-1); while(1){ genprime(q, n-1, accuracy); mpleft(q, 1, p); mpadd(p, mpone, p); // p = 2*q+1 if(probably_prime(p, accuracy)) break; } // now find a generator alpha of the multiplicative // group Z*_p of order p-1=2q b = mpnew(0); while(1){ mprand(n, genrandom, alpha); mpmod(alpha, p, alpha); mpmul(alpha, alpha, b); mpmod(b, p, b); if(mpcmp(b, mpone) == 0) continue; mpexp(alpha, q, p, b); if(mpcmp(b, mpone) != 0) break; } mpfree(b); mpfree(q); }
RSApriv* rsafill(mpint *n, mpint *e, mpint *d, mpint *p, mpint *q) { mpint *c2, *kq, *kp, *x; RSApriv *rsa; // make sure we're not being hoodwinked if(!probably_prime(p, 10) || !probably_prime(q, 10)){ werrstr("rsafill: p or q not prime"); return nil; } x = mpnew(0); mpmul(p, q, x); if(mpcmp(n, x) != 0){ werrstr("rsafill: n != p*q"); mpfree(x); return nil; } c2 = mpnew(0); mpsub(p, mpone, c2); mpsub(q, mpone, x); mpmul(c2, x, x); mpmul(e, d, c2); mpmod(c2, x, x); if(mpcmp(x, mpone) != 0){ werrstr("rsafill: e*d != 1 mod (p-1)*(q-1)"); mpfree(x); mpfree(c2); return nil; } // compute chinese remainder coefficient mpinvert(p, q, c2); // for crt a**k mod p == (a**(k mod p-1)) mod p kq = mpnew(0); kp = mpnew(0); mpsub(p, mpone, x); mpmod(d, x, kp); mpsub(q, mpone, x); mpmod(d, x, kq); rsa = rsaprivalloc(); rsa->pub.ek = mpcopy(e); rsa->pub.n = mpcopy(n); rsa->dk = mpcopy(d); rsa->kp = kp; rsa->kq = kq; rsa->p = mpcopy(p); rsa->q = mpcopy(q); rsa->c2 = c2; mpfree(x); return rsa; }
DSApriv* dsagen(DSApub *opub) { DSApub *pub; DSApriv *priv; mpint *exp; mpint *g; mpint *r; int bits; priv = dsaprivalloc(); pub = &priv->pub; if(opub != nil){ pub->p = mpcopy(opub->p); pub->q = mpcopy(opub->q); } else { pub->p = mpnew(0); pub->q = mpnew(0); DSAprimes(pub->q, pub->p, nil); } bits = Dbits*pub->p->top; pub->alpha = mpnew(0); pub->key = mpnew(0); priv->secret = mpnew(0); // find a generator alpha of the multiplicative // group Z*p, i.e., of order n = p-1. We use the // fact that q divides p-1 to reduce the exponent. exp = mpnew(0); g = mpnew(0); r = mpnew(0); mpsub(pub->p, mpone, exp); mpdiv(exp, pub->q, exp, r); if(mpcmp(r, mpzero) != 0) sysfatal("dsagen foul up"); while(1){ mprand(bits, genrandom, g); mpmod(g, pub->p, g); mpexp(g, exp, pub->p, pub->alpha); if(mpcmp(pub->alpha, mpone) != 0) break; } mpfree(g); mpfree(exp); // create the secret key mprand(bits, genrandom, priv->secret); mpmod(priv->secret, pub->p, priv->secret); mpexp(pub->alpha, priv->secret, pub->p, pub->key); return priv; }
void mpdivmodfixfix(Mpint *q, Mpint *r, Mpint *n, Mpint *d) { int i, ns, ds; ns = n->neg; ds = d->neg; n->neg = 0; d->neg = 0; mpmovefixfix(r, n); mpmovecfix(q, 0); // shift denominator until it // is larger than numerator for(i=0; i<Mpprec*Mpscale; i++) { if(mpcmp(d, r) > 0) break; mplsh(d); } // if it never happens // denominator is probably zero if(i >= Mpprec*Mpscale) { q->ovf = 1; r->ovf = 1; n->neg = ns; d->neg = ds; yyerror("set ovf in mpdivmodfixfix"); return; } // shift denominator back creating // quotient a bit at a time // when done the remaining numerator // will be the remainder for(; i>0; i--) { mplsh(q); mprsh(d); if(mpcmp(d, r) <= 0) { mpaddcfix(q, 1); mpsubfixfix(r, d); } } n->neg = ns; d->neg = ds; r->neg = ns; q->neg = ns^ds; }
DSAsig* dsasign(DSApriv *priv, mpint *m) { DSApub *pub = &priv->pub; DSAsig *sig; mpint *qm1, *k, *kinv, *r, *s; mpint *q = pub->q, *p = pub->p, *alpha = pub->alpha; int qlen = mpsignif(q); qm1 = mpnew(0); kinv = mpnew(0); r = mpnew(0); s = mpnew(0); k = mpnew(0); mpsub(pub->q, mpone, qm1); // find a k that has an inverse mod q while(1){ mprand(qlen, genrandom, k); if((mpcmp(mpone, k) > 0) || (mpcmp(k, qm1) >= 0)) continue; mpextendedgcd(k, q, r, kinv, s); if(mpcmp(r, mpone) != 0) continue; break; } // make kinv positive mpmod(kinv, qm1, kinv); // r = ((alpha**k) mod p) mod q mpexp(alpha, k, p, r); mpmod(r, q, r); // s = (kinv*(m + ar)) mod q mpmul(r, priv->secret, s); mpadd(s, m, s); mpmul(s, kinv, s); mpmod(s, q, s); sig = dsasigalloc(); sig->r = r; sig->s = s; mpfree(qm1); mpfree(k); mpfree(kinv); return sig; }
void mpdivfract(Mpint *a, Mpint *b) { Mpint n, d; int i, j, neg; long *a1, x; mpmovefixfix(&n, a); // numerator mpmovefixfix(&d, b); // denominator a1 = &a->a[Mpprec]; // quotient neg = n.neg ^ d.neg; n.neg = 0; d.neg = 0; for(i=0; i<Mpprec; i++) { x = 0; for(j=0; j<Mpscale; j++) { x <<= 1; if(mpcmp(&d, &n) <= 0) { x |= 1; mpsubfixfix(&n, &d); } mprsh(&d); } *--a1 = x; } a->neg = neg; }
int rsaverify(RSApub *key, DigestAlg *hash, uchar *digest, uint dlen, uchar *sig, uint siglen) { uchar asn1[512], *buf; int n, len, pad; mpint *m, *mm, *s; /* * Create ASN.1 */ n = mkasn1(asn1, hash, digest, dlen); /* * Create number to sign. */ len = (mpsignif(key->n)+7)/8 - 1; if(len < n+2) { werrstr("rsa key too short"); return -1; } pad = len - (n+2); if(siglen < len) { werrstr("signature buffer too short"); return -1; } buf = malloc(len); if(buf == nil) return -1; buf[0] = 0x01; memset(buf+1, 0xFF, pad); buf[1+pad] = 0x00; memmove(buf+1+pad+1, asn1, n); m = betomp(buf, len, nil); free(buf); if(m == nil) return -1; /* * Extract plaintext of signature. */ s = betomp(sig, siglen, nil); if(s == nil) return -1; mm = rsaencrypt(key, s, nil); mpfree(s); if(mm == nil) return -1; if(mpcmp(m, mm) != 0) { werrstr("signature did not verify"); mpfree(mm); mpfree(m); return -1; } mpfree(mm); mpfree(m); return 0; }
ECpriv* ecgen(ECdomain *dom, ECpriv *p) { if(p == nil){ p = mallocz(sizeof(*p), 1); if(p == nil) return nil; p->x = mpnew(0); p->y = mpnew(0); p->d = mpnew(0); } for(;;){ mprand(mpsignif(dom->n), genrandom, p->d); if(mpcmp(p->d, mpzero) > 0 && mpcmp(p->d, dom->n) < 0) break; } ecmul(dom, dom->G, p->d, p); return p; }
int dsaverify(DSApub *pub, DSAsig *sig, mpint *m) { int rv = -1; mpint *u1, *u2, *v, *sinv; if(sig->r->sign < 0 || mpcmp(sig->r, pub->q) >= 0) return rv; if(sig->s->sign < 0 || mpcmp(sig->s, pub->q) >= 0) return rv; u1 = mpnew(0); u2 = mpnew(0); v = mpnew(0); sinv = mpnew(0); // find (s**-1) mod q, make sure it exists mpextendedgcd(sig->s, pub->q, u1, sinv, v); if(mpcmp(u1, mpone) != 0) goto out; // u1 = (sinv * m) mod q, u2 = (r * sinv) mod q mpmul(sinv, m, u1); mpmod(u1, pub->q, u1); mpmul(sig->r, sinv, u2); mpmod(u2, pub->q, u2); // v = (((alpha**u1)*(key**u2)) mod p) mod q mpexp(pub->alpha, u1, pub->p, sinv); mpexp(pub->key, u2, pub->p, v); mpmul(sinv, v, v); mpmod(v, pub->p, v); mpmod(v, pub->q, v); if(mpcmp(v, sig->r) == 0) rv = 0; out: mpfree(v); mpfree(u1); mpfree(u2); mpfree(sinv); return rv; }
static int rsa_verify(mpint* m, void *sig, void *key) { mpint *t; int r; t = rsaencrypt((RSApub*)key, (mpint*)sig, nil); r = mpcmp(t, m) == 0; mpfree(t); return r; }
int ecdsaverify(ECdomain *dom, ECpub *pub, uchar *dig, int len, mpint *r, mpint *s) { mpint *E, *t, *u1, *u2; ECpoint R, S; int ret; if(mpcmp(r, mpone) < 0 || mpcmp(s, mpone) < 0 || mpcmp(r, dom->n) >= 0 || mpcmp(r, dom->n) >= 0) return 0; E = betomp(dig, len, nil); if(mpsignif(dom->n) < 8*len) mpright(E, 8*len - mpsignif(dom->n), E); t = mpnew(0); u1 = mpnew(0); u2 = mpnew(0); R.x = mpnew(0); R.y = mpnew(0); S.x = mpnew(0); S.y = mpnew(0); mpinvert(s, dom->n, t); mpmul(E, t, u1); mpmod(u1, dom->n, u1); mpmul(r, t, u2); mpmod(u2, dom->n, u2); ecmul(dom, dom->G, u1, &R); ecmul(dom, pub, u2, &S); ecadd(dom, &R, &S, &R); ret = 0; if(!R.inf){ mpmod(R.x, dom->n, t); ret = mpcmp(r, t) == 0; } mpfree(t); mpfree(u1); mpfree(u2); mpfree(R.x); mpfree(R.y); mpfree(S.x); mpfree(S.y); return ret; }
// use extended gcd to find the multiplicative inverse // res = b**-1 mod m void mpinvert(mpint *b, mpint *m, mpint *res) { mpint *dc1, *dc2; // don't care dc1 = mpnew(0); dc2 = mpnew(0); mpextendedgcd(b, m, dc1, res, dc2); if(mpcmp(dc1, mpone) != 0) abort(); mpmod(res, m, res); mpfree(dc1); mpfree(dc2); }
static int mpleg(mpint *a, mpint *b) { int r, k; mpint *m, *n, *t; r = 1; m = mpcopy(a); n = mpcopy(b); for(;;){ if(mpcmp(m, n) > 0) mpmod(m, n, m); if(mpcmp(m, mpzero) == 0){ r = 0; break; } if(mpcmp(m, mpone) == 0) break; k = mplowbits0(m); if(k > 0){ if(k & 1) switch(n->p[0] & 15){ case 3: case 5: case 11: case 13: r = -r; } mpright(m, k, m); } if((n->p[0] & 3) == 3 && (m->p[0] & 3) == 3) r = -r; t = m; m = n; n = t; } mpfree(m); mpfree(n); return r; }
static int metacond(ASTNode *c) { c = onlyone(metarun(c)); if(c == nil){ error(nil, "metacond: nil"); return -1; } if(c->t == ASTCINT) return c->i != 0; if(c->t == ASTCONST) return mpcmp(c->cons.n, mpzero) != 0; error(c, "if: unresolved %n", c); return -1; }
int mptestfix(Mpint *a) { Mpint b; int r; mpmovecfix(&b, 0); r = mpcmp(a, &b); if(a->neg) { if(r > 0) return -1; if(r < 0) return +1; } return r; }
void base58enc(uchar *src, char *dst, int len) { mpint *n, *r, *b; char *sdst, t; sdst = dst; n = betomp(src, len, nil); b = uitomp(58, nil); r = mpnew(0); while(mpcmp(n, mpzero) != 0){ mpdiv(n, b, n, r); *dst++ = code[mptoui(r)]; } for(; *src == 0; src++) *dst++ = code[0]; dst--; while(dst > sdst){ t = *sdst; *sdst++ = *dst; *dst-- = t; } }
int ecverify(ECdomain *dom, ECpoint *a) { mpint *p, *q; int r; if(a->inf) return 1; p = mpnew(0); q = mpnew(0); mpmul(a->y, a->y, p); mpmod(p, dom->p, p); mpmul(a->x, a->x, q); mpadd(q, dom->a, q); mpmul(a->x, q, q); mpadd(q, dom->b, q); mpmod(q, dom->p, q); r = mpcmp(p, q); mpfree(p); mpfree(q); return r == 0; }
/* * Miller-Rabin probabilistic primality testing * Knuth (1981) Seminumerical Algorithms, p.379 * Menezes et al () Handbook, p.39 * 0 if composite; 1 if almost surely prime, Pr(err)<1/4**nrep */ int probably_prime(mpint *n, int nrep) { int j, k, rep, nbits, isprime; mpint *nm1, *q, *x, *y, *r; if(n->sign < 0) sysfatal("negative prime candidate"); if(nrep <= 0) nrep = 18; k = mptoi(n); if(k == 2) /* 2 is prime */ return 1; if(k < 2) /* 1 is not prime */ return 0; if((n->p[0] & 1) == 0) /* even is not prime */ return 0; /* test against small prime numbers */ if(smallprimetest(n) < 0) return 0; /* fermat test, 2^n mod n == 2 if p is prime */ x = uitomp(2, nil); y = mpnew(0); mpexp(x, n, n, y); k = mptoi(y); if(k != 2){ mpfree(x); mpfree(y); return 0; } nbits = mpsignif(n); nm1 = mpnew(nbits); mpsub(n, mpone, nm1); /* nm1 = n - 1 */ k = mplowbits0(nm1); q = mpnew(0); mpright(nm1, k, q); /* q = (n-1)/2**k */ for(rep = 0; rep < nrep; rep++){ for(;;){ /* find x = random in [2, n-2] */ r = mprand(nbits, prng, nil); mpmod(r, nm1, x); mpfree(r); if(mpcmp(x, mpone) > 0) break; } /* y = x**q mod n */ mpexp(x, q, n, y); if(mpcmp(y, mpone) == 0 || mpcmp(y, nm1) == 0) continue; for(j = 1;; j++){ if(j >= k) { isprime = 0; goto done; } mpmul(y, y, x); mpmod(x, n, y); /* y = y*y mod n */ if(mpcmp(y, nm1) == 0) break; if(mpcmp(y, mpone) == 0){ isprime = 0; goto done; } } } isprime = 1; done: mpfree(y); mpfree(x); mpfree(q); mpfree(nm1); return isprime; }
static int mpsqrt(mpint *n, mpint *p, mpint *r) { mpint *a, *t, *s, *xp, *xq, *yp, *yq, *zp, *zq, *N; if(mpleg(n, p) == -1) return 0; a = mpnew(0); t = mpnew(0); s = mpnew(0); N = mpnew(0); xp = mpnew(0); xq = mpnew(0); yp = mpnew(0); yq = mpnew(0); zp = mpnew(0); zq = mpnew(0); for(;;){ for(;;){ mprand(mpsignif(p), genrandom, a); if(mpcmp(a, mpzero) > 0 && mpcmp(a, p) < 0) break; } mpmul(a, a, t); mpsub(t, n, t); mpmod(t, p, t); if(mpleg(t, p) == -1) break; } mpadd(p, mpone, N); mpright(N, 1, N); mpmul(a, a, t); mpsub(t, n, t); mpassign(a, xp); uitomp(1, xq); uitomp(1, yp); uitomp(0, yq); while(mpcmp(N, mpzero) != 0){ if(N->p[0] & 1){ mpmul(xp, yp, zp); mpmul(xq, yq, zq); mpmul(zq, t, zq); mpadd(zp, zq, zp); mpmod(zp, p, zp); mpmul(xp, yq, zq); mpmul(xq, yp, s); mpadd(zq, s, zq); mpmod(zq, p, yq); mpassign(zp, yp); } mpmul(xp, xp, zp); mpmul(xq, xq, zq); mpmul(zq, t, zq); mpadd(zp, zq, zp); mpmod(zp, p, zp); mpmul(xp, xq, zq); mpadd(zq, zq, zq); mpmod(zq, p, xq); mpassign(zp, xp); mpright(N, 1, N); } if(mpcmp(yq, mpzero) != 0) abort(); mpassign(yp, r); mpfree(a); mpfree(t); mpfree(s); mpfree(N); mpfree(xp); mpfree(xq); mpfree(yp); mpfree(yq); mpfree(zp); mpfree(zq); return 1; }
void mpaddfixfix(Mpint *a, Mpint *b) { int i, c; long x, *a1, *b1; if(a->ovf || b->ovf) { yyerror("ovf in mpaddxx"); a->ovf = 1; return; } c = 0; a1 = &a->a[0]; b1 = &b->a[0]; if(a->neg != b->neg) goto sub; // perform a+b for(i=0; i<Mpprec; i++) { x = *a1 + *b1++ + c; c = 0; if(x >= Mpbase) { x -= Mpbase; c = 1; } *a1++ = x; } a->ovf = c; if(a->ovf) yyerror("set ovf in mpaddxx"); return; sub: // perform a-b switch(mpcmp(a, b)) { case 0: mpmovecfix(a, 0); break; case 1: for(i=0; i<Mpprec; i++) { x = *a1 - *b1++ - c; c = 0; if(x < 0) { x += Mpbase; c = 1; } *a1++ = x; } break; case -1: a->neg ^= 1; for(i=0; i<Mpprec; i++) { x = *b1++ - *a1 - c; c = 0; if(x < 0) { x += Mpbase; c = 1; } *a1++ = x; } break; } }
// extended binary gcd // // For a anv b it solves, v = gcd(a,b) and finds x and y s.t. // ax + by = v // // Handbook of Applied Cryptography, Menezes et al, 1997, pg 608. void mpextendedgcd(mpint *a, mpint *b, mpint *v, mpint *x, mpint *y) { mpint *u, *A, *B, *C, *D; int g; if(a->top == 0){ mpassign(b, v); mpassign(mpone, y); mpassign(mpzero, x); return; } if(b->top == 0){ mpassign(a, v); mpassign(mpone, x); mpassign(mpzero, y); return; } g = 0; a = mpcopy(a); b = mpcopy(b); while(iseven(a) && iseven(b)){ mpright(a, 1, a); mpright(b, 1, b); g++; } u = mpcopy(a); mpassign(b, v); A = mpcopy(mpone); B = mpcopy(mpzero); C = mpcopy(mpzero); D = mpcopy(mpone); for(;;) { // print("%B %B %B %B %B %B\n", u, v, A, B, C, D); while(iseven(u)){ mpright(u, 1, u); if(!iseven(A) || !iseven(B)) { mpadd(A, b, A); mpsub(B, a, B); } mpright(A, 1, A); mpright(B, 1, B); } // print("%B %B %B %B %B %B\n", u, v, A, B, C, D); while(iseven(v)){ mpright(v, 1, v); if(!iseven(C) || !iseven(D)) { mpadd(C, b, C); mpsub(D, a, D); } mpright(C, 1, C); mpright(D, 1, D); } // print("%B %B %B %B %B %B\n", u, v, A, B, C, D); if(mpcmp(u, v) >= 0){ mpsub(u, v, u); mpsub(A, C, A); mpsub(B, D, B); } else { mpsub(v, u, v); mpsub(C, A, C); mpsub(D, B, D); } if(u->top == 0) break; } mpassign(C, x); mpassign(D, y); mpleft(v, g, v); mpfree(A); mpfree(B); mpfree(C); mpfree(D); mpfree(u); mpfree(a); mpfree(b); }
RSApriv* rsagen(int nlen, int elen, int rounds) { mpint *p, *q, *e, *d, *phi, *n, *t1, *t2, *kp, *kq, *c2; RSApriv *rsa; p = mpnew(nlen/2); q = mpnew(nlen/2); n = mpnew(nlen); e = mpnew(elen); d = mpnew(0); phi = mpnew(nlen); // create the prime factors and euclid's function genprime(p, nlen/2, rounds); genprime(q, nlen - mpsignif(p) + 1, rounds); mpmul(p, q, n); mpsub(p, mpone, e); mpsub(q, mpone, d); mpmul(e, d, phi); // find an e relatively prime to phi t1 = mpnew(0); t2 = mpnew(0); mprand(elen, genrandom, e); if(mpcmp(e,mptwo) <= 0) itomp(3, e); // See Menezes et al. p.291 "8.8 Note (selecting primes)" for discussion // of the merits of various choices of primes and exponents. e=3 is a // common and recommended exponent, but doesn't necessarily work here // because we chose strong rather than safe primes. for(;;){ mpextendedgcd(e, phi, t1, d, t2); if(mpcmp(t1, mpone) == 0) break; mpadd(mpone, e, e); } mpfree(t1); mpfree(t2); // compute chinese remainder coefficient c2 = mpnew(0); mpinvert(p, q, c2); // for crt a**k mod p == (a**(k mod p-1)) mod p kq = mpnew(0); kp = mpnew(0); mpsub(p, mpone, phi); mpmod(d, phi, kp); mpsub(q, mpone, phi); mpmod(d, phi, kq); rsa = rsaprivalloc(); rsa->pub.ek = e; rsa->pub.n = n; rsa->dk = d; rsa->kp = kp; rsa->kq = kq; rsa->p = p; rsa->q = q; rsa->c2 = c2; mpfree(phi); return rsa; }
static int dorsa(mpint *mod, mpint *exp, mpint *chal, uint8_t chalbuf[32]) { int afd; AuthRpc *rpc; mpint *m; char buf[4096], *p; mpint *decr, *unpad; USED(exp); snprint(buf, sizeof buf, "proto=rsa service=ssh role=client"); if((afd = open("/mnt/factotum/rpc", ORDWR)) < 0){ debug(DBG_AUTH, "open /mnt/factotum/rpc: %r\n"); return -1; } if((rpc = auth_allocrpc(afd)) == nil){ debug(DBG_AUTH, "auth_allocrpc: %r\n"); close(afd); return -1; } if(auth_rpc(rpc, "start", buf, strlen(buf)) != ARok){ debug(DBG_AUTH, "auth_rpc start failed: %r\n"); Die: auth_freerpc(rpc); close(afd); return -1; } m = nil; debug(DBG_AUTH, "trying factotum rsa keys\n"); while(auth_rpc(rpc, "read", nil, 0) == ARok){ debug(DBG_AUTH, "try %s\n", (char*)rpc->arg); m = strtomp(rpc->arg, nil, 16, nil); if(mpcmp(m, mod) == 0) break; mpfree(m); m = nil; } if(m == nil) goto Die; mpfree(m); p = mptoa(chal, 16, nil, 0); if(p == nil){ debug(DBG_AUTH, "\tmptoa failed: %r\n"); goto Die; } if(auth_rpc(rpc, "write", p, strlen(p)) != ARok){ debug(DBG_AUTH, "\tauth_rpc write failed: %r\n"); free(p); goto Die; } free(p); if(auth_rpc(rpc, "read", nil, 0) != ARok){ debug(DBG_AUTH, "\tauth_rpc read failed: %r\n"); goto Die; } decr = strtomp(rpc->arg, nil, 16, nil); if(decr == nil){ debug(DBG_AUTH, "\tdecr %s failed\n", rpc->arg); goto Die; } debug(DBG_AUTH, "\tdecrypted %B\n", decr); unpad = rsaunpad(decr); if(unpad == nil){ debug(DBG_AUTH, "\tunpad %B failed\n", decr); mpfree(decr); goto Die; } debug(DBG_AUTH, "\tunpadded %B\n", unpad); mpfree(decr); mptoberjust(unpad, chalbuf, 32); mpfree(unpad); auth_freerpc(rpc); close(afd); return 0; }
void sshserverhandshake(Conn *c) { char *p, buf[128]; Biobuf *b; Attr *a; int i, afd; mpint *m; AuthRpc *rpc; RSApub *key; /* * BUG: should use `attr' to get the key attributes * after the read, but that's not implemented yet. */ if((b = Bopen("/mnt/factotum/ctl", OREAD)) == nil) sysfatal("open /mnt/factotum/ctl: %r"); while((p = Brdline(b, '\n')) != nil){ p[Blinelen(b)-1] = '\0'; if(strstr(p, " proto=rsa ") && strstr(p, " service=sshserve ")) break; } if(p == nil) sysfatal("no sshserve keys found in /mnt/factotum/ctl"); a = _parseattr(p); Bterm(b); key = emalloc(sizeof(*key)); if((p = _strfindattr(a, "n")) == nil) sysfatal("no n in sshserve key"); if((key->n = strtomp(p, &p, 16, nil)) == nil || *p != 0) sysfatal("bad n in sshserve key"); if((p = _strfindattr(a, "ek")) == nil) sysfatal("no ek in sshserve key"); if((key->ek = strtomp(p, &p, 16, nil)) == nil || *p != 0) sysfatal("bad ek in sshserve key"); _freeattr(a); if((afd = open("/mnt/factotum/rpc", ORDWR)) < 0) sysfatal("open /mnt/factotum/rpc: %r"); if((rpc = auth_allocrpc(afd)) == nil) sysfatal("auth_allocrpc: %r"); p = "proto=rsa role=client service=sshserve"; if(auth_rpc(rpc, "start", p, strlen(p)) != ARok) sysfatal("auth_rpc start %s: %r", p); if(auth_rpc(rpc, "read", nil, 0) != ARok) sysfatal("auth_rpc read: %r"); m = strtomp(rpc->arg, nil, 16, nil); if(mpcmp(m, key->n) != 0) sysfatal("key in /mnt/factotum/ctl does not match rpc key"); mpfree(m); c->hostkey = key; /* send id string */ fprint(c->fd[0], "SSH-1.5-Plan9\n"); /* receive id string */ if(readstrnl(c->fd[0], buf, sizeof buf) < 0) sysfatal("reading server version: %r"); /* id string is "SSH-m.n-comment". We need m=1, n>=5. */ if(strncmp(buf, "SSH-", 4) != 0 || strtol(buf+4, &p, 10) != 1 || *p != '.' || strtol(p+1, &p, 10) < 5 || *p != '-') sysfatal("protocol mismatch; got %s, need SSH-1.x for x>=5", buf); for(i=0; i<COOKIELEN; i++) c->cookie[i] = fastrand(); calcsessid(c); send_ssh_smsg_public_key(c); recv_ssh_cmsg_session_key(c, rpc); auth_freerpc(rpc); close(afd); c->cstate = (*c->cipher->init)(c, 1); /* turns on encryption */ sendmsg(allocmsg(c, SSH_SMSG_SUCCESS, 0)); authsrvuser(c); }
void ecadd(ECdomain *dom, ECpoint *a, ECpoint *b, ECpoint *s) { mpint *l, *k, *sx, *sy; if(a->inf && b->inf){ s->inf = 1; return; } if(a->inf){ ecassign(dom, b, s); return; } if(b->inf){ ecassign(dom, a, s); return; } if(mpcmp(a->x, b->x) == 0 && (mpcmp(a->y, mpzero) == 0 || mpcmp(a->y, b->y) != 0)){ s->inf = 1; return; } l = mpnew(0); k = mpnew(0); sx = mpnew(0); sy = mpnew(0); if(mpcmp(a->x, b->x) == 0 && mpcmp(a->y, b->y) == 0){ mpadd(mpone, mptwo, k); mpmul(a->x, a->x, l); mpmul(l, k, l); mpadd(l, dom->a, l); mpleft(a->y, 1, k); mpmod(k, dom->p, k); mpinvert(k, dom->p, k); mpmul(k, l, l); mpmod(l, dom->p, l); mpleft(a->x, 1, k); mpmul(l, l, sx); mpsub(sx, k, sx); mpmod(sx, dom->p, sx); mpsub(a->x, sx, sy); mpmul(l, sy, sy); mpsub(sy, a->y, sy); mpmod(sy, dom->p, sy); mpassign(sx, s->x); mpassign(sy, s->y); mpfree(sx); mpfree(sy); mpfree(l); mpfree(k); return; } mpsub(b->y, a->y, l); mpmod(l, dom->p, l); mpsub(b->x, a->x, k); mpmod(k, dom->p, k); mpinvert(k, dom->p, k); mpmul(k, l, l); mpmod(l, dom->p, l); mpmul(l, l, sx); mpsub(sx, a->x, sx); mpsub(sx, b->x, sx); mpmod(sx, dom->p, sx); mpsub(a->x, sx, sy); mpmul(sy, l, sy); mpsub(sy, a->y, sy); mpmod(sy, dom->p, sy); mpassign(sx, s->x); mpassign(sy, s->y); mpfree(sx); mpfree(sy); mpfree(l); mpfree(k); }