int mpf_const_le10(mp_float * a) { int err; long eps; err = MP_OKAY; if (mpf_le10_precision > 0 && a == NULL) { mpf_clear(&mpf_le10); mpf_le10_precision = 0; return err; } if (mpf_le10_precision >= a->radix) { eps = a->radix; if ((err = mpf_copy(&mpf_le10, a)) != MP_OKAY) { return err; } return mpf_normalize_to(a, eps); } else { if (mpf_le10_precision == 0) { if ((err = mpf_init(&mpf_le10, a->radix)) != MP_OKAY) { return err; } } if ((err = machin_ln_10(&mpf_le10)) != MP_OKAY) { return err; } if ((err = mpf_copy(&mpf_le10, a)) != MP_OKAY) { return err; } } return MP_OKAY; }
// TODO: adjust sign int mpf_gamma(mp_float * a, mp_float * b) { int err; long oldeps, eps; mp_float t; err = MP_OKAY; oldeps = a->radix; eps = oldeps + MP_DIGIT_BIT; if ((err = mpf_init(&t, oldeps)) != MP_OKAY) { return err; } if ((err = mpf_copy(a, &t)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&t, eps)) != MP_OKAY) { goto _ERR; } if ((err = mpf_lngamma(&t, &t)) != MP_OKAY) { goto _ERR; } if ((err = mpf_exp(&t, &t)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&t, oldeps)) != MP_OKAY) { goto _ERR; } mpf_exch(&t, b); _ERR: mpf_clear(&t); return err; }
int mpf_const_eps(mp_float * a) { int err; long eps; err = MP_OKAY; if (mpf_eps_precision > 0 && a == NULL) { mpf_clear(&mpf_eps); mpf_eps_precision = 0; return err; } if (mpf_eps_precision >= a->radix) { eps = a->radix; if ((err = mpf_copy(&mpf_eps, a)) != MP_OKAY) { return err; } return mpf_normalize_to(a, eps); } else { if (mpf_eps_precision == 0) { if (mpf_eps.mantissa.dp != NULL) { mpf_clear(&mpf_eps); } if ((err = mpf_init(&mpf_eps, a->radix)) != MP_OKAY) { return err; } } if ((err = mpf_const_d(&mpf_eps, 1)) != MP_OKAY) { return err; } mpf_eps.exp = -(2 * mpf_eps.radix); if ((err = mpf_copy(&mpf_eps, a)) != MP_OKAY) { return err; } } return MP_OKAY; }
int mpf_frexp(mp_float * a, mp_float * b, long *exp) { int err; if (mpf_isinf(a) || mpf_isnan(a) || mpf_iszero(a)) { if ((err = mpf_copy(a, b)) != MP_OKAY) { return err; } *exp = 0; return MP_OKAY; } *exp = a->exp + a->radix; b->exp = -a->radix; b->radix = a->radix; if ((err = mp_copy(&a->mantissa, &b->mantissa)) != MP_OKAY) { return err; } return MP_OKAY; }
// only (exp(log(gamma(a)))) for now int mpf_lngamma(mp_float * a, mp_float * b) { int oldeps, eps, err, n, accuracy; size_t A; mp_float z, ONE, factrl, e, pi, t1, t2, t3, sum; err = MP_OKAY; if (mpf_iszero(a)) { // raise singularity error return MP_VAL; } // Check is expensive and inexact. // if(mpf_isint(a){...} // very near zero if (a->exp + a->radix < -(a->radix)) { if ((err = mpf_ln(a, b)) != MP_OKAY) { return err; } return err; } oldeps = a->radix; if (reflection == 1) { // angst-allowance seemed not necessary // TODO: check if that is really true eps = oldeps; } else { accuracy = oldeps + MP_DIGIT_BIT; A = (size_t) ceil(0.37714556279552730250018797240191093794 * accuracy); // We need to compute the coefficients as exact as possible, so // increase the working precision acccording to the largest coefficient // TODO: probably too much eps = ((accuracy * 116) / 100); if ((err = fill_spougecache(A, accuracy, eps)) != MP_OKAY) { return err; } } if ((err = mpf_init_multi(eps, &z, &ONE, &factrl, &e, &t1, &t2, &t3, &sum, NULL)) != MP_OKAY) { return err; } if ((err = mpf_copy(a, &z)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&z, eps)) != MP_OKAY) { goto _ERR; } if ((err = mpf_set_int(&ONE, 1)) != MP_OKAY) { goto _ERR; } // printf("splen = %u, A = %u, seps = %ld, acc = %d\n", // spougecache_len , A , spougecache_eps , accuracy); if (a->mantissa.sign == MP_NEG) { // eps = oldeps + 10; if ((err = mpf_copy(a, &z)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&z, eps)) != MP_OKAY) { goto _ERR; } if ((err = mpf_init(&pi, eps)) != MP_OKAY) { goto _ERR; } if ((err = mpf_const_pi(&pi)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&ONE, eps)) != MP_OKAY) { goto _ERR; } if ((err = mpf_sub(&ONE, &z, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mpf_mul(&pi, &z, &t2)) != MP_OKAY) { goto _ERR; } if ((err = mpf_sin(&t2, &t2)) != MP_OKAY) { goto _ERR; } if ((err = mpf_div(&pi, &t2, &t2)) != MP_OKAY) { goto _ERR; } t2.mantissa.sign = MP_ZPOS; if ((err = mpf_ln(&t2, &t2)) != MP_OKAY) { goto _ERR; } reflection = 1; if ((err = mpf_lngamma(&t1, &t1)) != MP_OKAY) { goto _ERR; } reflection = 0; if ((err = mpf_sub(&t2, &t1, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&t1, oldeps)) != MP_OKAY) { goto _ERR; } mpf_exch(&t1, b); goto _ERR; } if ((err = mpf_copy(&(spougecache[0]), &sum)) != MP_OKAY) { goto _ERR; } for (n = 1; n < (int) spougecache_len; n++) { if ((err = mpf_const_d(&t1, n)) != MP_OKAY) { goto _ERR; } if ((err = mpf_add(&z, &t1, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mpf_div(&(spougecache[n]), &t1, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mpf_add(&sum, &t1, &sum)) != MP_OKAY) { goto _ERR; } } if ((err = mpf_const_d(&t1, (int) spougecache_len)) != MP_OKAY) { goto _ERR; } if ((err = mpf_add(&z, &t1, &t1)) != MP_OKAY) { goto _ERR; } // 1/2 ONE.exp -= 1; //ret = log(sum) + (-(t1)) + log(t1) * (z + 1/2); // = log(sum) + t2 + log(t1) * (z + 1/2); // = log(sum) + t2 + log(t1) * t3 if ((err = mpf_neg(&t1, &t2)) != MP_OKAY) { goto _ERR; } if ((err = mpf_add(&z, &ONE, &t3)) != MP_OKAY) { goto _ERR; } if ((err = mpf_ln(&sum, &sum)) != MP_OKAY) { goto _ERR; } if ((err = mpf_ln(&t1, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mpf_mul(&t1, &t3, &t3)) != MP_OKAY) { goto _ERR; } if ((err = mpf_add(&sum, &t2, &sum)) != MP_OKAY) { goto _ERR; } if ((err = mpf_add(&sum, &t3, &sum)) != MP_OKAY) { goto _ERR; } // ret = ret - log(z) if ((err = mpf_ln(&z, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mpf_sub(&sum, &t1, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&t1, oldeps)) != MP_OKAY) { goto _ERR; } mpf_exch(&t1, b); _ERR: mpf_clear_multi(&z, &ONE, &factrl, &e, &t1, &t2, &t3, &sum, NULL); return err; }
int mpf_trig_arg_reduct(mp_float * a, mp_float * b, int *k) { int err, sign; mp_float pi, pihalf, piquart, r, x, three, one, K; long size, oldeps, eps, oldprec, newprec; if (mpf_iszero(a)) { *k = 0; return mpf_copy(a, b); } oldeps = a->radix; eps = oldeps + 10; err = MP_OKAY; if ((err = mpf_init_multi(eps, &pi, &pihalf, &piquart, &r, &x, &three, &one, &K, NULL)) != MP_OKAY) { return err; } if ((err = mpf_abs(a, &x)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&x, eps)) != MP_OKAY) { goto _ERR; } if ((err = mpf_const_d(&three, 3)) != MP_OKAY) { goto _ERR; } if ((err = mpf_const_pi(&pi)) != MP_OKAY) { goto _ERR; } if ((err = mpf_const_pi(&pihalf)) != MP_OKAY) { goto _ERR; } pihalf.exp -= 1; if ((err = mpf_const_pi(&piquart)) != MP_OKAY) { goto _ERR; } piquart.exp -= 1; // nothing to do if it is already small enough if (mpf_cmp(&x, &piquart) != MP_GT) { if ((err = mpf_copy(a, b)) != MP_OKAY) { goto _ERR; } *k = 0; goto _ERR; } // it starts to get tricky for x < 3pi/4 especially around pi/2 // but not for the reduction part if ((err = mpf_mul(&three, &piquart, &three)) != MP_OKAY) { goto _ERR; } if (mpf_cmp(&x, &three) == MP_LT) { if ((err = mpf_sub(&x, &pihalf, &x)) != MP_OKAY) { goto _ERR; } x.mantissa.sign = a->mantissa.sign; if ((err = mpf_copy(&x, b)) != MP_OKAY) { goto _ERR; } *k = 1; goto _ERR; } sign = a->mantissa.sign; // size of integer part in bits size = a->radix + a->exp; if (size < 0) { size = 0; } // Reduction must be done in precision // work_precision_(base 2) + log_2(x) // if we have an integer part // But the main problem with such large numbers lies in the loss of accuracy // in the original number. That needs to get caught in the calling function. oldprec = eps; if (size > 0) { newprec = oldprec + size + 3; } else { newprec = oldprec + 3; } // we need as many digits of pi as there are digits in the integer part of the // number, so for e.g.: 1e308 we need 308 decimal digits of pi. // Computing that much may take a while. // Compute remainder of x/Pi/2 if ((err = mpf_normalize_to(&pi, newprec)) != MP_OKAY) { goto _ERR; } if ((err = mpf_const_pi(&pi)) != MP_OKAY) { goto _ERR; } // k = round(x * 2/Pi) if ((err = mpf_normalize_to(&x, newprec)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&K, newprec)) != MP_OKAY) { goto _ERR; } // multiply by two x.exp += 1; if ((err = mpf_div(&x, &pi, &K)) != MP_OKAY) { goto _ERR; } if ((err = mpf_round(&K, &K)) != MP_OKAY) { goto _ERR; } // undo multiplying by two x.exp -= 1; // r = x - k * Pi/2 if ((err = mpf_normalize_to(&r, newprec)) != MP_OKAY) { goto _ERR; } pi.exp -= 1; if ((err = mpf_mul(&K, &pi, &pi)) != MP_OKAY) { goto _ERR; } if ((err = mpf_sub(&x, &pi, &r)) != MP_OKAY) { goto _ERR; } // TODO: check for size of "size" and don't delete pi if "size" is moderate // mpf_const_pi(NULL); if ((err = mp_div_2d(&K.mantissa, abs(K.exp), &K.mantissa, NULL)) != MP_OKAY) { goto _ERR; } if ((err = mpf_normalize_to(&r, oldprec)) != MP_OKAY) { goto _ERR; } // we need the last two bits only *k = K.mantissa.dp[0]; r.mantissa.sign = a->mantissa.sign; mpf_copy(&r, b); err = MP_OKAY; _ERR: mpf_clear_multi(&pi, &pihalf, &piquart, &r, &x, &three, &one, &K, NULL); return err; }
/* using sin x == \sum_{n=0}^{\infty} ((-1)^n/(2n+1)!) * x^(2n+1) */ int mpf_sin(mp_float *a, mp_float *b) { mp_float oldval, tmpovern, tmp, tmpx, res, sqr; int oddeven, err, itts; long n; /* initialize temps */ if ((err = mpf_init_multi(b->radix, &oldval, &tmpx, &tmpovern, &tmp, &res, &sqr, NULL)) != MP_OKAY) { return err; } /* initlialize temps */ /* this is the 1/n! which starts at 1 */ if ((err = mpf_const_d(&tmpovern, 1)) != MP_OKAY) { goto __ERR; } /* the square of the input, used to save multiplications later */ if ((err = mpf_sqr(a, &sqr)) != MP_OKAY) { goto __ERR; } /* tmpx starts at the input, so we copy and normalize */ if ((err = mpf_copy(a, &tmpx)) != MP_OKAY) { goto __ERR; } tmpx.radix = b->radix; if ((err = mpf_normalize(&tmpx)) != MP_OKAY) { goto __ERR; } /* the result starts off at a as we skip a term in the series */ if ((err = mpf_copy(&tmpx, &res)) != MP_OKAY) { goto __ERR; } /* this is the denom counter. Goes up by two per pass */ n = 1; /* we alternate between adding and subtracting */ oddeven = 1; /* get number of iterations */ itts = mpf_iterations(b); while (itts-- > 0) { if ((err = mpf_copy(&res, &oldval)) != MP_OKAY) { goto __ERR; } /* compute 1/(2n)! from 1/(2(n-1))! by multiplying by (1/n)(1/(n+1)) */ if ((err = mpf_const_d(&tmp, ++n)) != MP_OKAY) { goto __ERR; } if ((err = mpf_inv(&tmp, &tmp)) != MP_OKAY) { goto __ERR; } if ((err = mpf_mul(&tmpovern, &tmp, &tmpovern)) != MP_OKAY) { goto __ERR; } /* we do this twice */ if ((err = mpf_const_d(&tmp, ++n)) != MP_OKAY) { goto __ERR; } if ((err = mpf_inv(&tmp, &tmp)) != MP_OKAY) { goto __ERR; } if ((err = mpf_mul(&tmpovern, &tmp, &tmpovern)) != MP_OKAY) { goto __ERR; } /* now multiply sqr into tmpx */ if ((err = mpf_mul(&tmpx, &sqr, &tmpx)) != MP_OKAY) { goto __ERR; } /* now multiply the two */ if ((err = mpf_mul(&tmpx, &tmpovern, &tmp)) != MP_OKAY) { goto __ERR; } /* now depending on if this is even or odd we add/sub */ oddeven ^= 1; if (oddeven == 1) { if ((err = mpf_add(&res, &tmp, &res)) != MP_OKAY) { goto __ERR; } } else { if ((err = mpf_sub(&res, &tmp, &res)) != MP_OKAY) { goto __ERR; } } if (mpf_cmp(&res, &oldval) == MP_EQ) { break; } } mpf_exch(&res, b); __ERR: mpf_clear_multi(&oldval, &tmpx, &tmpovern, &tmp, &res, &sqr, NULL); return err; }