示例#1
0
SeedValue seed_mpfr_round (SeedContext ctx,
                           SeedObject function,
                           SeedObject this_object,
                           gsize argument_count,
                           const SeedValue args[],
                           SeedException *exception)
{
    mpfr_ptr rop, op;
    gint ret;

    CHECK_ARG_COUNT("mpfr.round", 1);

    rop = seed_object_get_private(this_object);

    if ( seed_value_is_object_of_class(ctx, args[0], mpfr_class) )
    {
        op = seed_object_get_private(args[0]);
    }
    else
    {
        TYPE_EXCEPTION("mpfr.round", "mpfr_t");
    }

    ret = mpfr_round(rop, op);

    return seed_value_from_int(ctx, ret, exception);
}
示例#2
0
/**
 * rasqal_xsd_decimal_round:
 * @result: result variable
 * @a: argment decimal
 * 
 * Return the number with no fractional part closes to argument for an XSD Decimal
 *
 * Return value: non-0 on failure
 **/
int
rasqal_xsd_decimal_round(rasqal_xsd_decimal* result, rasqal_xsd_decimal* a)
{
  int rc = 0;
#ifdef RASQAL_DECIMAL_GMP
  mpf_t b;
  mpf_t c;
#endif
  
  rasqal_xsd_decimal_clear_string(result);
  
#if defined(RASQAL_DECIMAL_C99) || defined(RASQAL_DECIMAL_NONE)
  result->raw = round(a->raw);
#endif
#ifdef RASQAL_DECIMAL_MPFR
  mpfr_round(result->raw, a->raw);
#endif
#ifdef RASQAL_DECIMAL_GMP
  /* GMP has no mpf_round so use result := floor(a + 0.5) */
  mpf_init2(b, a->precision_bits);
  mpf_init2(c, a->precision_bits);

  mpf_set_d(b, 0.5);
  mpf_add(c, a->raw, b);
  mpf_floor(result->raw, c);

  mpf_clear(b);
  mpf_clear(c);
#endif

  return rc;
}
示例#3
0
decimal r_round(const decimal& a)
{
#ifdef USE_CGAL
	CGAL::Gmpfr m;
	CGAL::Gmpfr n=to_gmpfr(a);
	mpfr_round(m.fr(),n.fr());
	return decimal(m);
#else
	return round(a);
#endif
}
示例#4
0
文件: global.c 项目: cyphar/synge
static int synge_int_rand(synge_t to, synge_t number, mpfr_rnd_t round) {
	/* round input */
	mpfr_floor(number, number);

	/* get random number */
	synge_rand(to, number, round);

	/* round output */
	mpfr_round(to, to);
	return 0;
} /* synge_int_rand() */
示例#5
0
void _arith_euler_number_zeta(fmpz_t res, ulong n)
{
    mpz_t r;
    mpfr_t t, z, pi;
    mp_bitcnt_t prec, pi_prec;

    if (n % 2)
    {
        fmpz_zero(res);
        return;
    }

    if (n < SMALL_EULER_LIMIT)
    {
        fmpz_set_ui(res, euler_number_small[n / 2]);
        if (n % 4 == 2)
            fmpz_neg(res, res);
        return;
    }

    prec = arith_euler_number_size(n) + 10;
    pi_prec = prec + FLINT_BIT_COUNT(n);

    mpz_init(r);
    mpfr_init2(t, prec);
    mpfr_init2(z, prec);
    mpfr_init2(pi, pi_prec);

    flint_mpz_fac_ui(r, n);
    mpfr_set_z(t, r, GMP_RNDN);
    mpfr_mul_2exp(t, t, n + 2, GMP_RNDN);

    /* pi^(n + 1) * L(n+1) */
    mpfr_zeta_inv_euler_product(z, n + 1, 1);
    mpfr_const_pi(pi, GMP_RNDN);
    mpfr_pow_ui(pi, pi, n + 1, GMP_RNDN);
    mpfr_mul(z, z, pi, GMP_RNDN);

    mpfr_div(t, t, z, GMP_RNDN);

    /* round */
    mpfr_round(t, t);
    mpfr_get_z(r, t, GMP_RNDN);
    fmpz_set_mpz(res, r);

    if (n % 4 == 2)
        fmpz_neg(res, res);

    mpz_clear(r);
    mpfr_clear(t);
    mpfr_clear(z);
    mpfr_clear(pi);
}
示例#6
0
int
mpfr_rint_round (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
    return mpfr_set (r, u, rnd_mode);
  else
    {
      mpfr_t tmp;
      int inex;
      unsigned int saved_flags = __gmpfr_flags;
      MPFR_BLOCK_DECL (flags);

      mpfr_init2 (tmp, MPFR_PREC (u));
      /* round(u) is representable in tmp unless an overflow occurs */
      MPFR_BLOCK (flags, mpfr_round (tmp, u));
      __gmpfr_flags = saved_flags;
      inex = (MPFR_OVERFLOW (flags)
              ? mpfr_overflow (r, rnd_mode, MPFR_SIGN (u))
              : mpfr_set (r, tmp, rnd_mode));
      mpfr_clear (tmp);
      return inex;
    }
}
示例#7
0
int
mpfr_rint_round (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
    return mpfr_set (r, u, rnd_mode);
  else
    {
      mpfr_t tmp;
      int inex;
      MPFR_SAVE_EXPO_DECL (expo);
      MPFR_BLOCK_DECL (flags);

      MPFR_SAVE_EXPO_MARK (expo);
      mpfr_init2 (tmp, MPFR_PREC (u));
      /* round(u) is representable in tmp unless an overflow occurs */
      MPFR_BLOCK (flags, mpfr_round (tmp, u));
      inex = (MPFR_OVERFLOW (flags)
              ? mpfr_overflow (r, rnd_mode, MPFR_SIGN (u))
              : mpfr_set (r, tmp, rnd_mode));
      mpfr_clear (tmp);
      MPFR_SAVE_EXPO_FREE (expo);
      return mpfr_check_range (r, inex, rnd_mode);
    }
}
示例#8
0
文件: pow.c 项目: Distrotech/mpfr
/* Assumes that the exponent range has already been extended and if y is
   an integer, then the result is not exact in unbounded exponent range. */
int
mpfr_pow_general (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y,
                  mpfr_rnd_t rnd_mode, int y_is_integer, mpfr_save_expo_t *expo)
{
  mpfr_t t, u, k, absx;
  int neg_result = 0;
  int k_non_zero = 0;
  int check_exact_case = 0;
  int inexact;
  /* Declaration of the size variable */
  mpfr_prec_t Nz = MPFR_PREC(z);               /* target precision */
  mpfr_prec_t Nt;                              /* working precision */
  mpfr_exp_t err;                              /* error */
  MPFR_ZIV_DECL (ziv_loop);


  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x,
      mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
     ("z[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (z), mpfr_log_prec, z, inexact));

  /* We put the absolute value of x in absx, pointing to the significand
     of x to avoid allocating memory for the significand of absx. */
  MPFR_ALIAS(absx, x, /*sign=*/ 1, /*EXP=*/ MPFR_EXP(x));

  /* We will compute the absolute value of the result. So, let's
     invert the rounding mode if the result is negative. */
  if (MPFR_IS_NEG (x) && is_odd (y))
    {
      neg_result = 1;
      rnd_mode = MPFR_INVERT_RND (rnd_mode);
    }

  /* compute the precision of intermediary variable */
  /* the optimal number of bits : see algorithms.tex */
  Nt = Nz + 5 + MPFR_INT_CEIL_LOG2 (Nz);

  /* initialise of intermediary variable */
  mpfr_init2 (t, Nt);

  MPFR_ZIV_INIT (ziv_loop, Nt);
  for (;;)
    {
      MPFR_BLOCK_DECL (flags1);

      /* compute exp(y*ln|x|), using MPFR_RNDU to get an upper bound, so
         that we can detect underflows. */
      mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDD : MPFR_RNDU); /* ln|x| */
      mpfr_mul (t, y, t, MPFR_RNDU);                              /* y*ln|x| */
      if (k_non_zero)
        {
          MPFR_LOG_MSG (("subtract k * ln(2)\n", 0));
          mpfr_const_log2 (u, MPFR_RNDD);
          mpfr_mul (u, u, k, MPFR_RNDD);
          /* Error on u = k * log(2): < k * 2^(-Nt) < 1. */
          mpfr_sub (t, t, u, MPFR_RNDU);
          MPFR_LOG_MSG (("t = y * ln|x| - k * ln(2)\n", 0));
          MPFR_LOG_VAR (t);
        }
      /* estimate of the error -- see pow function in algorithms.tex.
         The error on t is at most 1/2 + 3*2^(EXP(t)+1) ulps, which is
         <= 2^(EXP(t)+3) for EXP(t) >= -1, and <= 2 ulps for EXP(t) <= -2.
         Additional error if k_no_zero: treal = t * errk, with
         1 - |k| * 2^(-Nt) <= exp(-|k| * 2^(-Nt)) <= errk <= 1,
         i.e., additional absolute error <= 2^(EXP(k)+EXP(t)-Nt).
         Total error <= 2^err1 + 2^err2 <= 2^(max(err1,err2)+1). */
      err = MPFR_NOTZERO (t) && MPFR_GET_EXP (t) >= -1 ?
        MPFR_GET_EXP (t) + 3 : 1;
      if (k_non_zero)
        {
          if (MPFR_GET_EXP (k) > err)
            err = MPFR_GET_EXP (k);
          err++;
        }
      MPFR_BLOCK (flags1, mpfr_exp (t, t, MPFR_RNDN));  /* exp(y*ln|x|)*/
      /* We need to test */
      if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (t) || MPFR_UNDERFLOW (flags1)))
        {
          mpfr_prec_t Ntmin;
          MPFR_BLOCK_DECL (flags2);

          MPFR_ASSERTN (!k_non_zero);
          MPFR_ASSERTN (!MPFR_IS_NAN (t));

          /* Real underflow? */
          if (MPFR_IS_ZERO (t))
            {
              /* Underflow. We computed rndn(exp(t)), where t >= y*ln|x|.
                 Therefore rndn(|x|^y) = 0, and we have a real underflow on
                 |x|^y. */
              inexact = mpfr_underflow (z, rnd_mode == MPFR_RNDN ? MPFR_RNDZ
                                        : rnd_mode, MPFR_SIGN_POS);
              if (expo != NULL)
                MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
                                             | MPFR_FLAGS_UNDERFLOW);
              break;
            }

          /* Real overflow? */
          if (MPFR_IS_INF (t))
            {
              /* Note: we can probably use a low precision for this test. */
              mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDU : MPFR_RNDD);
              mpfr_mul (t, y, t, MPFR_RNDD);            /* y * ln|x| */
              MPFR_BLOCK (flags2, mpfr_exp (t, t, MPFR_RNDD));
              /* t = lower bound on exp(y * ln|x|) */
              if (MPFR_OVERFLOW (flags2))
                {
                  /* We have computed a lower bound on |x|^y, and it
                     overflowed. Therefore we have a real overflow
                     on |x|^y. */
                  inexact = mpfr_overflow (z, rnd_mode, MPFR_SIGN_POS);
                  if (expo != NULL)
                    MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
                                                 | MPFR_FLAGS_OVERFLOW);
                  break;
                }
            }

          k_non_zero = 1;
          Ntmin = sizeof(mpfr_exp_t) * CHAR_BIT;
          if (Ntmin > Nt)
            {
              Nt = Ntmin;
              mpfr_set_prec (t, Nt);
            }
          mpfr_init2 (u, Nt);
          mpfr_init2 (k, Ntmin);
          mpfr_log2 (k, absx, MPFR_RNDN);
          mpfr_mul (k, y, k, MPFR_RNDN);
          mpfr_round (k, k);
          MPFR_LOG_VAR (k);
          /* |y| < 2^Ntmin, therefore |k| < 2^Nt. */
          continue;
        }
      if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Nz, rnd_mode)))
        {
          inexact = mpfr_set (z, t, rnd_mode);
          break;
        }

      /* check exact power, except when y is an integer (since the
         exact cases for y integer have already been filtered out) */
      if (check_exact_case == 0 && ! y_is_integer)
        {
          if (mpfr_pow_is_exact (z, absx, y, rnd_mode, &inexact))
            break;
          check_exact_case = 1;
        }

      /* reactualisation of the precision */
      MPFR_ZIV_NEXT (ziv_loop, Nt);
      mpfr_set_prec (t, Nt);
      if (k_non_zero)
        mpfr_set_prec (u, Nt);
    }
  MPFR_ZIV_FREE (ziv_loop);

  if (k_non_zero)
    {
      int inex2;
      long lk;

      /* The rounded result in an unbounded exponent range is z * 2^k. As
       * MPFR chooses underflow after rounding, the mpfr_mul_2si below will
       * correctly detect underflows and overflows. However, in rounding to
       * nearest, if z * 2^k = 2^(emin - 2), then the double rounding may
       * affect the result. We need to cope with that before overwriting z.
       * This can occur only if k < 0 (this test is necessary to avoid a
       * potential integer overflow).
       * If inexact >= 0, then the real result is <= 2^(emin - 2), so that
       * o(2^(emin - 2)) = +0 is correct. If inexact < 0, then the real
       * result is > 2^(emin - 2) and we need to round to 2^(emin - 1).
       */
      MPFR_ASSERTN (MPFR_EXP_MAX <= LONG_MAX);
      lk = mpfr_get_si (k, MPFR_RNDN);
      /* Due to early overflow detection, |k| should not be much larger than
       * MPFR_EMAX_MAX, and as MPFR_EMAX_MAX <= MPFR_EXP_MAX/2 <= LONG_MAX/2,
       * an overflow should not be possible in mpfr_get_si (and lk is exact).
       * And one even has the following assertion. TODO: complete proof.
       */
      MPFR_ASSERTD (lk > LONG_MIN && lk < LONG_MAX);
      /* Note: even in case of overflow (lk inexact), the code is correct.
       * Indeed, for the 3 occurrences of lk:
       *   - The test lk < 0 is correct as sign(lk) = sign(k).
       *   - In the test MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk,
       *     if lk is inexact, then lk = LONG_MIN <= MPFR_EXP_MIN
       *     (the minimum value of the mpfr_exp_t type), and
       *     __gmpfr_emin - 1 - lk >= MPFR_EMIN_MIN - 1 - 2 * MPFR_EMIN_MIN
       *     >= - MPFR_EMIN_MIN - 1 = MPFR_EMAX_MAX - 1. However, from the
       *     choice of k, z has been chosen to be around 1, so that the
       *     result of the test is false, as if lk were exact.
       *   - In the mpfr_mul_2si (z, z, lk, rnd_mode), if lk is inexact,
       *     then |lk| >= LONG_MAX >= MPFR_EXP_MAX, and as z is around 1,
       *     mpfr_mul_2si underflows or overflows in the same way as if
       *     lk were exact.
       * TODO: give a bound on |t|, then on |EXP(z)|.
       */
      if (rnd_mode == MPFR_RNDN && inexact < 0 && lk < 0 &&
          MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk && mpfr_powerof2_raw (z))
        {
          /* Rounding to nearest, real result > z * 2^k = 2^(emin - 2),
           * underflow case: as the minimum precision is > 1, we will
           * obtain the correct result and exceptions by replacing z by
           * nextabove(z).
           */
          MPFR_ASSERTN (MPFR_PREC_MIN > 1);
          mpfr_nextabove (z);
        }
      MPFR_CLEAR_FLAGS ();
      inex2 = mpfr_mul_2si (z, z, lk, rnd_mode);
      if (inex2)  /* underflow or overflow */
        {
          inexact = inex2;
          if (expo != NULL)
            MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, __gmpfr_flags);
        }
      mpfr_clears (u, k, (mpfr_ptr) 0);
    }
  mpfr_clear (t);

  /* update the sign of the result if x was negative */
  if (neg_result)
    {
      MPFR_SET_NEG(z);
      inexact = -inexact;
    }

  return inexact;
}
示例#9
0
/* Function to calculate the expected number of unique codes 
   within each input success class                      */
void uniquecodes(mpfr_t *ucodes, int psiz, mpz_t n, unsigned long int mu, mpz_t ncodes ,mpfr_t *pdf,mpfr_prec_t prec)
{
//200 bits precision gives log[2^200] around 60 digits decimal precision
 mpfr_t unity;
 mpfr_init2(unity,prec);
 mpfr_set_ui(unity,(unsigned long int) 1,MPFR_RNDN);
 mpfr_t nunity;
 mpfr_init2(nunity,prec);
 mpfr_set_si(nunity,(signed long int) -1,MPFR_RNDN);
 mpz_t bcnum;
 mpz_init(bcnum);
 mpfr_t bcnumf;
 mpfr_init2(bcnumf,prec);
 mpq_t cfrac;
 mpq_init(cfrac);
 mpfr_t cfracf;
 mpfr_init2(cfracf,prec);
 mpfr_t expargr;
 mpfr_init2(expargr,prec); 			
 mpfr_t r1;
 mpfr_init2(r1,prec);
 mpfr_t r2;
 mpfr_init2(r2,prec);
// mpfr_t pdf[mu];
 unsigned long int i;
 int pdex;
 int addr;
// for(i=0;i<=mu;i++)
//  mpfr_init2(pdf[i],prec);
 
// inpdf(pdf,n,pin,mu,bcs,prec);

for(pdex=0;pdex<=psiz-1;pdex++)
{
 for(i=0;i<=mu;i++)
 {
  addr=pdex*(mu+1)+i;
  mpz_bin_ui(bcnum,n,i);
  mpq_set_num(cfrac,ncodes);
  mpq_set_den(cfrac,bcnum);
  mpq_canonicalize(cfrac);
  mpfr_set_q(cfracf,cfrac,MPFR_RNDN);
  mpfr_mul(expargr,cfracf,*(pdf+addr),MPFR_RNDN);   
  mpfr_mul(expargr,expargr,nunity,MPFR_RNDN);
  mpfr_exp(r1,expargr,MPFR_RNDN);      
  mpfr_sub(r1,unity,r1,MPFR_RNDN);
  mpfr_set_z(bcnumf,bcnum,MPFR_RNDN); 			
  mpfr_mul(r2,bcnumf,r1,MPFR_RNDN);
  mpfr_set((*ucodes+addr),r2,MPFR_RNDN);          
  mpfr_round((*ucodes+addr),(*ucodes+addr));
 } 
} 
 mpfr_clear(unity);
 mpfr_clear(nunity);
 mpz_clear(bcnum);
 mpfr_clear(bcnumf);
 mpq_clear(cfrac);
 mpfr_clear(cfracf);
 mpfr_clear(expargr);
 mpfr_clear(r1);
 mpfr_clear(r2);
// for(i=0;i<=mu;i++)
//  mpfr_clear(pdf[i]);
} 
示例#10
0
MpfrFloat MpfrFloat::round(const MpfrFloat& value)
{
    MpfrFloat retval(MpfrFloat::kNoInitialization);
    mpfr_round(retval.mData->mFloat, value.mData->mFloat);
    return retval;
}
示例#11
0
static PyObject *
GMPy_Real_DivMod_1(PyObject *x, PyObject *y, CTXT_Object *context)
{
    MPFR_Object *tempx = NULL, *tempy = NULL, *quo = NULL, *rem = NULL;
    PyObject *result = NULL;

    CHECK_CONTEXT(context);

    if (!(result = PyTuple_New(2)) ||
        !(rem = GMPy_MPFR_New(0, context)) ||
        !(quo = GMPy_MPFR_New(0, context))) {

        /* LCOV_EXCL_START */
        goto error;
        /* LCOV_EXCL_STOP */
    }

    if (IS_REAL(x) && IS_REAL(y)) {

        if (!(tempx = GMPy_MPFR_From_Real(x, 1, context)) ||
            !(tempy = GMPy_MPFR_From_Real(y, 1, context))) {

            /* LCOV_EXCL_START */
            goto error;
            /* LCOV_EXCL_STOP */
        }
        if (mpfr_zero_p(tempy->f)) {
            context->ctx.divzero = 1;
            if (context->ctx.traps & TRAP_DIVZERO) {
                GMPY_DIVZERO("divmod() division by zero");
                goto error;
            }
        }

        if (mpfr_nan_p(tempx->f) || mpfr_nan_p(tempy->f) || mpfr_inf_p(tempx->f)) {
            context->ctx.invalid = 1;
            if (context->ctx.traps & TRAP_INVALID) {
                GMPY_INVALID("divmod() invalid operation");
                goto error;
            }
            else {
                mpfr_set_nan(quo->f);
                mpfr_set_nan(rem->f);
            }
        }
        else if (mpfr_inf_p(tempy->f)) {
            context->ctx.invalid = 1;
            if (context->ctx.traps & TRAP_INVALID) {
                GMPY_INVALID("divmod() invalid operation");
                goto error;
            }
            if (mpfr_zero_p(tempx->f)) {
                mpfr_set_zero(quo->f, mpfr_sgn(tempy->f));
                mpfr_set_zero(rem->f, mpfr_sgn(tempy->f));
            }
            else if ((mpfr_signbit(tempx->f)) != (mpfr_signbit(tempy->f))) {
                mpfr_set_si(quo->f, -1, MPFR_RNDN);
                mpfr_set_inf(rem->f, mpfr_sgn(tempy->f));
            }
            else {
                mpfr_set_si(quo->f, 0, MPFR_RNDN);
                rem->rc = mpfr_set(rem->f, tempx->f, MPFR_RNDN);
            }
        }
        else {
            MPFR_Object *temp;

            if (!(temp = GMPy_MPFR_New(0, context))) {
                /* LCOV_EXCL_START */
                goto error;
                /* LCOV_EXCL_STOP */
            }
            mpfr_fmod(rem->f, tempx->f, tempy->f, MPFR_RNDN);
            mpfr_sub(temp->f, tempx->f, rem->f, MPFR_RNDN);
            mpfr_div(quo->f, temp->f, tempy->f, MPFR_RNDN);

            if (!mpfr_zero_p(rem->f)) {
                if ((mpfr_sgn(tempy->f) < 0) != (mpfr_sgn(rem->f) < 0)) {
                    mpfr_add(rem->f, rem->f, tempy->f, MPFR_RNDN);
                    mpfr_sub_ui(quo->f, quo->f, 1, MPFR_RNDN);
                }
            }
            else {
                mpfr_copysign(rem->f, rem->f, tempy->f, MPFR_RNDN);
            }

            if (!mpfr_zero_p(quo->f)) {
                mpfr_round(quo->f, quo->f);
            }
            else {
                mpfr_setsign(quo->f, quo->f, mpfr_sgn(tempx->f) * mpfr_sgn(tempy->f) - 1, MPFR_RNDN);
            }
            Py_DECREF((PyObject*)temp);
        }

        GMPY_MPFR_CHECK_RANGE(quo, context);
        GMPY_MPFR_CHECK_RANGE(rem, context);
        GMPY_MPFR_SUBNORMALIZE(quo, context);
        GMPY_MPFR_SUBNORMALIZE(rem, context);

        Py_DECREF((PyObject*)tempx);
        Py_DECREF((PyObject*)tempy);
        PyTuple_SET_ITEM(result, 0, (PyObject*)quo);
        PyTuple_SET_ITEM(result, 1, (PyObject*)rem);
        return (PyObject*)result;
    }

    /* LCOV_EXCL_START */
    SYSTEM_ERROR("Internal error in GMPy_Real_DivMod_1().");
  error:
    Py_XDECREF((PyObject*)tempx);
    Py_XDECREF((PyObject*)tempy);
    Py_XDECREF((PyObject*)rem);
    Py_XDECREF((PyObject*)quo);
    Py_XDECREF(result);
    return NULL;
    /* LCOV_EXCL_STOP */
}
示例#12
0
文件: trint.c 项目: epowers/mpfr
int
main (int argc, char *argv[])
{
  mp_size_t s;
  mpz_t z;
  mpfr_prec_t p;
  mpfr_t x, y, t, u, v;
  int r;
  int inexact, sign_t;

  tests_start_mpfr ();

  mpfr_init (x);
  mpfr_init (y);
  mpz_init (z);
  mpfr_init (t);
  mpfr_init (u);
  mpfr_init (v);
  mpz_set_ui (z, 1);
  for (s = 2; s < 100; s++)
    {
      /* z has exactly s bits */

      mpz_mul_2exp (z, z, 1);
      if (randlimb () % 2)
        mpz_add_ui (z, z, 1);
      mpfr_set_prec (x, s);
      mpfr_set_prec (t, s);
      mpfr_set_prec (u, s);
      if (mpfr_set_z (x, z, MPFR_RNDN))
        {
          printf ("Error: mpfr_set_z should be exact (s = %u)\n",
                  (unsigned int) s);
          exit (1);
        }
      if (randlimb () % 2)
        mpfr_neg (x, x, MPFR_RNDN);
      if (randlimb () % 2)
        mpfr_div_2ui (x, x, randlimb () % s, MPFR_RNDN);
      for (p = 2; p < 100; p++)
        {
          int trint;
          mpfr_set_prec (y, p);
          mpfr_set_prec (v, p);
          for (r = 0; r < MPFR_RND_MAX ; r++)
            for (trint = 0; trint < 3; trint++)
              {
                if (trint == 2)
                  inexact = mpfr_rint (y, x, (mpfr_rnd_t) r);
                else if (r == MPFR_RNDN)
                  inexact = mpfr_round (y, x);
                else if (r == MPFR_RNDZ)
                  inexact = (trint ? mpfr_trunc (y, x) :
                             mpfr_rint_trunc (y, x, MPFR_RNDZ));
                else if (r == MPFR_RNDU)
                  inexact = (trint ? mpfr_ceil (y, x) :
                             mpfr_rint_ceil (y, x, MPFR_RNDU));
                else /* r = MPFR_RNDD */
                  inexact = (trint ? mpfr_floor (y, x) :
                             mpfr_rint_floor (y, x, MPFR_RNDD));
                if (mpfr_sub (t, y, x, MPFR_RNDN))
                  err ("subtraction 1 should be exact",
                       s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                sign_t = mpfr_cmp_ui (t, 0);
                if (trint != 0 &&
                    (((inexact == 0) && (sign_t != 0)) ||
                     ((inexact < 0) && (sign_t >= 0)) ||
                     ((inexact > 0) && (sign_t <= 0))))
                  err ("wrong inexact flag", s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                if (inexact == 0)
                  continue; /* end of the test for exact results */

                if (((r == MPFR_RNDD || (r == MPFR_RNDZ && MPFR_SIGN (x) > 0))
                     && inexact > 0) ||
                    ((r == MPFR_RNDU || (r == MPFR_RNDZ && MPFR_SIGN (x) < 0))
                     && inexact < 0))
                  err ("wrong rounding direction",
                       s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                if (inexact < 0)
                  {
                    mpfr_add_ui (v, y, 1, MPFR_RNDU);
                    if (mpfr_cmp (v, x) <= 0)
                      err ("representable integer between x and its "
                           "rounded value", s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                  }
                else
                  {
                    mpfr_sub_ui (v, y, 1, MPFR_RNDD);
                    if (mpfr_cmp (v, x) >= 0)
                      err ("representable integer between x and its "
                           "rounded value", s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                  }
                if (r == MPFR_RNDN)
                  {
                    int cmp;
                    if (mpfr_sub (u, v, x, MPFR_RNDN))
                      err ("subtraction 2 should be exact",
                           s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                    cmp = mpfr_cmp_abs (t, u);
                    if (cmp > 0)
                      err ("faithful rounding, but not the nearest integer",
                           s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                    if (cmp < 0)
                      continue;
                    /* |t| = |u|: x is the middle of two consecutive
                       representable integers. */
                    if (trint == 2)
                      {
                        /* halfway case for mpfr_rint in MPFR_RNDN rounding
                           mode: round to an even integer or significand. */
                        mpfr_div_2ui (y, y, 1, MPFR_RNDZ);
                        if (!mpfr_integer_p (y))
                          err ("halfway case for mpfr_rint, result isn't an"
                               " even integer", s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                        /* If floor(x) and ceil(x) aren't both representable
                           integers, the significand must be even. */
                        mpfr_sub (v, v, y, MPFR_RNDN);
                        mpfr_abs (v, v, MPFR_RNDN);
                        if (mpfr_cmp_ui (v, 1) != 0)
                          {
                            mpfr_div_2si (y, y, MPFR_EXP (y) - MPFR_PREC (y)
                                          + 1, MPFR_RNDN);
                            if (!mpfr_integer_p (y))
                              err ("halfway case for mpfr_rint, significand isn't"
                                   " even", s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                          }
                      }
                    else
                      { /* halfway case for mpfr_round: x must have been
                           rounded away from zero. */
                        if ((MPFR_SIGN (x) > 0 && inexact < 0) ||
                            (MPFR_SIGN (x) < 0 && inexact > 0))
                          err ("halfway case for mpfr_round, bad rounding"
                               " direction", s, x, y, p, (mpfr_rnd_t) r, trint, inexact);
                      }
                  }
              }
        }
    }
  mpfr_clear (x);
  mpfr_clear (y);
  mpz_clear (z);
  mpfr_clear (t);
  mpfr_clear (u);
  mpfr_clear (v);

  special ();
  coverage_03032011 ();

#if __MPFR_STDC (199901L)
  if (argc > 1 && strcmp (argv[1], "-s") == 0)
    test_against_libc ();
#endif

  tests_end_mpfr ();
  return 0;
}
示例#13
0
文件: trint.c 项目: epowers/mpfr
static void
special (void)
{
  mpfr_t x, y;
  mpfr_exp_t emax;

  mpfr_init (x);
  mpfr_init (y);

  mpfr_set_nan (x);
  mpfr_rint (y, x, MPFR_RNDN);
  MPFR_ASSERTN(mpfr_nan_p (y));

  mpfr_set_inf (x, 1);
  mpfr_rint (y, x, MPFR_RNDN);
  MPFR_ASSERTN(mpfr_inf_p (y) && mpfr_sgn (y) > 0);

  mpfr_set_inf (x, -1);
  mpfr_rint (y, x, MPFR_RNDN);
  MPFR_ASSERTN(mpfr_inf_p (y) && mpfr_sgn (y) < 0);

  mpfr_set_ui (x, 0, MPFR_RNDN);
  mpfr_rint (y, x, MPFR_RNDN);
  MPFR_ASSERTN(mpfr_cmp_ui (y, 0) == 0 && MPFR_IS_POS(y));

  mpfr_set_ui (x, 0, MPFR_RNDN);
  mpfr_neg (x, x, MPFR_RNDN);
  mpfr_rint (y, x, MPFR_RNDN);
  MPFR_ASSERTN(mpfr_cmp_ui (y, 0) == 0 && MPFR_IS_NEG(y));

  /* coverage test */
  mpfr_set_prec (x, 2);
  mpfr_set_ui (x, 1, MPFR_RNDN);
  mpfr_mul_2exp (x, x, mp_bits_per_limb, MPFR_RNDN);
  mpfr_rint (y, x, MPFR_RNDN);
  MPFR_ASSERTN(mpfr_cmp (y, x) == 0);

  /* another coverage test */
  emax = mpfr_get_emax ();
  set_emax (1);
  mpfr_set_prec (x, 3);
  mpfr_set_str_binary (x, "1.11E0");
  mpfr_set_prec (y, 2);
  mpfr_rint (y, x, MPFR_RNDU); /* x rounds to 1.0E1=0.1E2 which overflows */
  MPFR_ASSERTN(mpfr_inf_p (y) && mpfr_sgn (y) > 0);
  set_emax (emax);

  /* yet another */
  mpfr_set_prec (x, 97);
  mpfr_set_prec (y, 96);
  mpfr_set_str_binary (x, "-0.1011111001101111000111011100011100000110110110110000000111010001000101001111101010101011010111100E97");
  mpfr_rint (y, x, MPFR_RNDN);
  MPFR_ASSERTN(mpfr_cmp (y, x) == 0);

  mpfr_set_prec (x, 53);
  mpfr_set_prec (y, 53);
  mpfr_set_str_binary (x, "0.10101100000000101001010101111111000000011111010000010E-1");
  mpfr_rint (y, x, MPFR_RNDU);
  MPFR_ASSERTN(mpfr_cmp_ui (y, 1) == 0);
  mpfr_rint (y, x, MPFR_RNDD);
  MPFR_ASSERTN(mpfr_cmp_ui (y, 0) == 0 && MPFR_IS_POS(y));

  mpfr_set_prec (x, 36);
  mpfr_set_prec (y, 2);
  mpfr_set_str_binary (x, "-11000110101010111111110111001.0000100");
  mpfr_rint (y, x, MPFR_RNDN);
  mpfr_set_str_binary (x, "-11E27");
  MPFR_ASSERTN(mpfr_cmp (y, x) == 0);

  mpfr_set_prec (x, 39);
  mpfr_set_prec (y, 29);
  mpfr_set_str_binary (x, "-0.100010110100011010001111001001001100111E39");
  mpfr_rint (y, x, MPFR_RNDN);
  mpfr_set_str_binary (x, "-0.10001011010001101000111100101E39");
  MPFR_ASSERTN(mpfr_cmp (y, x) == 0);

  mpfr_set_prec (x, 46);
  mpfr_set_prec (y, 32);
  mpfr_set_str_binary (x, "-0.1011100110100101000001011111101011001001101001E32");
  mpfr_rint (y, x, MPFR_RNDN);
  mpfr_set_str_binary (x, "-0.10111001101001010000010111111011E32");
  MPFR_ASSERTN(mpfr_cmp (y, x) == 0);

  /* coverage test for mpfr_round */
  mpfr_set_prec (x, 3);
  mpfr_set_str_binary (x, "1.01E1"); /* 2.5 */
  mpfr_set_prec (y, 2);
  mpfr_round (y, x);
  /* since mpfr_round breaks ties away, should give 3 and not 2 as with
     the "round to even" rule */
  MPFR_ASSERTN(mpfr_cmp_ui (y, 3) == 0);
  /* same test for the function */
  (mpfr_round) (y, x);
  MPFR_ASSERTN(mpfr_cmp_ui (y, 3) == 0);

  mpfr_set_prec (x, 6);
  mpfr_set_prec (y, 3);
  mpfr_set_str_binary (x, "110.111");
  mpfr_round (y, x);
  if (mpfr_cmp_ui (y, 7))
    {
      printf ("Error in round(110.111)\n");
      exit (1);
    }

  /* Bug found by  Mark J Watkins */
  mpfr_set_prec (x, 84);
  mpfr_set_str_binary (x,
   "0.110011010010001000000111101101001111111100101110010000000000000" \
                       "000000000000000000000E32");
  mpfr_round (x, x);
  if (mpfr_cmp_str (x, "0.1100110100100010000001111011010100000000000000" \
                    "00000000000000000000000000000000000000E32", 2, MPFR_RNDN))
    {
      printf ("Rounding error when dest=src\n");
      exit (1);
    }

  mpfr_clear (x);
  mpfr_clear (y);
}
示例#14
0
文件: trint.c 项目: mahdiz/mpclib
int
main (void)
{
  mp_size_t s;
  mpz_t z;
  mp_prec_t p;
  mpfr_t x, y, t;
  mp_rnd_t r;
  int inexact, sign_t;

  mpfr_init (x);
  mpfr_init (y);
  mpz_init (z);
  mpfr_init (t);
  mpz_set_ui (z, 1);
  for (s = 2; s < 100; s++)
    {
      /* z has exactly s bits */
      
      mpz_mul_2exp (z, z, 1);
      if (LONG_RAND () % 2)
        mpz_add_ui (z, z, 1);
      mpfr_set_prec (x, s);
      mpfr_set_prec (t, s);
      if (mpfr_set_z (x, z, GMP_RNDN))
        {
          fprintf (stderr, "Error: mpfr_set_z should be exact (s = %u)\n",
                   (unsigned int) s);
          exit (1);
        }
      for (p=2; p<100; p++)
        {
          mpfr_set_prec (y, p);
          for (r=0; r<4; r++)
            {
              if (r == GMP_RNDN)
                inexact = mpfr_round (y, x);
              else if (r == GMP_RNDZ)
                inexact = mpfr_trunc (y, x);
              else if (r == GMP_RNDU)
                inexact = mpfr_ceil (y, x);
              else /* r = GMP_RNDD */
                inexact = mpfr_floor (y, x);
              if (mpfr_sub (t, y, x, GMP_RNDN))
                {
                  fprintf (stderr, "Error: subtraction should be exact\n");
                  exit (1);
                }
              sign_t = mpfr_cmp_ui (t, 0);
              if (((inexact == 0) && (sign_t != 0)) ||
                  ((inexact < 0) && (sign_t >= 0)) ||
                  ((inexact > 0) && (sign_t <= 0)))
                {
                  fprintf (stderr, "Wrong inexact flag\n");
                  exit (1);
                }
            }
        }
    }
  mpfr_clear (x);
  mpfr_clear (y);
  mpz_clear (z);
  mpfr_clear (t);

  return 0;
}