示例#1
0
mp_limb_t
mpn_dc_divappr_q_n (mp_ptr qp, mp_ptr np, mp_srcptr dp, mp_size_t n,
		    mp_srcptr dip, mp_ptr tp)
{
  mp_size_t lo, hi;
  mp_limb_t cy, qh, ql;

  lo = n >> 1;			/* floor(n/2) */
  hi = n - lo;			/* ceil(n/2) */

  if (BELOW_THRESHOLD (hi, DC_DIV_QR_THRESHOLD))
    qh = mpn_sb_div_qr (qp + lo, np + 2 * lo, 2 * hi, dp + lo, hi, dip);
  else
    qh = mpn_dc_div_qr_n (qp + lo, np + 2 * lo, dp + lo, hi, dip, tp);

  mpn_mul (tp, qp + lo, hi, dp, lo);

  cy = mpn_sub_n (np + lo, np + lo, tp, n);
  if (qh != 0)
    cy += mpn_sub_n (np + n, np + n, dp, lo);

  while (cy != 0)
    {
      qh -= mpn_sub_1 (qp + lo, qp + lo, hi, 1);
      cy -= mpn_add_n (np + lo, np + lo, dp, n);
    }

  if (BELOW_THRESHOLD (lo, DC_DIVAPPR_Q_THRESHOLD))
    ql = mpn_sb_divappr_q (qp, np + hi, 2 * lo, dp + hi, lo, dip);
  else
    ql = mpn_dc_divappr_q_n (qp, np + hi, dp + hi, lo, dip, tp);

  if (UNLIKELY (ql != 0))
    {
      mp_size_t i;
      for (i = 0; i < lo; i++)
	qp[i] = GMP_NUMB_MASK;
    }

  return qh;
}
/* Check divide and conquer division routine. */
void
check_dc_divappr_q_n (void)
{
   mp_limb_t tp[DC_DIVAPPR_Q_N_ITCH(MAX_LIMBS)];
   mp_limb_t np[2*MAX_LIMBS];
   mp_limb_t np2[2*MAX_LIMBS];
   mp_limb_t rp[2*MAX_LIMBS];
   mp_limb_t dp[MAX_LIMBS];
   mp_limb_t qp[MAX_LIMBS];
   mp_limb_t dip;

   mp_size_t nn, rn, dn, qn;

   gmp_randstate_t rands;

   int i, j, s;
   gmp_randinit_default(rands);
  
   for (i = 0; i < ITERS; i++)
   {
      dn = (random() % (MAX_LIMBS - 6)) + 6;
      nn = 2*dn;
         
      mpn_rrandom (np, rands, nn);
      mpn_rrandom (dp, rands, dn);
      dp[dn-1] |= GMP_LIMB_HIGHBIT;

      MPN_COPY(np2, np, nn);
      
      invert_1(dip, dp[dn - 1], dp[dn - 2]);
      
      qn = nn - dn + 1;
         
      qp[qn - 1] = mpn_dc_divappr_q_n(qp, np, dp, dn, dip, tp);
      
      MPN_NORMALIZE(qp, qn);

      if (qn)
      {
         if (qn >= dn) mpn_mul(rp, qp, qn, dp, dn);
         else mpn_mul(rp, dp, dn, qp, qn);

         rn = dn + qn;
         MPN_NORMALIZE(rp, rn);

         s = (rn < nn) ? -1 : (rn > nn) ? 1 : mpn_cmp(rp, np2, nn);
         if (s <= 0) 
         {
            mpn_sub(rp, np2, nn, rp, rn);
            rn = nn;
            MPN_NORMALIZE(rp, rn);
         } else 
         {
            mpn_sub(rp, rp, rn, np2, nn);
            MPN_NORMALIZE(rp, rn);
         }
      } else
      {
         rn = nn;
         MPN_COPY(rp, np, nn);
      }
      
      s = (rn < dn) ? -1 : (rn > dn) ? 1 : mpn_cmp(rp, dp, dn);
      if (s >= 0)
      {
         printf ("failed:\n");
         printf ("nn = %lu, dn = %lu, qn = %lu, rn = %lu\n\n", nn, dn, qn, rn);
         gmp_printf (" np: %Nx\n\n", np2, nn);
         gmp_printf (" dp: %Nx\n\n", dp, dn);
         gmp_printf (" qp: %Nx\n\n", qp, qn);
         gmp_printf (" rp: %Nx\n\n", rp, rn);
         abort ();
      }
   }

   gmp_randclear(rands);
}
示例#3
0
mp_limb_t
mpn_dc_divappr_q_n (mp_ptr qp, mp_ptr np, mp_srcptr dp, mp_size_t n, 
		    mp_limb_t dip, mp_limb_t d1ip, mp_ptr tp)
{
  mp_limb_t qh, cy;
  mp_ptr q_hi;
  mp_size_t m;
  mp_limb_t ret = 0;

  ASSERT (n >= 6);

  /* if the top n limbs of np are >= dp, high limb of quotient is 1 */
  if (mpn_cmp(np + n, dp, n) >= 0)
  {
     ret = 1;
     mpn_sub_n(np + n, np + n, dp, n);
  }

  /* top n limbs of np are now < dp */

  m = (n + 1) / 2;
  q_hi = qp + n - m;

  /* 
     FIXME: we could probably avoid this copy if we could guarantee 
     that sb_div_appr_q/dc_divappr_q_n did not destroy the "bottom 
     half" of N */
  MPN_COPY (tp, np, 2*n);

  /* estimate high m+1 limbs of quotient, using a 2*m by m division
     the quotient may be computed 1 too large as it is approximate, 
     moreover, even computed precisely it may be two too large due
     to the truncation we've done to a 2*m by m division... */
  if (m < DC_DIVAPPR_Q_N_THRESHOLD)
    qh = mpn_sb_divappr_q (q_hi, tp + 2*n - 2*m, 2*m,
			   dp + n - m, m, dip, d1ip);
  else
    qh = mpn_dc_divappr_q_n (q_hi, tp + 2*n - 2*m,
			     dp + n - m, m, dip, d1ip, tp + 2*n);

  /* we therefore decrease the estimate by 3... */
  qh -= mpn_sub_1 (q_hi, q_hi, m, (mp_limb_t) 3);
  
  /* ensuring it doesn't become negative */
  if (qh & GMP_NUMB_HIGHBIT)
    {
      MPN_ZERO (q_hi, m);
      qh = 0;
    }
  
  /* note qh is now always zero as the quotient we have is definitely
     correct or up to two too small, and we already normalised np */
  ASSERT (qh == 0);
  
  /* we know that {np+n-m, n+m} = q_hi * D + e0, where 0 <= e0 < C*B^n, 
     where C is a small positive constant. Estimate q_hi * D using 
     middle product, developing one additional limb, i.e. develop
     n - m + 3 limbs. The bottom limb is meaningless and the next limb
     may be too small by up to some small multiple of n, but recall 
     n << B. */
  mpn_mulmid (tp, dp, n, q_hi + 1, m - 2);

  /* do some parts of the middle product "manually": */
  tp[n - m + 2] += mpn_addmul_1 (tp, dp + m - 2, n - m + 2, q_hi[0]);
  mpn_addmul_1 (tp + 1, dp, n - m + 2, q_hi[m-1]);
  
  /* subtract that estimate from N. We note the limb at np + n - 2 
     is then meaningless, and the next limb mght be too large by a 
     small amount, i.e. the bottom n limbs of np are now possibly
     too large by a quantity much less than dp */
  mpn_sub_n (np + n - 2, np + n - 2, tp, n - m + 3);

  /* recursively divide to obtain low half of quotient, developing
     one more limb than we would need if everything had been exact.
     As this extra limb is out by only a small amount, rounding the
     remaining limbs based on its value and discarding the extra limb
     results in a quotient which is at most 1 too large */
  if (n - m + 2 < DC_DIVAPPR_Q_N_THRESHOLD)
    cy = mpn_sb_divappr_q (tp, np + m - 3, 2*n - 2*m + 4,
			   dp + m - 2, n - m + 2, dip, d1ip);
  else
    cy = mpn_dc_divappr_q_n (tp, np + m - 3, dp + m - 2, n - m + 2,
			     dip, d1ip, tp + n - m + 2);

  /* FIXME: The only reason this copy happens is that we elected to 
     develop one extra quotient limb in the second recursive quotient. */
  MPN_COPY (qp, tp + 1, n - m);

  /* Construct final quotient from low and hi parts... */
  ret += mpn_add_1 (qp + n - m, qp + n - m, m, tp[n-m+1]);
  ret += mpn_add_1 (qp + n - m + 1, qp + n - m + 1, m - 1, cy);
  if (tp[0] >= GMP_NUMB_HIGHBIT)
    ret += mpn_add_1 (qp, qp, n, 1);   /* ...rounding quotient up */

  /* As the final quotient may be 1 too large, we may have ret == 2 
     (it is very unlikely, but can be relatively easily triggered
     at random when dp = 0x80000...0000), then Q must be 2000.... 
     and we should return instead 1ffff.... */
  if (ret == 2)
    {
      ret -= mpn_sub_1 (qp, qp, n, 1);
      ASSERT (ret == 1);
    }

  return ret;
}
示例#4
0
mp_limb_t
mpn_preinv_dc_divappr_q (mp_ptr qp,
			 mp_ptr np, mp_size_t nn,
			 mp_srcptr dp, mp_size_t dn,
			 mp_srcptr dip)
{
  mp_size_t qn;
  mp_limb_t qh, cy, qsave;
  mp_ptr tp;
  TMP_DECL;

  TMP_MARK;

  tp = TMP_SALLOC_LIMBS (dn+1);

  qn = nn - dn;
  qp += qn;
  np += nn;
  dp += dn;

  if (qn > dn)
    {
      qn++;			/* pretend we'll need an extra limb */
      /* Reduce qn mod dn without division, optimizing small operations.  */
      do
	qn -= dn;
      while (qn > dn);

      qp -= qn;			/* point at low limb of next quotient block */
      np -= qn;			/* point in the middle of partial remainder */

      /* Perform the typically smaller block first.  */
      if (BELOW_THRESHOLD (qn, DC_DIV_QR_THRESHOLD))
	qh = mpn_sb_div_qr (qp, np - qn, 2 * qn, dp - qn, qn, dip);
      else
	qh = mpn_dc_div_qr_n (qp, np - qn, dp - qn, qn, dip, tp);

      if (qn != dn)
	{
	  if (qn > dn - qn)
	    mpn_mul (tp, qp, qn, dp - dn, dn - qn);
	  else
	    mpn_mul (tp, dp - dn, dn - qn, qp, qn);

	  cy = mpn_sub_n (np - dn, np - dn, tp, dn);
	  if (qh != 0)
	    cy += mpn_sub_n (np - dn + qn, np - dn + qn, dp - dn, dn - qn);

	  while (cy != 0)
	    {
	      qh -= mpn_sub_1 (qp, qp, qn, 1);
	      cy -= mpn_add_n (np - dn, np - dn, dp - dn, dn);
	    }
	}

      qn = nn - dn - qn + 1;
      while (qn > dn)
	{
	  qp -= dn;
	  np -= dn;
	  mpn_dc_div_qr_n (qp, np - dn, dp - dn, dn, dip, tp);
	  qn -= dn;
	}

      /* Since we pretended we'd need an extra quotient limb before, we now
	 have made sure the code above left just dn-1=qn quotient limbs to
	 develop.  Develop that plus a guard limb. */
      qn--;
      qp -= qn;
      np -= dn;
      qsave = qp[qn];
      mpn_dc_divappr_q_n (qp, np - dn, dp - dn, dn, dip, tp);
      MPN_COPY_INCR (qp, qp + 1, qn);
      qp[qn] = qsave;
    }
  else
    {
      if (qn == 0)
	{
	  qh = mpn_cmp (np - dn, dp - dn, dn) >= 0;
	  if (qh)
	    mpn_sub_n (np - dn, np - dn, dp - dn, dn);
	  TMP_FREE;
	  return qh;
	}

      qp -= qn;			/* point at low limb of next quotient block */
      np -= qn;			/* point in the middle of partial remainder */

      if (BELOW_THRESHOLD (qn, DC_DIVAPPR_Q_THRESHOLD))
	 /* Full precision.  Optimal?  */
	qh = mpn_sb_divappr_q (qp, np - dn, nn, dp - dn, dn, dip);
      else
	{
	  /* Put quotient in tp, use qp as temporary, since qp lacks a limb.  */
	  qh = mpn_dc_divappr_q_n (tp, np - qn - 2, dp - (qn + 1), qn + 1, dip, qp);
	  MPN_COPY (qp, tp + 1, qn);
	}
    }

  TMP_FREE;
  return qh;
}