示例#1
0
void mpu9150_set_accel_cal(caldata_t *cal)
{
	int i;
	long bias[3];

	if (!cal) {
		use_accel_cal = 0;
		return;
	}

	memcpy(&accel_cal_data, cal, sizeof(caldata_t));

	for (i = 0; i < 3; i++) {
		if (accel_cal_data.range[i] < 1)
			accel_cal_data.range[i] = 1;
		else if (accel_cal_data.range[i] > ACCEL_SENSOR_RANGE)
			accel_cal_data.range[i] = ACCEL_SENSOR_RANGE;

		bias[i] = -accel_cal_data.offset[i];
	}

	if (debug_on) {
		printk(KERN_DEBUG "\naccel cal (range : offset)\n");

		for (i = 0; i < 3; i++)
			printk(KERN_DEBUG "%d : %d\n", accel_cal_data.range[i], accel_cal_data.offset[i]);
	}

	mpu_set_accel_bias(bias);

	use_accel_cal = 1;
}
示例#2
0
boolean MPU9150Lib::init(int mpuRate, int magMix)
{
  struct int_param_s int_param;
  int result;
  long accelOffset[3];

  m_magMix = magMix;
  m_lastDMPYaw = 0;
  m_lastYaw = 0;

  // get calibration data if it's there

  if (calSensRead(&m_calData)) {                                      // use calibration data if it's there and wanted
    m_useMagCalibration &= m_calData.magValid;
    m_useAccelCalibration &= m_calData.accelValid;

    //  Process calibration data for runtime

    if (m_useMagCalibration) {
      m_magXOffset = (short)(((long)m_calData.magMaxX + (long)m_calData.magMinX) / 2);
      m_magXRange = m_calData.magMaxX - m_magXOffset;
      m_magYOffset = (short)(((long)m_calData.magMaxY + (long)m_calData.magMinY) / 2);
      m_magYRange = m_calData.magMaxY - m_magYOffset;
      m_magZOffset = (short)(((long)m_calData.magMaxZ + (long)m_calData.magMinZ) / 2);
      m_magZRange = m_calData.magMaxZ - m_magZOffset;
    }

    if (m_useAccelCalibration) {
      accelOffset[0] = -((long)m_calData.accelMaxX + (long)m_calData.accelMinX) / 2;
      accelOffset[1] = -((long)m_calData.accelMaxY + (long)m_calData.accelMinY) / 2;
      accelOffset[2] = -((long)m_calData.accelMaxZ + (long)m_calData.accelMinZ) / 2;

      mpu_set_accel_bias(accelOffset);

      m_accelXRange = m_calData.accelMaxX + accelOffset[0];
      m_accelYRange = m_calData.accelMaxY + accelOffset[1];
      m_accelZRange = m_calData.accelMaxZ + accelOffset[2];
    }
  }

#ifdef MPULIB_DEBUG
  if (m_useMagCalibration)
    Serial.println("Using mag cal");
  if (m_useAccelCalibration)
    Serial.println("Using accel cal");
#endif

  mpu_init_structures();

  // Not using interrupts so set up this structure to keep the driver happy

  int_param.cb = NULL;
  int_param.pin = 0;
  int_param.lp_exit = 0;
  int_param.active_low = 1;
  result = mpu_init(&int_param);
  if (result != 0) {
#ifdef MPULIB_DEBUG
    Serial.print("mpu_init failed with code: ");
    Serial.println(result);
#endif
    return false;
  }
  mpu_set_sensors(INV_XYZ_GYRO | INV_XYZ_ACCEL | INV_XYZ_COMPASS);   // enable all of the sensors
  mpu_configure_fifo(INV_XYZ_GYRO | INV_XYZ_ACCEL);                  // get accel and gyro data in the FIFO also
  mpu_set_sample_rate(mpuRate);                                      // set the update rate
  mpu_set_compass_sample_rate(mpuRate);                              // set the compass update rate to match
#ifdef MPULIB_DEBUG
  Serial.println("Loading firmware");
#endif

  if ((result = dmp_load_motion_driver_firmware()) != 0) {           // try to load the DMP firmware
#ifdef MPULIB_DEBUG
    Serial.print("Failed to load dmp firmware: ");
    Serial.println(result);
#endif
    return false;
  }
  dmp_set_orientation(inv_orientation_matrix_to_scalar(gyro_orientation)); // set up the correct orientation

    dmp_enable_feature(DMP_FEATURE_6X_LP_QUAT | DMP_FEATURE_SEND_RAW_ACCEL | DMP_FEATURE_SEND_CAL_GYRO |
    DMP_FEATURE_GYRO_CAL);
  dmp_set_fifo_rate(mpuRate);
  if (mpu_set_dmp_state(1) != 0) {
#ifdef MPULIB_DEBUG
    Serial.println("mpu_set_dmp_state failed");
#endif
    return false;
  }
  return true;
}
示例#3
0
int mpu9150_init(int i2c_bus, int sample_rate, int mix_factor)
{
	signed char gyro_orientation[9] = { 1, 0, 0,
                                        0, 1, 0,
                                        0, 0, 1 };

	if (i2c_bus < 0 || i2c_bus > 3)
		return -1;

	if (sample_rate < 2 || sample_rate > 50)
		return -1;

	if (mix_factor < 0 || mix_factor > 100)
		return -1;

	yaw_mixing_factor = mix_factor;

	linux_set_i2c_bus(i2c_bus);

	printf("\nInitializing IMU .");
	fflush(stdout);

	if (mpu_init(NULL)) {
		printf("\nmpu_init() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);

#ifdef AK89xx_SECONDARY
	if (mpu_set_sensors(INV_XYZ_GYRO | INV_XYZ_ACCEL | INV_XYZ_COMPASS)) {
#else
	if (mpu_set_sensors(INV_XYZ_GYRO | INV_XYZ_ACCEL | INV_XYZ_COMPASS)) {
#endif
		printf("\nmpu_set_sensors() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);

	if (mpu_configure_fifo(INV_XYZ_GYRO | INV_XYZ_ACCEL)) {
		printf("\nmpu_configure_fifo() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);
	
	if (mpu_set_sample_rate(sample_rate)) {
		printf("\nmpu_set_sample_rate() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);

#ifdef AK89xx_SECONDARY
	if (mpu_set_compass_sample_rate(sample_rate)) {
		printf("\nmpu_set_compass_sample_rate() failed\n");
		return -1;
	}
#endif

	printf(".");
	fflush(stdout);

	if (dmp_load_motion_driver_firmware()) {
		printf("\ndmp_load_motion_driver_firmware() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);

	if (dmp_set_orientation(inv_orientation_matrix_to_scalar(gyro_orientation))) {
		printf("\ndmp_set_orientation() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);

  	if (dmp_enable_feature(DMP_FEATURE_6X_LP_QUAT | DMP_FEATURE_SEND_RAW_ACCEL 
						| DMP_FEATURE_SEND_CAL_GYRO | DMP_FEATURE_GYRO_CAL)) {
		printf("\ndmp_enable_feature() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);
 
	if (dmp_set_fifo_rate(sample_rate)) {
		printf("\ndmp_set_fifo_rate() failed\n");
		return -1;
	}

	printf(".");
	fflush(stdout);

	if (mpu_set_dmp_state(1)) {
		printf("\nmpu_set_dmp_state(1) failed\n");
		return -1;
	}

	printf(" done\n\n");

	return 0;
}

/* New functions to enable / disable 6axis on the fly */


int enableAccelerometerFusion(void) {
	if (dmp_enable_feature(DMP_FEATURE_6X_LP_QUAT | DMP_FEATURE_SEND_RAW_ACCEL | DMP_FEATURE_SEND_CAL_GYRO | DMP_FEATURE_GYRO_CAL)) {
		printf("Failure enabling accelerometer fusion\n");
		return -1;
	}
	printf("mpu9150.c: Accelerometer fusion enabled\n");
	return 0;
}

int disableAccelerometerFusion(void) {
	if (dmp_enable_feature(DMP_FEATURE_LP_QUAT | DMP_FEATURE_SEND_RAW_ACCEL | DMP_FEATURE_SEND_CAL_GYRO | DMP_FEATURE_GYRO_CAL)) {
		printf("Failure disabling accelerometer fusion\n");
		return -1;
	}
	printf("mpu9150.c: Accelerometer fusion disabled\n");
	return 0;
}

void mpu9150_exit()
{
	// turn off the DMP on exit 
	if (mpu_set_dmp_state(0))
		printf("mpu_set_dmp_state(0) failed\n");

	// TODO: Should turn off the sensors too
}

void mpu9150_set_accel_cal(caldata_t *cal)
{
	int i;
	long bias[3];

	if (!cal) {
		use_accel_cal = 0;
		return;
	}

	memcpy(&accel_cal_data, cal, sizeof(caldata_t));

	for (i = 0; i < 3; i++) {
		if (accel_cal_data.range[i] < 1)
			accel_cal_data.range[i] = 1;
		else if (accel_cal_data.range[i] > ACCEL_SENSOR_RANGE)
			accel_cal_data.range[i] = ACCEL_SENSOR_RANGE;

		bias[i] = -accel_cal_data.offset[i];
	}

	if (debug_on) {
		printf("\naccel cal (range : offset)\n");

		for (i = 0; i < 3; i++)
			printf("%d : %d\n", accel_cal_data.range[i], accel_cal_data.offset[i]);
	}

	mpu_set_accel_bias(bias);

	use_accel_cal = 1;
}