示例#1
0
   void MsAppMesh::getSkinData()
   {
      // only generate the skin data once
      if (mSkinDataFetched)
         return;
      mSkinDataFetched = true;

      // skinned meshes are attached to more than 1 bone
      if (mMsNode->mBoneIndices.size() <= 1)
         return;

      // need to generate an array of bones that animate this mesh
      // Milkshape supports up to 4 bone weights per vertex - all other bones
      // are set to weight 0
      msModel *model = mMsNode->getModel();

      //-----------------------------------------------------------------------
      // add all bones attached to this mesh
      S32 numBones = mMsNode->mBoneIndices.size();
      for (int i = 0; i < numBones;i++)
      {
         S32 boneIndex = mMsNode->mBoneIndices[i];

         assert(boneIndex >= 0 && "Invalid bone index");

         MilkshapeNode *node = new MilkshapeBone(boneIndex);
         mBones.push_back(new MsAppNode(node, true));
         AppConfig::PrintDump(PDPass2,avar("Adding skin object from skin \"%s\" to bone \"%s\" (%i).\r\n",mMsNode->getName(),mBones[i]->getName(),i));
      }

      //-----------------------------------------------------------------------
      // reset all weights to zero
      S32 numPoints = msMesh_GetVertexCount(mMsNode->getMsMesh());
      mWeights.resize(numBones);
      for (int i = 0; i < (int)mWeights.size(); i++)
      {
         mWeights[i] = new std::vector<F32>;
         mWeights[i]->resize(numPoints);
         for (int j=0; j<numPoints; j++)
            (*mWeights[i])[j] = 0.0f;
      }

      // set weights for bones that affect vertices in this mesh
      for (int j = 0; j < numPoints; j++)
      {
         S32 indices[MS_BONES_PER_VERTEX_EX];
         F32 weights[MS_BONES_PER_VERTEX_EX];
         bool attached = false;

         // get the bone indices/weights of this vertex - they are stored a bit
         // strangely to keep the milkshape file format backwards compatible:
         // bone[0] = msVertex.nBoneIndex, weight[0] = msVertexEx.nBoneWeights[0]
         // bone[1] = msVertexEx.nBoneIndex[0], weight[1] = msVertexEx.nBoneWeights[1]
         // bone[2] = msVertexEx.nBoneIndex[1], weight[2] = msVertexEx.nBoneWeights[2]
         // bone[3] = msVertexEx.nBoneIndex[2], weight[3] = 1 - (sum_of_other_weights)
         for (int k = 0; k < MS_BONES_PER_VERTEX_EX; k++)
         {
            msVertexEx *vtx = msMesh_GetVertexExAt(mMsNode->getMsMesh(), j);

            // get the bone index
            if (k == 0)
            {
               msVertex *v = msMesh_GetVertexAt(mMsNode->getMsMesh(), j);
               indices[k] = msVertex_GetBoneIndex(v);
            }
            else
            {
               indices[k] = msVertexEx_GetBoneIndices(vtx, k - 1);
            }

            // get the bone weight
            if (indices[k] >= 0)
            {
               attached = true;
               if (k != (MS_BONES_PER_VERTEX_EX-1))
               {
                  weights[k] = (F32)msVertexEx_GetBoneWeights(vtx, k) / 100.f;
               }
               else
               {
                  weights[k] = 1.0f - (weights[0] + weights[1] + weights[2]);
               }
            }
            else
               weights[k] = 0.0f;
         }

         // Force verts that are attached to a single bone to have 100% weight
         if (attached && (indices[1] == -1) && (weights[0] == 0.0f))
         {
            weights[0] = 1.0f;
         }

         // if the vertex is not attached to any bones, attach it to the root bone
         if (!attached)
         {
            S32 boneIndex = mMsNode->getRootBoneIndex();
            addBoneWeight(j, boneIndex, 1.0f);
         }
         else
         {
            // add weights for each bone
            for (int k = 0; k < MS_BONES_PER_VERTEX_EX; k++)
            {
               if (indices[k] < 0)
                  continue;
               addBoneWeight(j, indices[k], weights[k]);
            }
         }
      }
   }
void MilkshapePlugin::doExportMesh(msModel* pModel)
{


    // Create singletons
    Ogre::SkeletonManager skelMgr;
    Ogre::DefaultHardwareBufferManager defHWBufMgr;
	Ogre::LogManager& logMgr = Ogre::LogManager::getSingleton();
	Ogre::MeshManager meshMgr;


    //
    // choose filename
    //
    OPENFILENAME ofn;
    memset (&ofn, 0, sizeof (OPENFILENAME));

    char szFile[MS_MAX_PATH];
    char szFileTitle[MS_MAX_PATH];
    char szDefExt[32] = "mesh";
    char szFilter[128] = "OGRE .mesh Files (*.mesh)\0*.mesh\0All Files (*.*)\0*.*\0\0";
    szFile[0] = '\0';
    szFileTitle[0] = '\0';

    ofn.lStructSize = sizeof (OPENFILENAME);
    ofn.lpstrDefExt = szDefExt;
    ofn.lpstrFilter = szFilter;
    ofn.lpstrFile = szFile;
    ofn.nMaxFile = MS_MAX_PATH;
    ofn.lpstrFileTitle = szFileTitle;
    ofn.nMaxFileTitle = MS_MAX_PATH;
    ofn.Flags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT | OFN_PATHMUSTEXIST;
    ofn.lpstrTitle = "Export to OGRE Mesh";

    if (!::GetSaveFileName (&ofn))
        return /*0*/;

    logMgr.logMessage("Creating Mesh object...");
    Ogre::MeshPtr ogreMesh = Ogre::MeshManager::getSingleton().create("export", 
        Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
    logMgr.logMessage("Mesh object created.");

    bool foundBoneAssignment = false;

    // No shared geometry
    int i;
	int wh, numbones;
	int intweight[3], intbones[3];
    size_t j;
    Ogre::Vector3 min, max, currpos;
    Ogre::Real maxSquaredRadius;
    bool first = true;
    for (i = 0; i < msModel_GetMeshCount (pModel); i++)
    {
        msMesh *pMesh = msModel_GetMeshAt (pModel, i);

        logMgr.logMessage("Creating SubMesh object...");
        Ogre::SubMesh* ogreSubMesh = ogreMesh->createSubMesh();
        logMgr.logMessage("SubMesh object created.");
        // Set material
        logMgr.logMessage("Getting SubMesh Material...");
        int matIdx = msMesh_GetMaterialIndex(pMesh);

        if (matIdx == -1)
        {
            // No material, use blank
            ogreSubMesh->setMaterialName("BaseWhite");
            logMgr.logMessage("No Material, using default 'BaseWhite'.");
        }
        else
        {

            msMaterial *pMat = msModel_GetMaterialAt(pModel, matIdx);
            ogreSubMesh->setMaterialName(pMat->szName);
            logMgr.logMessage("SubMesh Material Done.");
        }


        logMgr.logMessage("Setting up geometry...");
        // Set up mesh geometry
        ogreSubMesh->vertexData = new Ogre::VertexData();
        ogreSubMesh->vertexData->vertexCount = msMesh_GetVertexCount (pMesh);
        ogreSubMesh->vertexData->vertexStart = 0;
        Ogre::VertexBufferBinding* bind = ogreSubMesh->vertexData->vertexBufferBinding;
        Ogre::VertexDeclaration* decl = ogreSubMesh->vertexData->vertexDeclaration;
        // Always 1 texture layer, 2D coords
        #define POSITION_BINDING 0
        #define NORMAL_BINDING 1
        #define TEXCOORD_BINDING 2
        decl->addElement(POSITION_BINDING, 0, Ogre::VET_FLOAT3, Ogre::VES_POSITION);
        decl->addElement(NORMAL_BINDING, 0, Ogre::VET_FLOAT3, Ogre::VES_NORMAL);
        decl->addElement(TEXCOORD_BINDING, 0, Ogre::VET_FLOAT2, Ogre::VES_TEXTURE_COORDINATES);
        // Create buffers
        Ogre::HardwareVertexBufferSharedPtr pbuf = Ogre::HardwareBufferManager::getSingleton().
            createVertexBuffer(decl->getVertexSize(POSITION_BINDING), ogreSubMesh->vertexData->vertexCount,
                Ogre::HardwareBuffer::HBU_DYNAMIC, false);
        Ogre::HardwareVertexBufferSharedPtr nbuf = Ogre::HardwareBufferManager::getSingleton().
            createVertexBuffer(decl->getVertexSize(NORMAL_BINDING), ogreSubMesh->vertexData->vertexCount,
                Ogre::HardwareBuffer::HBU_DYNAMIC, false);
        Ogre::HardwareVertexBufferSharedPtr tbuf = Ogre::HardwareBufferManager::getSingleton().
            createVertexBuffer(decl->getVertexSize(TEXCOORD_BINDING), ogreSubMesh->vertexData->vertexCount,
                Ogre::HardwareBuffer::HBU_DYNAMIC, false);
        bind->setBinding(POSITION_BINDING, pbuf);
        bind->setBinding(NORMAL_BINDING, nbuf);
        bind->setBinding(TEXCOORD_BINDING, tbuf);

        ogreSubMesh->useSharedVertices = false;

        float* pPos = static_cast<float*>(
            pbuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));

        logMgr.logMessage("Doing positions and texture coords...");
        for (j = 0; j < ogreSubMesh->vertexData->vertexCount; ++j)
        {
            logMgr.logMessage("Doing vertex " + Ogre::StringConverter::toString(j));
            msVertex *pVertex = msMesh_GetVertexAt (pMesh, (int)j);
			msVertexEx *pVertexEx=msMesh_GetVertexExAt(pMesh, (int)j);
            msVec3 Vertex;
            msVertex_GetVertex (pVertex, Vertex);

            *pPos++ = Vertex[0];
            *pPos++ = Vertex[1];
            *pPos++ = Vertex[2];
            // Deal with bounds
            currpos = Ogre::Vector3(Vertex[0], Vertex[1], Vertex[2]);
            if (first)
            {
                min = max = currpos;
                maxSquaredRadius = currpos.squaredLength();
                first = false;
            }
            else
            {
                min.makeFloor(currpos);
                max.makeCeil(currpos);
                maxSquaredRadius = std::max(maxSquaredRadius, currpos.squaredLength());
            }

            int boneIdx = msVertex_GetBoneIndex(pVertex);
            if (boneIdx != -1)
            {
				foundBoneAssignment = true;
				numbones = 1;
				intbones[0] = intbones[1] = intbones[2] = -1;
				intweight[0] = intweight[1] = intweight[2] = 0;
				for(wh = 0; wh < 3; ++wh) 
				{
					intbones[wh] = msVertexEx_GetBoneIndices(pVertexEx, wh);
					if(intbones[wh] == -1) 
						break;

					++numbones;
					intweight[wh] = msVertexEx_GetBoneWeights(pVertexEx, wh);

				} // for(k)
				Ogre::VertexBoneAssignment vertAssign;
				vertAssign.boneIndex = boneIdx;
				vertAssign.vertexIndex = (unsigned int)j;
				if(numbones == 1) 
				{
					vertAssign.weight = 1.0;
				} // single assignment
				else 
				{
					vertAssign.weight=(Ogre::Real)intweight[0]/100.0;
				}
				ogreSubMesh->addBoneAssignment(vertAssign);
				if(numbones > 1) 
				{
					// this somewhat contorted logic is because the first weight [0] matches to the bone assignment
					// located with pVertex. The next two weights [1][2] match up to the first two bones found
					// with pVertexEx [0][1]. The weight for the fourth bone, if present, is the unassigned weight
					for(wh = 0; wh < 3; wh++) 
					{
						boneIdx = intbones[wh];
						if(boneIdx == -1) 
							break;
						vertAssign.boneIndex = boneIdx;
						vertAssign.vertexIndex = (unsigned int)j;
						if(wh == 2) 
						{ 
							// fourth weight is 1.0-(sumoffirstthreeweights)
							vertAssign.weight = 1.0-(((Ogre::Real)intweight[0]/100.0)+
								((Ogre::Real)intweight[1]/100.0)+((Ogre::Real)intweight[2]/100.0));
						}
						else 
						{
							vertAssign.weight=(Ogre::Real)intweight[wh+1];
						}
						ogreSubMesh->addBoneAssignment(vertAssign);
					} // for(k)
				} // if(numbones)
			}

        }
        pbuf->unlock();

        float* pTex = static_cast<float*>(
            tbuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));
        logMgr.logMessage("Doing uvs, normals and indexes (v2)...");

        // Aargh, Milkshape uses stupid separate normal indexes for the same vertex like 3DS
        // Normals aren't described per vertex but per triangle vertex index
        // Pain in the arse, we have to do vertex duplication again if normals differ at a vertex (non smooth)
        // WHY don't people realise this format is a pain for passing to 3D APIs in vertex buffers?
        float* pNorm = static_cast<float*>(
            nbuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));
        ogreSubMesh->indexData->indexCount = msMesh_GetTriangleCount (pMesh) * 3;
        // Always use 16-bit buffers, Milkshape can't handle more anyway
        Ogre::HardwareIndexBufferSharedPtr ibuf = Ogre::HardwareBufferManager::getSingleton().
            createIndexBuffer(Ogre::HardwareIndexBuffer::IT_16BIT,
            ogreSubMesh->indexData->indexCount, Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
        ogreSubMesh->indexData->indexBuffer = ibuf;
        unsigned short *pIdx = static_cast<unsigned short*>(
            ibuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));
        for (j = 0; j < ogreSubMesh->indexData->indexCount; j+=3)
        {
            msTriangle *pTriangle = msMesh_GetTriangleAt (pMesh, (int)j/3);
			msTriangleEx *pTriangleEx=msMesh_GetTriangleExAt(pMesh, (int)j/3);
            word nIndices[3];
            msTriangle_GetVertexIndices (pTriangle, nIndices);
            msVec3 Normal;
            msVec2 uv;
            int k, vertIdx;

            for (k = 0; k < 3; ++k)
            {
                vertIdx = nIndices[k];
                // Face index
                pIdx[j+k] = vertIdx;

                // Vertex normals
                // For the moment, ignore any discrepancies per vertex
				msTriangleEx_GetNormal(pTriangleEx, k, &Normal[0]);
				msTriangleEx_GetTexCoord(pTriangleEx, k, &uv[0]);
				pTex[(vertIdx*2)]=uv[0];
				pTex[(vertIdx*2)+1]=uv[1];
                pNorm[(vertIdx*3)] = Normal[0];
                pNorm[(vertIdx*3)+1] = Normal[1];
                pNorm[(vertIdx*3)+2] = Normal[2];
            }

        } // Faces
        nbuf->unlock();
        ibuf->unlock();
        tbuf->unlock();

        // Now use Ogre's ability to reorganise the vertex buffers the best way
        Ogre::VertexDeclaration* newDecl = 
            ogreSubMesh->vertexData->vertexDeclaration->getAutoOrganisedDeclaration(
                foundBoneAssignment, false);
        Ogre::BufferUsageList bufferUsages;
        for (size_t u = 0; u <= newDecl->getMaxSource(); ++u)
            bufferUsages.push_back(Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
        ogreSubMesh->vertexData->reorganiseBuffers(newDecl, bufferUsages);


        logMgr.logMessage("Geometry done.");
    } // SubMesh

    // Set bounds
    ogreMesh->_setBoundingSphereRadius(Ogre::Math::Sqrt(maxSquaredRadius));
    ogreMesh->_setBounds(Ogre::AxisAlignedBox(min, max), false);


    // Keep hold of a Skeleton pointer for deletion later
    // Mesh uses Skeleton pointer for skeleton name
    Ogre::SkeletonPtr pSkel;

    if (exportSkeleton && foundBoneAssignment)
    {
        // export skeleton, also update mesh to point to it
        pSkel = doExportSkeleton(pModel, ogreMesh);
    }
    else if (!exportSkeleton && foundBoneAssignment)
    {
        // We've found bone assignments, but skeleton is not to be exported
        // Prompt the user to find the skeleton
        if (!locateSkeleton(ogreMesh))
            return;

    }

    // Export
    logMgr.logMessage("Creating MeshSerializer..");
    Ogre::MeshSerializer serializer;
    logMgr.logMessage("MeshSerializer created.");

    // Generate LODs if required
    if (generateLods)
    {
        // Build LOD depth list
        Ogre::Mesh::LodDistanceList distList;
        float depth = 0;
        for (unsigned short depthidx = 0; depthidx < numLods; ++depthidx)
        {
            depth += lodDepthIncrement;
            distList.push_back(depth);
        }

        ogreMesh->generateLodLevels(distList, lodReductionMethod, lodReductionAmount);
    }

    if (generateEdgeLists)
    {
        ogreMesh->buildEdgeList();
    }

    if (generateTangents)
    {
		unsigned short src, dest;
		ogreMesh->suggestTangentVectorBuildParams(tangentSemantic, src, dest);
		ogreMesh->buildTangentVectors(tangentSemantic, src, dest, tangentsSplitMirrored, tangentsSplitRotated, tangentsUseParity);
    }

    // Export
    Ogre::String msg;
	msg  = "Exporting mesh data to file '" + Ogre::String(szFile) + "'";
    logMgr.logMessage(msg);
    serializer.exportMesh(ogreMesh.getPointer(), szFile);
    logMgr.logMessage("Export successful");

    Ogre::MeshManager::getSingleton().remove(ogreMesh->getHandle());
    if (!pSkel.isNull())
        Ogre::SkeletonManager::getSingleton().remove(pSkel->getHandle());

	if (exportMaterials && msModel_GetMaterialCount(pModel) > 0)
	{
		doExportMaterials(pModel);
	}
}
示例#3
0
   AppMeshLock MsAppMesh::lockMesh(const AppTime & time, const Matrix<4,4,F32> &objectOffset)
   {
      msMesh *mesh = mMsNode->getMsMesh();

      assert(mesh && "NULL milkshape mesh");

      S32 lastMatIdx = -1;

      // start lists empty
      mFaces.clear();
      mVerts.clear();
      mTVerts.clear();
      mIndices.clear();
      mSmooth.clear();
      mVertId.clear();

      // start out with faces and crop data allocated
      mFaces.resize(msMesh_GetTriangleCount(mesh));

      S32 vCount = msMesh_GetVertexCount(mesh);

      // Transform the vertices by the bounds and scale
      std::vector<Point3D> verts(vCount, Point3D());

      for (int i = 0; i < vCount; i++)
         verts[i] = objectOffset * (getVert(mesh, i) * mMsNode->getScale());

      int numTriangles = mFaces.size();
      for (int i = 0; i < numTriangles; i++)
      {
         msTriangle *msFace = msMesh_GetTriangleAt(mesh, i);
         Primitive &tsFace = mFaces[i];

         // set faces material index
         S32 matIndex = msMesh_GetMaterialIndex(mesh);
         tsFace.type = (matIndex >= 0) ? matIndex : Primitive::NoMaterial;
         tsFace.firstElement = mIndices.size();
         tsFace.numElements = 3;
         tsFace.type |= Primitive::Triangles | Primitive::Indexed;

         // set vertex indices
         word vertIndices[3];
         msTriangle_GetVertexIndices(msFace, vertIndices);

         Point3D vert0 = verts[vertIndices[0]];
         Point3D vert1 = verts[vertIndices[1]];
         Point3D vert2 = verts[vertIndices[2]];

         Point3D norm0 = getNormal(mesh, i, 0);
         Point3D norm1 = getNormal(mesh, i, 1);
         Point3D norm2 = getNormal(mesh, i, 2);

         // set texture vertex indices
         Point2D tvert0 = getTVert(mesh, i, 0);
         Point2D tvert1 = getTVert(mesh, i, 1);
         Point2D tvert2 = getTVert(mesh, i, 2);

         // now add indices (switch order to be CW)
         mIndices.push_back(addVertex(vert0,norm0,tvert0,vertIndices[0]));
         mIndices.push_back(addVertex(vert2,norm2,tvert2,vertIndices[2]));
         mIndices.push_back(addVertex(vert1,norm1,tvert1,vertIndices[1]));

         // if the material is double-sided, add the backface as well
         if (!(tsFace.type & Primitive::NoMaterial))
         {
            bool doubleSided = false;
            MilkshapeMaterial *msMat = mMsNode->getMaterial();
            msMat->getUserPropBool("doubleSided", doubleSided);

            if (doubleSided)
            {
               Primitive backface = tsFace;
               backface.firstElement = mIndices.size();
               mFaces.push_back(backface);

               // add verts with order reversed to get the backface
               mIndices.push_back(addVertex(vert0,-norm0,tvert0,vertIndices[0]));
               mIndices.push_back(addVertex(vert1,-norm1,tvert1,vertIndices[1]));
               mIndices.push_back(addVertex(vert2,-norm2,tvert2,vertIndices[2]));
            }
         }
      }

      return Parent::lockMesh(time,objectOffset);
   }