示例#1
0
void getConstraintMatrix(TransInfo *t)
{
	float mat[3][3];
	invert_m3_m3(t->con.imtx, t->con.mtx);
	unit_m3(t->con.pmtx);

	if (!(t->con.mode & CON_AXIS0)) {
		t->con.pmtx[0][0]		=
			t->con.pmtx[0][1]	=
			t->con.pmtx[0][2]	= 0.0f;
	}

	if (!(t->con.mode & CON_AXIS1)) {
		t->con.pmtx[1][0]		=
			t->con.pmtx[1][1]	=
			t->con.pmtx[1][2]	= 0.0f;
	}

	if (!(t->con.mode & CON_AXIS2)) {
		t->con.pmtx[2][0]		=
			t->con.pmtx[2][1]	=
			t->con.pmtx[2][2]	= 0.0f;
	}

	mul_m3_m3m3(mat, t->con.pmtx, t->con.imtx);
	mul_m3_m3m3(t->con.pmtx, t->con.mtx, mat);
}
static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
{
	if (td && t->con.mode & CON_APPLY) {
		float tmat[3][3];
		float imat[3][3];

		invert_m3_m3(imat, td->axismtx);

		if (!(t->con.mode & CON_AXIS0)) {
			smat[0][0] = 1.0f;
		}
		if (!(t->con.mode & CON_AXIS1)) {
			smat[1][1] = 1.0f;
		}
		if (!(t->con.mode & CON_AXIS2)) {
			smat[2][2] = 1.0f;
		}

		mul_m3_m3m3(tmat, smat, imat);
		if (t->flag & T_EDIT) {
			mul_m3_m3m3(smat, t->obedit_mat, smat);
		}
		mul_m3_m3m3(smat, td->axismtx, tmat);
	}
}
示例#3
0
void ED_armature_transform_bones(struct bArmature *arm, float mat[4][4])
{
	EditBone *ebone;
	float scale = mat4_to_scale(mat);   /* store the scale of the matrix here to use on envelopes */
	float mat3[3][3];

	copy_m3_m4(mat3, mat);
	normalize_m3(mat3);
	/* Do the rotations */
	for (ebone = arm->edbo->first; ebone; ebone = ebone->next) {
		float tmat[3][3];
		
		/* find the current bone's roll matrix */
		ED_armature_ebone_to_mat3(ebone, tmat);
		
		/* transform the roll matrix */
		mul_m3_m3m3(tmat, mat3, tmat);
		
		/* transform the bone */
		mul_m4_v3(mat, ebone->head);
		mul_m4_v3(mat, ebone->tail);

		/* apply the transformed roll back */
		mat3_to_vec_roll(tmat, NULL, &ebone->roll);
		
		ebone->rad_head *= scale;
		ebone->rad_tail *= scale;
		ebone->dist     *= scale;
		
		/* we could be smarter and scale by the matrix along the x & z axis */
		ebone->xwidth   *= scale;
		ebone->zwidth   *= scale;
	}
}
示例#4
0
/* returns standard diameter */
static float new_primitive_matrix(bContext *C, float *loc, float *rot, float primmat[][4])
{
	Object *obedit = CTX_data_edit_object(C);
	View3D *v3d = CTX_wm_view3d(C);
	float mat[3][3], rmat[3][3], cmat[3][3], imat[3][3];
	
	unit_m4(primmat);

	eul_to_mat3(rmat, rot);
	invert_m3(rmat);
	
	/* inverse transform for initial rotation and object */
	copy_m3_m4(mat, obedit->obmat);
	mul_m3_m3m3(cmat, rmat, mat);
	invert_m3_m3(imat, cmat);
	copy_m4_m3(primmat, imat);

	/* center */
	copy_v3_v3(primmat[3], loc);
	sub_v3_v3(primmat[3], obedit->obmat[3]);
	invert_m3_m3(imat, mat);
	mul_m3_v3(imat, primmat[3]);

	return v3d ? v3d->grid : 1.0f;
}
/* applies individual td->axismtx constraints */
void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[])
{
	if (t->total == 1) {
		float axismtx[3][3];
		if (t->flag & T_EDIT) {
			mul_m3_m3m3(axismtx, t->obedit_mat, t->data->axismtx);
		}
		else {
			copy_m3_m3(axismtx, t->data->axismtx);
		}

		setConstraint(t, axismtx, mode, text);
	}
	else {
		BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
		copy_m3_m3(t->con.mtx, t->data->axismtx);
		t->con.mode = mode;
		getConstraintMatrix(t);

		startConstraint(t);

		t->con.drawExtra = drawObjectConstraint;
		t->con.applyVec = applyObjectConstraintVec;
		t->con.applySize = applyObjectConstraintSize;
		t->con.applyRot = applyObjectConstraintRot;
		t->redraw = TREDRAW_HARD;
	}
}
示例#6
0
/* result written in vec and mat */
void curve_deform_vector(Scene *scene, Object *cuOb, Object *target,
                         float orco[3], float vec[3], float mat[][3], int no_rot_axis)
{
	CurveDeform cd;
	float quat[4];
	
	if (cuOb->type != OB_CURVE) {
		unit_m3(mat);
		return;
	}

	init_curve_deform(cuOb, target, &cd);
	cd.no_rot_axis = no_rot_axis;                /* option to only rotate for XY, for example */
	
	copy_v3_v3(cd.dmin, orco);
	copy_v3_v3(cd.dmax, orco);

	mul_m4_v3(cd.curvespace, vec);
	
	if (calc_curve_deform(scene, cuOb, vec, target->trackflag, &cd, quat)) {
		float qmat[3][3];
		
		quat_to_mat3(qmat, quat);
		mul_m3_m3m3(mat, qmat, cd.objectspace3);
	}
	else
		unit_m3(mat);
	
	mul_m4_v3(cd.objectspace, vec);

}
/* v3d and rv3d are allowed to be NULL */
void add_primitive_bone(Scene *scene, View3D *v3d, RegionView3D *rv3d)
{
	Object *obedit = scene->obedit; // XXX get from context
	bArmature *arm = obedit->data;
	float obmat[3][3], curs[3], viewmat[3][3], totmat[3][3], imat[3][3];
	EditBone    *bone;

	/* Get inverse point for head and orientation for tail */
	invert_m4_m4(obedit->imat, obedit->obmat);
	mul_v3_m4v3(curs, obedit->imat, give_cursor(scene, v3d));

	if (rv3d && (U.flag & USER_ADD_VIEWALIGNED))
		copy_m3_m4(obmat, rv3d->viewmat);
	else unit_m3(obmat);
	
	copy_m3_m4(viewmat, obedit->obmat);
	mul_m3_m3m3(totmat, obmat, viewmat);
	invert_m3_m3(imat, totmat);
	
	ED_armature_deselect_all(obedit, 0);
	
	/* Create a bone */
	bone = ED_armature_edit_bone_add(arm, "Bone");

	arm->act_edbone = bone;

	copy_v3_v3(bone->head, curs);
	
	if (rv3d && (U.flag & USER_ADD_VIEWALIGNED))
		add_v3_v3v3(bone->tail, bone->head, imat[1]);   // bone with unit length 1
	else
		add_v3_v3v3(bone->tail, bone->head, imat[2]);   // bone with unit length 1, pointing up Z
}
示例#8
0
void crazyspace_build_sculpt(Scene *scene, Object *ob, float (**deformmats)[3][3], float (**deformcos)[3])
{
	int totleft= sculpt_get_first_deform_matrices(scene, ob, deformmats, deformcos);

	if(totleft) {
		/* there are deformation modifier which doesn't support deformation matricies
		   calculation. Need additional crazyspace correction */

		float (*deformedVerts)[3]= *deformcos;
		float (*origVerts)[3]= MEM_dupallocN(deformedVerts);
		float *quats= NULL;
		int i, deformed= 0;
		ModifierData *md= modifiers_getVirtualModifierList(ob);
		Mesh *me= (Mesh*)ob->data;

		for(; md; md= md->next) {
			ModifierTypeInfo *mti= modifierType_getInfo(md->type);

			if(!modifier_isEnabled(scene, md, eModifierMode_Realtime)) continue;

			if(mti->type==eModifierTypeType_OnlyDeform) {
				/* skip leading modifiers which have been already
				   handled in sculpt_get_first_deform_matrices */
				if(mti->deformMatrices && !deformed)
					continue;

				mti->deformVerts(md, ob, NULL, deformedVerts, me->totvert, 0, 0);
				deformed= 1;
			}
		}

		quats= MEM_mallocN(me->totvert*sizeof(float)*4, "crazy quats");

		crazyspace_set_quats_mesh(me, (float*)origVerts, (float*)deformedVerts, quats);

		for(i=0; i<me->totvert; i++) {
			float qmat[3][3], tmat[3][3];

			quat_to_mat3(qmat, &quats[i*4]);
			mul_m3_m3m3(tmat, qmat, (*deformmats)[i]);
			copy_m3_m3((*deformmats)[i], tmat);
		}

		MEM_freeN(origVerts);
		MEM_freeN(quats);
	}

	if(!*deformmats) {
		int a, numVerts;
		Mesh *me= (Mesh*)ob->data;

		*deformcos= mesh_getVertexCos(me, &numVerts);
		*deformmats= MEM_callocN(sizeof(*(*deformmats))*numVerts, "defmats");

		for(a=0; a<numVerts; a++)
			unit_m3((*deformmats)[a]);
	}
}
static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
{
	if (!td && t->con.mode & CON_APPLY) {
		float tmat[3][3];

		if (!(t->con.mode & CON_AXIS0)) {
			smat[0][0] = 1.0f;
		}
		if (!(t->con.mode & CON_AXIS1)) {
			smat[1][1] = 1.0f;
		}
		if (!(t->con.mode & CON_AXIS2)) {
			smat[2][2] = 1.0f;
		}

		mul_m3_m3m3(tmat, smat, t->con.imtx);
		mul_m3_m3m3(smat, t->con.mtx, tmat);
	}
}
示例#10
0
文件: cloth.c 项目: DrangPo/blender
void cloth_parallel_transport_hair_frame(float mat[3][3], const float dir_old[3], const float dir_new[3])
{
	float rot[3][3];
	
	/* rotation between segments */
	rotation_between_vecs_to_mat3(rot, dir_old, dir_new);
	
	/* rotate the frame */
	mul_m3_m3m3(mat, rot, mat);
}
static void drawObjectConstraint(TransInfo *t)
{
	/* Draw the first one lighter because that's the one who controls the others.
	 * Meaning the transformation is projected on that one and just copied on the others
	 * constraint space.
	 * In a nutshell, the object with light axis is controlled by the user and the others follow.
	 * Without drawing the first light, users have little clue what they are doing.
	 */
	short options = DRAWLIGHT;
	TransData *td = t->data;
	int i;
	float tmp_axismtx[3][3];

	for (i = 0; i < t->total; i++, td++) {
		float co[3];
		float (*axismtx)[3];

		if (t->flag & T_PROP_EDIT) {
			/* we're sorted, so skip the rest */
			if (td->factor == 0.0f) {
				break;
			}
		}

		if (t->flag & T_OBJECT) {
			copy_v3_v3(co, td->ob->obmat[3]);
			axismtx = td->axismtx;
		}
		else if (t->flag & T_EDIT) {
			mul_v3_m4v3(co, t->obedit->obmat, td->center);

			mul_m3_m3m3(tmp_axismtx, t->obedit_mat, td->axismtx);
			axismtx = tmp_axismtx;
		}
		else if (t->flag & T_POSE) {
			mul_v3_m4v3(co, t->poseobj->obmat, td->center);
			axismtx = td->axismtx;
		}
		else {
			copy_v3_v3(co, td->center);
			axismtx = td->axismtx;
		}

		if (t->con.mode & CON_AXIS0) {
			drawLine(t, co, axismtx[0], 'X', options);
		}
		if (t->con.mode & CON_AXIS1) {
			drawLine(t, co, axismtx[1], 'Y', options);
		}
		if (t->con.mode & CON_AXIS2) {
			drawLine(t, co, axismtx[2], 'Z', options);
		}
		options &= ~DRAWLIGHT;
	}
}
示例#12
0
void init_tex_mapping(TexMapping *texmap)
{
	float smat[3][3], rmat[3][3], mat[3][3], proj[3][3];

	if (texmap->projx == PROJ_X && texmap->projy == PROJ_Y && texmap->projz == PROJ_Z &&
	    is_zero_v3(texmap->loc) && is_zero_v3(texmap->rot) && is_one_v3(texmap->size))
	{
		unit_m4(texmap->mat);

		texmap->flag |= TEXMAP_UNIT_MATRIX;
	}
	else {
		/* axis projection */
		zero_m3(proj);

		if (texmap->projx != PROJ_N)
			proj[texmap->projx - 1][0] = 1.0f;
		if (texmap->projy != PROJ_N)
			proj[texmap->projy - 1][1] = 1.0f;
		if (texmap->projz != PROJ_N)
			proj[texmap->projz - 1][2] = 1.0f;

		/* scale */
		size_to_mat3(smat, texmap->size);
		
		/* rotation */
		/* TexMapping rotation are now in radians. */
		eul_to_mat3(rmat, texmap->rot);
		
		/* compose it all */
		mul_m3_m3m3(mat, rmat, smat);
		mul_m3_m3m3(mat, proj, mat);
		
		/* translation */
		copy_m4_m3(texmap->mat, mat);
		copy_v3_v3(texmap->mat[3], texmap->loc);

		texmap->flag &= ~TEXMAP_UNIT_MATRIX;
	}
}
示例#13
0
void init_mapping(TexMapping *texmap)
{
	float eul[3], smat[3][3], rmat[3][3], mat[3][3];
	
	size_to_mat3( smat,texmap->size);
	
	eul[0]= DEG2RADF(texmap->rot[0]);
	eul[1]= DEG2RADF(texmap->rot[1]);
	eul[2]= DEG2RADF(texmap->rot[2]);
	eul_to_mat3( rmat,eul);
	
	mul_m3_m3m3(mat, rmat, smat);
	
	copy_m4_m3(texmap->mat, mat);
	VECCOPY(texmap->mat[3], texmap->loc);

}
示例#14
0
static PyObject *Euler_rotate(EulerObject * self, PyObject *value)
{
	float self_rmat[3][3], other_rmat[3][3], rmat[3][3];

	if(!BaseMath_ReadCallback(self))
		return NULL;

	if(mathutils_any_to_rotmat(other_rmat, value, "euler.rotate(value)") == -1)
		return NULL;

	eulO_to_mat3(self_rmat, self->eul, self->order);
	mul_m3_m3m3(rmat, self_rmat, other_rmat);

	mat3_to_compatible_eulO(self->eul, self->eul, self->order, rmat);

	(void)BaseMath_WriteCallback(self);
	Py_RETURN_NONE;
}
示例#15
0
static void applyObjectConstraintRot(
    TransInfo *t, TransDataContainer *tc, TransData *td, float vec[3], float *angle)
{
  if (t->con.mode & CON_APPLY) {
    int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
    float tmp_axismtx[3][3];
    float(*axismtx)[3];

    /* on setup call, use first object */
    if (td == NULL) {
      BLI_assert(tc == NULL);
      tc = TRANS_DATA_CONTAINER_FIRST_OK(t);
      td = tc->data;
    }

    if (t->flag & T_EDIT) {
      mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
      axismtx = tmp_axismtx;
    }
    else {
      axismtx = td->axismtx;
    }

    switch (mode) {
      case CON_AXIS0:
      case (CON_AXIS1 | CON_AXIS2):
        copy_v3_v3(vec, axismtx[0]);
        break;
      case CON_AXIS1:
      case (CON_AXIS0 | CON_AXIS2):
        copy_v3_v3(vec, axismtx[1]);
        break;
      case CON_AXIS2:
      case (CON_AXIS0 | CON_AXIS1):
        copy_v3_v3(vec, axismtx[2]);
        break;
    }
    if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
      if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
        *angle = -(*angle);
      }
    }
  }
}
示例#16
0
void ED_armature_apply_transform(Object *ob, float mat[4][4])
{
	EditBone *ebone;
	bArmature *arm = ob->data;
	float scale = mat4_to_scale(mat);   /* store the scale of the matrix here to use on envelopes */
	float mat3[3][3];
	
	copy_m3_m4(mat3, mat);
	normalize_m3(mat3);
	
	/* Put the armature into editmode */
	ED_armature_to_edit(ob);
	
	/* Do the rotations */
	for (ebone = arm->edbo->first; ebone; ebone = ebone->next) {
		float delta[3], tmat[3][3];
		
		/* find the current bone's roll matrix */
		sub_v3_v3v3(delta, ebone->tail, ebone->head);
		vec_roll_to_mat3(delta, ebone->roll, tmat);
		
		/* transform the roll matrix */
		mul_m3_m3m3(tmat, mat3, tmat);
		
		/* transform the bone */
		mul_m4_v3(mat, ebone->head);
		mul_m4_v3(mat, ebone->tail);
		
		/* apply the transfiormed roll back */
		mat3_to_vec_roll(tmat, NULL, &ebone->roll);
		
		ebone->rad_head *= scale;
		ebone->rad_tail *= scale;
		ebone->dist     *= scale;
		
		/* we could be smarter and scale by the matrix along the x & z axis */
		ebone->xwidth   *= scale;
		ebone->zwidth   *= scale;
	}
	
	/* Turn the list into an armature */
	ED_armature_from_edit(ob);
	ED_armature_edit_free(ob);
}
示例#17
0
/* also sets restposition in armature (arm_mat) */
static void fix_bonelist_roll(ListBase *bonelist, ListBase *editbonelist)
{
	Bone *curBone;
	EditBone *ebone;
	float premat[3][3];
	float postmat[3][3];
	float difmat[3][3];
	float imat[3][3];
	
	for (curBone = bonelist->first; curBone; curBone = curBone->next) {
		/* sets local matrix and arm_mat (restpos) */
		BKE_armature_where_is_bone(curBone, curBone->parent);
		
		/* Find the associated editbone */
		for (ebone = editbonelist->first; ebone; ebone = ebone->next)
			if (ebone->temp.bone == curBone)
				break;
		
		if (ebone) {
			/* Get the ebone premat */
			ED_armature_ebone_to_mat3(ebone, premat);
			
			/* Get the bone postmat */
			copy_m3_m4(postmat, curBone->arm_mat);
			
			invert_m3_m3(imat, premat);
			mul_m3_m3m3(difmat, imat, postmat);
#if 0
			printf("Bone %s\n", curBone->name);
			print_m4("premat", premat);
			print_m4("postmat", postmat);
			print_m4("difmat", difmat);
			printf("Roll = %f\n",  RAD2DEGF(-atan2(difmat[2][0], difmat[2][2])));
#endif
			curBone->roll = -atan2f(difmat[2][0], difmat[2][2]);
			
			/* and set restposition again */
			BKE_armature_where_is_bone(curBone, curBone->parent);
		}
		fix_bonelist_roll(&curBone->childbase, editbonelist);
	}
}
static int armature_bone_primitive_add_exec(bContext *C, wmOperator *op) 
{
	RegionView3D *rv3d = CTX_wm_region_view3d(C);
	Object *obedit = CTX_data_edit_object(C);
	EditBone *bone;
	float obmat[3][3], curs[3], viewmat[3][3], totmat[3][3], imat[3][3];
	char name[MAXBONENAME];
	
	RNA_string_get(op->ptr, "name", name);
	
	copy_v3_v3(curs, ED_view3d_cursor3d_get(CTX_data_scene(C), CTX_wm_view3d(C)));

	/* Get inverse point for head and orientation for tail */
	invert_m4_m4(obedit->imat, obedit->obmat);
	mul_m4_v3(obedit->imat, curs);

	if (rv3d && (U.flag & USER_ADD_VIEWALIGNED))
		copy_m3_m4(obmat, rv3d->viewmat);
	else unit_m3(obmat);
	
	copy_m3_m4(viewmat, obedit->obmat);
	mul_m3_m3m3(totmat, obmat, viewmat);
	invert_m3_m3(imat, totmat);
	
	ED_armature_deselect_all(obedit);
	
	/*	Create a bone	*/
	bone = ED_armature_edit_bone_add(obedit->data, name);

	copy_v3_v3(bone->head, curs);
	
	if (rv3d && (U.flag & USER_ADD_VIEWALIGNED))
		add_v3_v3v3(bone->tail, bone->head, imat[1]);   // bone with unit length 1
	else
		add_v3_v3v3(bone->tail, bone->head, imat[2]);   // bone with unit length 1, pointing up Z

	/* note, notifier might evolve */
	WM_event_add_notifier(C, NC_OBJECT | ND_BONE_SELECT, obedit);

	return OPERATOR_FINISHED;
}
示例#19
0
static PyObject *Quaternion_rotate(QuaternionObject *self, PyObject *value)
{
	float self_rmat[3][3], other_rmat[3][3], rmat[3][3];
	float tquat[4], length;

	if (BaseMath_ReadCallback(self) == -1)
		return NULL;

	if (mathutils_any_to_rotmat(other_rmat, value, "Quaternion.rotate(value)") == -1)
		return NULL;

	length = normalize_qt_qt(tquat, self->quat);
	quat_to_mat3(self_rmat, tquat);
	mul_m3_m3m3(rmat, other_rmat, self_rmat);

	mat3_to_quat(self->quat, rmat);
	mul_qt_fl(self->quat, length); /* maintain length after rotating */

	(void)BaseMath_WriteCallback(self);
	Py_RETURN_NONE;
}
示例#20
0
static void meshcache_do(
        MeshCacheModifierData *mcmd, Object *ob, DerivedMesh *UNUSED(dm),
        float (*vertexCos_Real)[3], int numVerts)
{
	const bool use_factor = mcmd->factor < 1.0f;
	float (*vertexCos_Store)[3] = (use_factor || (mcmd->deform_mode == MOD_MESHCACHE_DEFORM_INTEGRATE)) ?
	                              MEM_mallocN(sizeof(*vertexCos_Store) * numVerts, __func__) : NULL;
	float (*vertexCos)[3] = vertexCos_Store ? vertexCos_Store : vertexCos_Real;

	Scene *scene = mcmd->modifier.scene;
	const float fps = FPS;

	char filepath[FILE_MAX];
	const char *err_str = NULL;
	bool ok;

	float time;


	/* -------------------------------------------------------------------- */
	/* Interpret Time (the reading functions also do some of this ) */
	if (mcmd->play_mode == MOD_MESHCACHE_PLAY_CFEA) {
		const float cfra = BKE_scene_frame_get(scene);

		switch (mcmd->time_mode) {
			case MOD_MESHCACHE_TIME_FRAME:
			{
				time = cfra;
				break;
			}
			case MOD_MESHCACHE_TIME_SECONDS:
			{
				time = cfra / fps;
				break;
			}
			case MOD_MESHCACHE_TIME_FACTOR:
			default:
			{
				time = cfra / fps;
				break;
			}
		}

		/* apply offset and scale */
		time = (mcmd->frame_scale * time) - mcmd->frame_start;
	}
	else {  /*  if (mcmd->play_mode == MOD_MESHCACHE_PLAY_EVAL) { */
		switch (mcmd->time_mode) {
			case MOD_MESHCACHE_TIME_FRAME:
			{
				time = mcmd->eval_frame;
				break;
			}
			case MOD_MESHCACHE_TIME_SECONDS:
			{
				time = mcmd->eval_time;
				break;
			}
			case MOD_MESHCACHE_TIME_FACTOR:
			default:
			{
				time = mcmd->eval_factor;
				break;
			}
		}
	}


	/* -------------------------------------------------------------------- */
	/* Read the File (or error out when the file is bad) */

	/* would be nice if we could avoid doing this _every_ frame */
	BLI_strncpy(filepath, mcmd->filepath, sizeof(filepath));
	BLI_path_abs(filepath, ID_BLEND_PATH(G.main, (ID *)ob));

	switch (mcmd->type) {
		case MOD_MESHCACHE_TYPE_MDD:
			ok = MOD_meshcache_read_mdd_times(filepath, vertexCos, numVerts,
			                                  mcmd->interp, time, fps, mcmd->time_mode, &err_str);
			break;
		case MOD_MESHCACHE_TYPE_PC2:
			ok = MOD_meshcache_read_pc2_times(filepath, vertexCos, numVerts,
			                                  mcmd->interp, time, fps, mcmd->time_mode, &err_str);
			break;
		default:
			ok = false;
			break;
	}


	/* -------------------------------------------------------------------- */
	/* tricky shape key integration (slow!) */
	if (mcmd->deform_mode == MOD_MESHCACHE_DEFORM_INTEGRATE) {
		Mesh *me = ob->data;

		/* we could support any object type */
		if (UNLIKELY(ob->type != OB_MESH)) {
			modifier_setError(&mcmd->modifier, "'Integrate' only valid for Mesh objects");
		}
		else if (UNLIKELY(me->totvert != numVerts)) {
			modifier_setError(&mcmd->modifier, "'Integrate' original mesh vertex mismatch");
		}
		else if (UNLIKELY(me->totpoly == 0)) {
			modifier_setError(&mcmd->modifier, "'Integrate' requires faces");
		}
		else {
			/* the moons align! */
			int i;

			float (*vertexCos_Source)[3] = MEM_mallocN(sizeof(*vertexCos_Source) * numVerts, __func__);
			float (*vertexCos_New)[3]    = MEM_mallocN(sizeof(*vertexCos_New) * numVerts, __func__);
			MVert *mv = me->mvert;

			for (i = 0; i < numVerts; i++, mv++) {
				copy_v3_v3(vertexCos_Source[i], mv->co);
			}

			BKE_mesh_calc_relative_deform(
			        me->mpoly, me->totpoly,
			        me->mloop, me->totvert,

			        (const float (*)[3])vertexCos_Source,   /* from the original Mesh*/
			        (const float (*)[3])vertexCos_Real,     /* the input we've been given (shape keys!) */

			        (const float (*)[3])vertexCos,          /* the result of this modifier */
			        vertexCos_New                           /* the result of this function */
			        );

			/* write the corrected locations back into the result */
			memcpy(vertexCos, vertexCos_New, sizeof(*vertexCos) * numVerts);

			MEM_freeN(vertexCos_Source);
			MEM_freeN(vertexCos_New);
		}
	}


	/* -------------------------------------------------------------------- */
	/* Apply the transformation matrix (if needed) */
	if (UNLIKELY(err_str)) {
		modifier_setError(&mcmd->modifier, "%s", err_str);
	}
	else if (ok) {
		bool use_matrix = false;
		float mat[3][3];
		unit_m3(mat);

		if (mat3_from_axis_conversion(mcmd->forward_axis, mcmd->up_axis, 1, 2, mat)) {
			use_matrix = true;
		}

		if (mcmd->flip_axis) {
			float tmat[3][3];
			unit_m3(tmat);
			if (mcmd->flip_axis & (1 << 0)) tmat[0][0] = -1.0f;
			if (mcmd->flip_axis & (1 << 1)) tmat[1][1] = -1.0f;
			if (mcmd->flip_axis & (1 << 2)) tmat[2][2] = -1.0f;
			mul_m3_m3m3(mat, tmat, mat);

			use_matrix = true;
		}

		if (use_matrix) {
			int i;
			for (i = 0; i < numVerts; i++) {
				mul_m3_v3(mat, vertexCos[i]);
			}
		}
	}

	if (vertexCos_Store) {
		if (ok) {
			if (use_factor) {
				interp_vn_vn(*vertexCos_Real, *vertexCos_Store, mcmd->factor, numVerts * 3);
			}
			else {
				memcpy(vertexCos_Real, vertexCos_Store, sizeof(*vertexCos_Store) * numVerts);
			}
		}

		MEM_freeN(vertexCos_Store);
	}
}
示例#21
0
static void drawObjectConstraint(TransInfo *t)
{
  /* Draw the first one lighter because that's the one who controls the others.
   * Meaning the transformation is projected on that one and just copied on the others
   * constraint space.
   * In a nutshell, the object with light axis is controlled by the user and the others follow.
   * Without drawing the first light, users have little clue what they are doing.
   */
  short options = DRAWLIGHT;
  int i;
  float tmp_axismtx[3][3];

  FOREACH_TRANS_DATA_CONTAINER (t, tc) {
    TransData *td = tc->data;
    for (i = 0; i < tc->data_len; i++, td++) {
      float co[3];
      float(*axismtx)[3];

      if (t->flag & T_PROP_EDIT) {
        /* we're sorted, so skip the rest */
        if (td->factor == 0.0f) {
          break;
        }
      }

      if (t->options & CTX_GPENCIL_STROKES) {
        /* only draw a constraint line for one point, otherwise we can't see anything */
        if ((options & DRAWLIGHT) == 0) {
          break;
        }
      }

      if (t->flag & T_OBJECT) {
        copy_v3_v3(co, td->ob->obmat[3]);
        axismtx = td->axismtx;
      }
      else if (t->flag & T_EDIT) {
        mul_v3_m4v3(co, tc->mat, td->center);

        mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
        axismtx = tmp_axismtx;
      }
      else if (t->flag & T_POSE) {
        mul_v3_m4v3(co, tc->mat, td->center);
        axismtx = td->axismtx;
      }
      else {
        copy_v3_v3(co, td->center);
        axismtx = td->axismtx;
      }

      if (t->con.mode & CON_AXIS0) {
        drawLine(t, co, axismtx[0], 'X', options);
      }
      if (t->con.mode & CON_AXIS1) {
        drawLine(t, co, axismtx[1], 'Y', options);
      }
      if (t->con.mode & CON_AXIS2) {
        drawLine(t, co, axismtx[2], 'Z', options);
      }
      options &= ~DRAWLIGHT;
    }
  }
示例#22
0
/* set the current pose as the restpose */
static int apply_armature_pose2bones_exec(bContext *C, wmOperator *op)
{
	Scene *scene = CTX_data_scene(C);
	Object *ob = BKE_object_pose_armature_get(CTX_data_active_object(C)); // must be active object, not edit-object
	bArmature *arm = BKE_armature_from_object(ob);
	bPose *pose;
	bPoseChannel *pchan;
	EditBone *curbone;
	
	/* don't check if editmode (should be done by caller) */
	if (ob->type != OB_ARMATURE)
		return OPERATOR_CANCELLED;
	if (BKE_object_obdata_is_libdata(ob)) {
		BKE_report(op->reports, RPT_ERROR, "Cannot apply pose to lib-linked armature"); /* error_libdata(); */
		return OPERATOR_CANCELLED;
	}

	/* helpful warnings... */
	/* TODO: add warnings to be careful about actions, applying deforms first, etc. */
	if (ob->adt && ob->adt->action)
		BKE_report(op->reports, RPT_WARNING,
		           "Actions on this armature will be destroyed by this new rest pose as the "
		           "transforms stored are relative to the old rest pose");

	/* Get editbones of active armature to alter */
	ED_armature_to_edit(arm);
	
	/* get pose of active object and move it out of posemode */
	pose = ob->pose;
	
	for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
		curbone = ED_armature_bone_find_name(arm->edbo, pchan->name);
		
		/* simply copy the head/tail values from pchan over to curbone */
		copy_v3_v3(curbone->head, pchan->pose_head);
		copy_v3_v3(curbone->tail, pchan->pose_tail);
		
		/* fix roll:
		 *	1. find auto-calculated roll value for this bone now
		 *	2. remove this from the 'visual' y-rotation
		 */
		{
			float premat[3][3], imat[3][3], pmat[3][3], tmat[3][3];
			float delta[3], eul[3];
			
			/* obtain new auto y-rotation */
			sub_v3_v3v3(delta, curbone->tail, curbone->head);
			vec_roll_to_mat3(delta, 0.0f, premat);
			invert_m3_m3(imat, premat);
			
			/* get pchan 'visual' matrix */
			copy_m3_m4(pmat, pchan->pose_mat);
			
			/* remove auto from visual and get euler rotation */
			mul_m3_m3m3(tmat, imat, pmat);
			mat3_to_eul(eul, tmat);
			
			/* just use this euler-y as new roll value */
			curbone->roll = eul[1];
		}
		
		/* clear transform values for pchan */
		zero_v3(pchan->loc);
		zero_v3(pchan->eul);
		unit_qt(pchan->quat);
		unit_axis_angle(pchan->rotAxis, &pchan->rotAngle);
		pchan->size[0] = pchan->size[1] = pchan->size[2] = 1.0f;
		
		/* set anim lock */
		curbone->flag |= BONE_UNKEYED;
	}
	
	/* convert editbones back to bones, and then free the edit-data */
	ED_armature_from_edit(arm);
	ED_armature_edit_free(arm);
	
	/* flush positions of posebones */
	BKE_pose_where_is(scene, ob);
	
	/* fix parenting of objects which are bone-parented */
	applyarmature_fix_boneparents(scene, ob);
	
	/* note, notifier might evolve */
	WM_event_add_notifier(C, NC_OBJECT | ND_POSE, ob);
	
	return OPERATOR_FINISHED;
}
示例#23
0
/* This function:
 *     - sets local head/tail rest locations using parent bone's arm_mat.
 *     - calls BKE_armature_where_is_bone() which uses parent's transform (arm_mat) to define this bone's transform.
 *     - fixes (converts) EditBone roll into Bone roll.
 *     - calls again BKE_armature_where_is_bone(), since roll fiddling may have changed things for our bone...
 * Note that order is crucial here, we can only handle child if all its parents in chain have already been handled
 * (this is ensured by recursive process). */
static void armature_finalize_restpose(ListBase *bonelist, ListBase *editbonelist)
{
	Bone *curBone;
	EditBone *ebone;

	for (curBone = bonelist->first; curBone; curBone = curBone->next) {
		/* Set bone's local head/tail.
		 * Note that it's important to use final parent's restpose (arm_mat) here, instead of setting those values
		 * from editbone's matrix (see T46010). */
		if (curBone->parent) {
			float parmat_inv[4][4];

			invert_m4_m4(parmat_inv, curBone->parent->arm_mat);

			/* Get the new head and tail */
			sub_v3_v3v3(curBone->head, curBone->arm_head, curBone->parent->arm_tail);
			sub_v3_v3v3(curBone->tail, curBone->arm_tail, curBone->parent->arm_tail);

			mul_mat3_m4_v3(parmat_inv, curBone->head);
			mul_mat3_m4_v3(parmat_inv, curBone->tail);
		}
		else {
			copy_v3_v3(curBone->head, curBone->arm_head);
			copy_v3_v3(curBone->tail, curBone->arm_tail);
		}

		/* Set local matrix and arm_mat (restpose).
		 * Do not recurse into children here, armature_finalize_restpose() is already recursive. */
		BKE_armature_where_is_bone(curBone, curBone->parent, false);

		/* Find the associated editbone */
		for (ebone = editbonelist->first; ebone; ebone = ebone->next) {
			if (ebone->temp.bone == curBone) {
				float premat[3][3];
				float postmat[3][3];
				float difmat[3][3];
				float imat[3][3];

				/* Get the ebone premat and its inverse. */
				ED_armature_ebone_to_mat3(ebone, premat);
				invert_m3_m3(imat, premat);

				/* Get the bone postmat. */
				copy_m3_m4(postmat, curBone->arm_mat);

				mul_m3_m3m3(difmat, imat, postmat);

#if 0
				printf("Bone %s\n", curBone->name);
				print_m4("premat", premat);
				print_m4("postmat", postmat);
				print_m4("difmat", difmat);
				printf("Roll = %f\n",  RAD2DEGF(-atan2(difmat[2][0], difmat[2][2])));
#endif

				curBone->roll = -atan2f(difmat[2][0], difmat[2][2]);

				/* and set restposition again */
				BKE_armature_where_is_bone(curBone, curBone->parent, false);
				break;
			}
		}

		/* Recurse into children... */
		armature_finalize_restpose(&curBone->childbase, editbonelist);
	}
}
示例#24
0
/* called from within the core BKE_pose_where_is loop, all animsystems and constraints
 * were executed & assigned. Now as last we do an IK pass */
static void execute_posetree(struct Scene *scene, Object *ob, PoseTree *tree)
{
	float R_parmat[3][3], identity[3][3];
	float iR_parmat[3][3];
	float R_bonemat[3][3];
	float goalrot[3][3], goalpos[3];
	float rootmat[4][4], imat[4][4];
	float goal[4][4], goalinv[4][4];
	float irest_basis[3][3], full_basis[3][3];
	float end_pose[4][4], world_pose[4][4];
	float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch = NULL;
	float resultinf = 0.0f;
	int a, flag, hasstretch = 0, resultblend = 0;
	bPoseChannel *pchan;
	IK_Segment *seg, *parent, **iktree, *iktarget;
	IK_Solver *solver;
	PoseTarget *target;
	bKinematicConstraint *data, *poleangledata = NULL;
	Bone *bone;

	if (tree->totchannel == 0)
		return;

	iktree = MEM_mallocN(sizeof(void *) * tree->totchannel, "ik tree");

	for (a = 0; a < tree->totchannel; a++) {
		pchan = tree->pchan[a];
		bone = pchan->bone;

		/* set DoF flag */
		flag = 0;
		if (!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP))
			flag |= IK_XDOF;
		if (!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP))
			flag |= IK_YDOF;
		if (!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP))
			flag |= IK_ZDOF;

		if (tree->stretch && (pchan->ikstretch > 0.0f)) {
			flag |= IK_TRANS_YDOF;
			hasstretch = 1;
		}

		seg = iktree[a] = IK_CreateSegment(flag);

		/* find parent */
		if (a == 0)
			parent = NULL;
		else
			parent = iktree[tree->parent[a]];

		IK_SetParent(seg, parent);

		/* get the matrix that transforms from prevbone into this bone */
		copy_m3_m4(R_bonemat, pchan->pose_mat);

		/* gather transformations for this IK segment */

		if (pchan->parent)
			copy_m3_m4(R_parmat, pchan->parent->pose_mat);
		else
			unit_m3(R_parmat);

		/* bone offset */
		if (pchan->parent && (a > 0))
			sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail);
		else
			/* only root bone (a = 0) has no parent */
			start[0] = start[1] = start[2] = 0.0f;

		/* change length based on bone size */
		length = bone->length * len_v3(R_bonemat[1]);

		/* compute rest basis and its inverse */
		copy_m3_m3(rest_basis, bone->bone_mat);
		copy_m3_m3(irest_basis, bone->bone_mat);
		transpose_m3(irest_basis);

		/* compute basis with rest_basis removed */
		invert_m3_m3(iR_parmat, R_parmat);
		mul_m3_m3m3(full_basis, iR_parmat, R_bonemat);
		mul_m3_m3m3(basis, irest_basis, full_basis);

		/* basis must be pure rotation */
		normalize_m3(basis);

		/* transform offset into local bone space */
		normalize_m3(iR_parmat);
		mul_m3_v3(iR_parmat, start);

		IK_SetTransform(seg, start, rest_basis, basis, length);

		if (pchan->ikflag & BONE_IK_XLIMIT)
			IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]);
		if (pchan->ikflag & BONE_IK_YLIMIT)
			IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]);
		if (pchan->ikflag & BONE_IK_ZLIMIT)
			IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]);

		IK_SetStiffness(seg, IK_X, pchan->stiffness[0]);
		IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]);
		IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]);

		if (tree->stretch && (pchan->ikstretch > 0.0f)) {
			const float ikstretch = pchan->ikstretch * pchan->ikstretch;
			/* this function does its own clamping */
			IK_SetStiffness(seg, IK_TRANS_Y, 1.0f - ikstretch);
			IK_SetLimit(seg, IK_TRANS_Y, IK_STRETCH_STIFF_MIN, IK_STRETCH_STIFF_MAX);
		}
	}

	solver = IK_CreateSolver(iktree[0]);

	/* set solver goals */

	/* first set the goal inverse transform, assuming the root of tree was done ok! */
	pchan = tree->pchan[0];
	if (pchan->parent) {
		/* transform goal by parent mat, so this rotation is not part of the
		 * segment's basis. otherwise rotation limits do not work on the
		 * local transform of the segment itself. */
		copy_m4_m4(rootmat, pchan->parent->pose_mat);
		/* However, we do not want to get (i.e. reverse) parent's scale, as it generates [#31008]
		 * kind of nasty bugs... */
		normalize_m4(rootmat);
	}
	else
		unit_m4(rootmat);
	copy_v3_v3(rootmat[3], pchan->pose_head);

	mul_m4_m4m4(imat, ob->obmat, rootmat);
	invert_m4_m4(goalinv, imat);

	for (target = tree->targets.first; target; target = target->next) {
		float polepos[3];
		int poleconstrain = 0;

		data = (bKinematicConstraint *)target->con->data;

		/* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though
		 * strictly speaking, it is a posechannel)
		 */
		BKE_constraint_target_matrix_get(scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);

		/* and set and transform goal */
		mul_m4_m4m4(goal, goalinv, rootmat);

		copy_v3_v3(goalpos, goal[3]);
		copy_m3_m4(goalrot, goal);
		normalize_m3(goalrot);

		/* same for pole vector target */
		if (data->poletar) {
			BKE_constraint_target_matrix_get(scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);

			if (data->flag & CONSTRAINT_IK_SETANGLE) {
				/* don't solve IK when we are setting the pole angle */
				break;
			}
			else {
				mul_m4_m4m4(goal, goalinv, rootmat);
				copy_v3_v3(polepos, goal[3]);
				poleconstrain = 1;

				/* for pole targets, we blend the result of the ik solver
				 * instead of the target position, otherwise we can't get
				 * a smooth transition */
				resultblend = 1;
				resultinf = target->con->enforce;

				if (data->flag & CONSTRAINT_IK_GETANGLE) {
					poleangledata = data;
					data->flag &= ~CONSTRAINT_IK_GETANGLE;
				}
			}
		}

		/* do we need blending? */
		if (!resultblend && target->con->enforce != 1.0f) {
			float q1[4], q2[4], q[4];
			float fac = target->con->enforce;
			float mfac = 1.0f - fac;

			pchan = tree->pchan[target->tip];

			/* end effector in world space */
			copy_m4_m4(end_pose, pchan->pose_mat);
			copy_v3_v3(end_pose[3], pchan->pose_tail);
			mul_serie_m4(world_pose, goalinv, ob->obmat, end_pose, NULL, NULL, NULL, NULL, NULL);

			/* blend position */
			goalpos[0] = fac * goalpos[0] + mfac * world_pose[3][0];
			goalpos[1] = fac * goalpos[1] + mfac * world_pose[3][1];
			goalpos[2] = fac * goalpos[2] + mfac * world_pose[3][2];

			/* blend rotation */
			mat3_to_quat(q1, goalrot);
			mat4_to_quat(q2, world_pose);
			interp_qt_qtqt(q, q1, q2, mfac);
			quat_to_mat3(goalrot, q);
		}

		iktarget = iktree[target->tip];

		if ((data->flag & CONSTRAINT_IK_POS) && data->weight != 0.0f) {
			if (poleconstrain)
				IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos,
				                                 polepos, data->poleangle, (poleangledata == data));
			IK_SolverAddGoal(solver, iktarget, goalpos, data->weight);
		}
		if ((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0f))
			if ((data->flag & CONSTRAINT_IK_AUTO) == 0)
				IK_SolverAddGoalOrientation(solver, iktarget, goalrot,
				                            data->orientweight);
	}

	/* solve */
	IK_Solve(solver, 0.0f, tree->iterations);

	if (poleangledata)
		poleangledata->poleangle = IK_SolverGetPoleAngle(solver);

	IK_FreeSolver(solver);

	/* gather basis changes */
	tree->basis_change = MEM_mallocN(sizeof(float[3][3]) * tree->totchannel, "ik basis change");
	if (hasstretch)
		ikstretch = MEM_mallocN(sizeof(float) * tree->totchannel, "ik stretch");

	for (a = 0; a < tree->totchannel; a++) {
		IK_GetBasisChange(iktree[a], tree->basis_change[a]);

		if (hasstretch) {
			/* have to compensate for scaling received from parent */
			float parentstretch, stretch;

			pchan = tree->pchan[a];
			parentstretch = (tree->parent[a] >= 0) ? ikstretch[tree->parent[a]] : 1.0f;

			if (tree->stretch && (pchan->ikstretch > 0.0f)) {
				float trans[3], length;

				IK_GetTranslationChange(iktree[a], trans);
				length = pchan->bone->length * len_v3(pchan->pose_mat[1]);

				ikstretch[a] = (length == 0.0f) ? 1.0f : (trans[1] + length) / length;
			}
			else
				ikstretch[a] = 1.0;

			stretch = (parentstretch == 0.0f) ? 1.0f : ikstretch[a] / parentstretch;

			mul_v3_fl(tree->basis_change[a][0], stretch);
			mul_v3_fl(tree->basis_change[a][1], stretch);
			mul_v3_fl(tree->basis_change[a][2], stretch);
		}

		if (resultblend && resultinf != 1.0f) {
			unit_m3(identity);
			blend_m3_m3m3(tree->basis_change[a], identity,
			              tree->basis_change[a], resultinf);
		}

		IK_FreeSegment(iktree[a]);
	}

	MEM_freeN(iktree);
	if (ikstretch) MEM_freeN(ikstretch);
}
示例#25
0
static int apply_objects_internal(bContext *C, ReportList *reports, int apply_loc, int apply_rot, int apply_scale)
{
	Main *bmain = CTX_data_main(C);
	Scene *scene = CTX_data_scene(C);
	float rsmat[3][3], tmat[3][3], obmat[3][3], iobmat[3][3], mat[4][4], scale;
	int a, change = 1;
	
	/* first check if we can execute */
	CTX_DATA_BEGIN (C, Object *, ob, selected_editable_objects)
	{

		if (ob->type == OB_MESH) {
			if (ID_REAL_USERS(ob->data) > 1) {
				BKE_report(reports, RPT_ERROR, "Can't apply to a multi user mesh, doing nothing");
				change = 0;
			}
		}
		else if (ob->type == OB_ARMATURE) {
			if (ID_REAL_USERS(ob->data) > 1) {
				BKE_report(reports, RPT_ERROR, "Can't apply to a multi user armature, doing nothing");
				change = 0;
			}
		}
		else if (ob->type == OB_LATTICE) {
			if (ID_REAL_USERS(ob->data) > 1) {
				BKE_report(reports, RPT_ERROR, "Can't apply to a multi user lattice, doing nothing");
				change = 0;
			}
		}
		else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
			Curve *cu;

			if (ID_REAL_USERS(ob->data) > 1) {
				BKE_report(reports, RPT_ERROR, "Can't apply to a multi user curve, doing nothing");
				change = 0;
			}

			cu = ob->data;

			if (!(cu->flag & CU_3D) && (apply_rot || apply_loc)) {
				BKE_report(reports, RPT_ERROR, "Neither rotation nor location could be applied to a 2d curve, doing nothing");
				change = 0;
			}
			if (cu->key) {
				BKE_report(reports, RPT_ERROR, "Can't apply to a curve with vertex keys, doing nothing");
				change = 0;
			}
		}
	}
	CTX_DATA_END;
	
	if (!change)
		return OPERATOR_CANCELLED;

	change = 0;

	/* now execute */
	CTX_DATA_BEGIN (C, Object *, ob, selected_editable_objects)
	{

		/* calculate rotation/scale matrix */
		if (apply_scale && apply_rot)
			BKE_object_to_mat3(ob, rsmat);
		else if (apply_scale)
			BKE_object_scale_to_mat3(ob, rsmat);
		else if (apply_rot) {
			float tmat[3][3], timat[3][3];

			/* simple rotation matrix */
			BKE_object_rot_to_mat3(ob, rsmat);

			/* correct for scale, note mul_m3_m3m3 has swapped args! */
			BKE_object_scale_to_mat3(ob, tmat);
			invert_m3_m3(timat, tmat);
			mul_m3_m3m3(rsmat, timat, rsmat);
			mul_m3_m3m3(rsmat, rsmat, tmat);
		}
		else
			unit_m3(rsmat);

		copy_m4_m3(mat, rsmat);

		/* calculate translation */
		if (apply_loc) {
			copy_v3_v3(mat[3], ob->loc);

			if (!(apply_scale && apply_rot)) {
				/* correct for scale and rotation that is still applied */
				BKE_object_to_mat3(ob, obmat);
				invert_m3_m3(iobmat, obmat);
				mul_m3_m3m3(tmat, rsmat, iobmat);
				mul_m3_v3(tmat, mat[3]);
			}
		}

		/* apply to object data */
		if (ob->type == OB_MESH) {
			Mesh *me = ob->data;
			MVert *mvert;

			multiresModifier_scale_disp(scene, ob);
			
			/* adjust data */
			mvert = me->mvert;
			for (a = 0; a < me->totvert; a++, mvert++)
				mul_m4_v3(mat, mvert->co);
			
			if (me->key) {
				KeyBlock *kb;
				
				for (kb = me->key->block.first; kb; kb = kb->next) {
					float *fp = kb->data;
					
					for (a = 0; a < kb->totelem; a++, fp += 3)
						mul_m4_v3(mat, fp);
				}
			}
			
			/* update normals */
			BKE_mesh_calc_normals_mapping(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL, NULL, 0, NULL, NULL);
		}
		else if (ob->type == OB_ARMATURE) {
			ED_armature_apply_transform(ob, mat);
		}
		else if (ob->type == OB_LATTICE) {
			Lattice *lt = ob->data;
			BPoint *bp = lt->def;
			int a = lt->pntsu * lt->pntsv * lt->pntsw;
			
			while (a--) {
				mul_m4_v3(mat, bp->vec);
				bp++;
			}
		}
		else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
			Curve *cu = ob->data;

			Nurb *nu;
			BPoint *bp;
			BezTriple *bezt;

			scale = mat3_to_scale(rsmat);

			for (nu = cu->nurb.first; nu; nu = nu->next) {
				if (nu->type == CU_BEZIER) {
					a = nu->pntsu;
					for (bezt = nu->bezt; a--; bezt++) {
						mul_m4_v3(mat, bezt->vec[0]);
						mul_m4_v3(mat, bezt->vec[1]);
						mul_m4_v3(mat, bezt->vec[2]);
						bezt->radius *= scale;
					}
					BKE_nurb_handles_calc(nu);
				}
				else {
					a = nu->pntsu * nu->pntsv;
					for (bp = nu->bp; a--; bp++)
						mul_m4_v3(mat, bp->vec);
				}
			}
		}
		else
			continue;

		if (apply_loc)
			zero_v3(ob->loc);
		if (apply_scale)
			ob->size[0] = ob->size[1] = ob->size[2] = 1.0f;
		if (apply_rot) {
			zero_v3(ob->rot);
			unit_qt(ob->quat);
			unit_axis_angle(ob->rotAxis, &ob->rotAngle);
		}

		BKE_object_where_is_calc(scene, ob);
		if (ob->type == OB_ARMATURE) {
			BKE_pose_where_is(scene, ob); /* needed for bone parents */
		}

		ignore_parent_tx(bmain, scene, ob);

		DAG_id_tag_update(&ob->id, OB_RECALC_OB | OB_RECALC_DATA);

		change = 1;
	}
	CTX_DATA_END;

	if (!change)
		return OPERATOR_CANCELLED;

	WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
	return OPERATOR_FINISHED;
}
static int apply_objects_internal(bContext *C, ReportList *reports, bool apply_loc, bool apply_rot, bool apply_scale)
{
	Main *bmain = CTX_data_main(C);
	Scene *scene = CTX_data_scene(C);
	float rsmat[3][3], obmat[3][3], iobmat[3][3], mat[4][4], scale;
	bool changed = true;
	
	/* first check if we can execute */
	CTX_DATA_BEGIN (C, Object *, ob, selected_editable_objects)
	{
		if (ELEM(ob->type, OB_MESH, OB_ARMATURE, OB_LATTICE, OB_MBALL, OB_CURVE, OB_SURF, OB_FONT)) {
			ID *obdata = ob->data;
			if (ID_REAL_USERS(obdata) > 1) {
				BKE_reportf(reports, RPT_ERROR,
				            "Cannot apply to a multi user: Object \"%s\", %s \"%s\", aborting",
				            ob->id.name + 2, BKE_idcode_to_name(GS(obdata->name)), obdata->name + 2);
				changed = false;
			}

			if (obdata->lib) {
				BKE_reportf(reports, RPT_ERROR,
				            "Cannot apply to library data: Object \"%s\", %s \"%s\", aborting",
				            ob->id.name + 2, BKE_idcode_to_name(GS(obdata->name)), obdata->name + 2);
				changed = false;
			}
		}

		if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
			ID *obdata = ob->data;
			Curve *cu;

			cu = ob->data;

			if (((ob->type == OB_CURVE) && !(cu->flag & CU_3D)) && (apply_rot || apply_loc)) {
				BKE_reportf(reports, RPT_ERROR,
				            "Rotation/Location can't apply to a 2D curve: Object \"%s\", %s \"%s\", aborting",
				            ob->id.name + 2, BKE_idcode_to_name(GS(obdata->name)), obdata->name + 2);
				changed = false;
			}
			if (cu->key) {
				BKE_reportf(reports, RPT_ERROR,
				            "Can't apply to a curve with shape-keys: Object \"%s\", %s \"%s\", aborting",
				            ob->id.name + 2, BKE_idcode_to_name(GS(obdata->name)), obdata->name + 2);
				changed = false;
			}
		}

		if (ob->type == OB_FONT) {
			if (apply_rot || apply_loc) {
				BKE_reportf(reports, RPT_ERROR,
				            "Font's can only have scale applied: \"%s\"",
				            ob->id.name + 2);
				changed = false;
			}
		}
	}
	CTX_DATA_END;
	
	if (!changed)
		return OPERATOR_CANCELLED;

	changed = false;

	/* now execute */
	CTX_DATA_BEGIN (C, Object *, ob, selected_editable_objects)
	{

		/* calculate rotation/scale matrix */
		if (apply_scale && apply_rot)
			BKE_object_to_mat3(ob, rsmat);
		else if (apply_scale)
			BKE_object_scale_to_mat3(ob, rsmat);
		else if (apply_rot) {
			float tmat[3][3], timat[3][3];

			/* simple rotation matrix */
			BKE_object_rot_to_mat3(ob, rsmat, true);

			/* correct for scale, note mul_m3_m3m3 has swapped args! */
			BKE_object_scale_to_mat3(ob, tmat);
			invert_m3_m3(timat, tmat);
			mul_m3_m3m3(rsmat, timat, rsmat);
			mul_m3_m3m3(rsmat, rsmat, tmat);
		}
		else
			unit_m3(rsmat);

		copy_m4_m3(mat, rsmat);

		/* calculate translation */
		if (apply_loc) {
			copy_v3_v3(mat[3], ob->loc);

			if (!(apply_scale && apply_rot)) {
				float tmat[3][3];
				/* correct for scale and rotation that is still applied */
				BKE_object_to_mat3(ob, obmat);
				invert_m3_m3(iobmat, obmat);
				mul_m3_m3m3(tmat, rsmat, iobmat);
				mul_m3_v3(tmat, mat[3]);
			}
		}

		/* apply to object data */
		if (ob->type == OB_MESH) {
			Mesh *me = ob->data;

			if (apply_scale)
				multiresModifier_scale_disp(scene, ob);
			
			/* adjust data */
			BKE_mesh_transform(me, mat, true);
			
			/* update normals */
			BKE_mesh_calc_normals(me);
		}
		else if (ob->type == OB_ARMATURE) {
			ED_armature_apply_transform(ob, mat);
		}
		else if (ob->type == OB_LATTICE) {
			Lattice *lt = ob->data;

			BKE_lattice_transform(lt, mat, true);
		}
		else if (ob->type == OB_MBALL) {
			MetaBall *mb = ob->data;
			BKE_mball_transform(mb, mat);
		}
		else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
			Curve *cu = ob->data;
			scale = mat3_to_scale(rsmat);
			BKE_curve_transform_ex(cu, mat, true, scale);
		}
		else if (ob->type == OB_FONT) {
			Curve *cu = ob->data;
			int i;

			scale = mat3_to_scale(rsmat);

			for (i = 0; i < cu->totbox; i++) {
				TextBox *tb = &cu->tb[i];
				tb->x *= scale;
				tb->y *= scale;
				tb->w *= scale;
				tb->h *= scale;
			}

			cu->fsize *= scale;
		}
		else if (ob->type == OB_CAMERA) {
			MovieClip *clip = BKE_object_movieclip_get(scene, ob, false);

			/* applying scale on camera actually scales clip's reconstruction.
			 * of there's clip assigned to camera nothing to do actually.
			 */
			if (!clip)
				continue;

			if (apply_scale)
				BKE_tracking_reconstruction_scale(&clip->tracking, ob->size);
		}
		else if (ob->type == OB_EMPTY) {
			/* It's possible for empties too, even though they don't 
			 * really have obdata, since we can simply apply the maximum
			 * scaling to the empty's drawsize.
			 *
			 * Core Assumptions:
			 * 1) Most scaled empties have uniform scaling 
			 *    (i.e. for visibility reasons), AND/OR
			 * 2) Preserving non-uniform scaling is not that important,
			 *    and is something that many users would be willing to
			 *    sacrifice for having an easy way to do this.
			 */

			if ((apply_loc == false) &&
			    (apply_rot == false) &&
			    (apply_scale == true))
			{
				float max_scale = max_fff(fabsf(ob->size[0]), fabsf(ob->size[1]), fabsf(ob->size[2]));
				ob->empty_drawsize *= max_scale;
			}
		}
		else {
			continue;
		}

		if (apply_loc)
			zero_v3(ob->loc);
		if (apply_scale)
			ob->size[0] = ob->size[1] = ob->size[2] = 1.0f;
		if (apply_rot) {
			zero_v3(ob->rot);
			unit_qt(ob->quat);
			unit_axis_angle(ob->rotAxis, &ob->rotAngle);
		}

		BKE_object_where_is_calc(scene, ob);
		if (ob->type == OB_ARMATURE) {
			BKE_pose_where_is(scene, ob); /* needed for bone parents */
		}

		ignore_parent_tx(bmain, scene, ob);

		DAG_id_tag_update(&ob->id, OB_RECALC_OB | OB_RECALC_DATA);

		changed = true;
	}
	CTX_DATA_END;

	if (!changed) {
		BKE_report(reports, RPT_WARNING, "Objects have no data to transform");
		return OPERATOR_CANCELLED;
	}

	WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
	return OPERATOR_FINISHED;
}
示例#27
0
static void face_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, float par_space_mat[][4], int level, int animated)
{
	Object *ob, *ob_iter;
	Base *base = NULL;
	DupliObject *dob;
	DerivedMesh *dm;
	Mesh *me= par->data;
	MLoopUV *mloopuv;
	MPoly *mpoly, *mp;
	MLoop *mloop;
	MVert *mvert;
	float pmat[4][4], imat[3][3], (*orco)[3] = NULL, w;
	int lay, oblay, totface, a;
	Scene *sce = NULL;
	Group *group = NULL;
	GroupObject *go = NULL;
	BMEditMesh *em;
	float ob__obmat[4][4]; /* needed for groups where the object matrix needs to be modified */
	
	/* simple preventing of too deep nested groups */
	if (level>MAX_DUPLI_RECUR) return;
	
	copy_m4_m4(pmat, par->obmat);
	em = me->edit_btmesh;

	if (em) {
		dm= editbmesh_get_derived_cage(scene, par, em, CD_MASK_BAREMESH);
	}
	else {
		dm = mesh_get_derived_deform(scene, par, CD_MASK_BAREMESH);
	}

	totface= dm->getNumPolys(dm);
	mpoly= dm->getPolyArray(dm);
	mloop= dm->getLoopArray(dm);
	mvert= dm->getVertArray(dm);

	if (G.rendering) {

		orco= (float(*)[3])get_mesh_orco_verts(par);
		transform_mesh_orco_verts(me, orco, me->totvert, 0);
		mloopuv= me->mloopuv;
	}
	else {
		orco= NULL;
		mloopuv= NULL;
	}
	
	/* having to loop on scene OR group objects is NOT FUN */
	if (GS(id->name) == ID_SCE) {
		sce = (Scene *)id;
		lay= sce->lay;
		base= sce->base.first;
	}
	else {
		group = (Group *)id;
		lay= group->layer;
		go = group->gobject.first;
	}
	
	/* Start looping on Scene OR Group objects */
	while (base || go) { 
		if (sce) {
			ob_iter= base->object;
			oblay = base->lay;
		}
		else {
			ob_iter= go->ob;
			oblay = ob_iter->lay;
		}
		
		if (lay & oblay && scene->obedit!=ob_iter) {
			ob=ob_iter->parent;
			while (ob) {
				if (ob==par) {
					ob = ob_iter;
	/* End Scene/Group object loop, below is generic */
					
					/* par_space_mat - only used for groups so we can modify the space dupli's are in
					 * when par_space_mat is NULL ob->obmat can be used instead of ob__obmat
					 */
					if (par_space_mat)
						mult_m4_m4m4(ob__obmat, par_space_mat, ob->obmat);
					else
						copy_m4_m4(ob__obmat, ob->obmat);
					
					copy_m3_m4(imat, ob->parentinv);
						
					/* mballs have a different dupli handling */
					if (ob->type!=OB_MBALL) ob->flag |= OB_DONE;	/* doesnt render */

					for (a=0, mp= mpoly; a<totface; a++, mp++) {
						int mv1;
						int mv2;
						int mv3;
						/* int mv4; */ /* UNUSED */
						float *v1;
						float *v2;
						float *v3;
						/* float *v4; */ /* UNUSED */
						float cent[3], quat[4], mat[3][3], mat3[3][3], tmat[4][4], obmat[4][4];
						MLoop *loopstart= mloop + mp->loopstart;

						if (mp->totloop < 3) {
							/* highly unlikely but to be safe */
							continue;
						}
						else {
							v1= mvert[(mv1= loopstart[0].v)].co;
							v2= mvert[(mv2= loopstart[1].v)].co;
							v3= mvert[(mv3= loopstart[2].v)].co;
#if 0
							if (mp->totloop > 3) {
								v4= mvert[(mv4= loopstart[3].v)].co;
							}
#endif
						}

						/* translation */
						mesh_calc_poly_center(mp, loopstart, mvert, cent);

						mul_m4_v3(pmat, cent);
						
						sub_v3_v3v3(cent, cent, pmat[3]);
						add_v3_v3(cent, ob__obmat[3]);
						
						copy_m4_m4(obmat, ob__obmat);
						
						copy_v3_v3(obmat[3], cent);
						
						/* rotation */
						tri_to_quat( quat,v1, v2, v3);
						quat_to_mat3( mat,quat);
						
						/* scale */
						if (par->transflag & OB_DUPLIFACES_SCALE) {
							float size= mesh_calc_poly_area(mp, loopstart, mvert, NULL);
							size= sqrtf(size) * par->dupfacesca;
							mul_m3_fl(mat, size);
						}
						
						copy_m3_m3(mat3, mat);
						mul_m3_m3m3(mat, imat, mat3);
						
						copy_m4_m4(tmat, obmat);
						mul_m4_m4m3(obmat, tmat, mat);
						
						dob= new_dupli_object(lb, ob, obmat, par->lay, a, OB_DUPLIFACES, animated);
						if (G.rendering) {
							w= 1.0f / (float)mp->totloop;

							if (orco) {
								int j;
								for (j = 0; j < mpoly->totloop; j++) {
									madd_v3_v3fl(dob->orco, orco[loopstart[j].v], w);
								}
							}

							if (mloopuv) {
								int j;
								for (j = 0; j < mpoly->totloop; j++) {
									madd_v2_v2fl(dob->orco, mloopuv[loopstart[j].v].uv, w);
								}
							}
						}
						
						if (ob->transflag & OB_DUPLI) {
							float tmpmat[4][4];
							copy_m4_m4(tmpmat, ob->obmat);
							copy_m4_m4(ob->obmat, obmat); /* pretend we are really this mat */
							object_duplilist_recursive((ID *)id, scene, ob, lb, ob->obmat, level+1, animated);
							copy_m4_m4(ob->obmat, tmpmat);
						}
					}
					
					break;
				}
				ob= ob->parent;
			}
		}
		if (sce)	base= base->next;	/* scene loop */
		else		go= go->next;		/* group loop */
	}

	if (orco)
		MEM_freeN(orco);
	
	dm->release(dm);
}
示例#28
0
/* Evaluate spline IK for a given bone */
static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
                                   int index, float ctime)
{
	bSplineIKConstraint *ikData = tree->ikData;
	float poseHead[3], poseTail[3], poseMat[4][4];
	float splineVec[3], scaleFac, radius = 1.0f;

	/* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
	BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);

	copy_v3_v3(poseHead, pchan->pose_head);
	copy_v3_v3(poseTail, pchan->pose_tail);

	/* step 1: determine the positions for the endpoints of the bone */
	{
		float vec[4], dir[3], rad;
		float tailBlendFac = 1.0f;

		/* determine if the bone should still be affected by SplineIK */
		if (tree->points[index + 1] >= 1.0f) {
			/* spline doesn't affect the bone anymore, so done... */
			pchan->flag |= POSE_DONE;
			return;
		}
		else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
			/* blending factor depends on the amount of the bone still left on the chain */
			tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
		}

		/* tail endpoint */
		if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
			/* apply curve's object-mode transforms to the position
			 * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
			 */
			if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
				mul_m4_v3(ikData->tar->obmat, vec);

			/* convert the position to pose-space, then store it */
			mul_m4_v3(ob->imat, vec);
			interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);

			/* set the new radius */
			radius = rad;
		}

		/* head endpoint */
		if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
			/* apply curve's object-mode transforms to the position
			 * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
			 */
			if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
				mul_m4_v3(ikData->tar->obmat, vec);

			/* store the position, and convert it to pose space */
			mul_m4_v3(ob->imat, vec);
			copy_v3_v3(poseHead, vec);

			/* set the new radius (it should be the average value) */
			radius = (radius + rad) / 2;
		}
	}

	/* step 2: determine the implied transform from these endpoints
	 *     - splineVec: the vector direction that the spline applies on the bone
	 *     - scaleFac: the factor that the bone length is scaled by to get the desired amount
	 */
	sub_v3_v3v3(splineVec, poseTail, poseHead);
	scaleFac = len_v3(splineVec) / pchan->bone->length;

	/* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
	 *      - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
	 */
	{
		float dmat[3][3], rmat[3][3], tmat[3][3];
		float raxis[3], rangle;

		/* compute the raw rotation matrix from the bone's current matrix by extracting only the
		 * orientation-relevant axes, and normalizing them
		 */
		copy_v3_v3(rmat[0], pchan->pose_mat[0]);
		copy_v3_v3(rmat[1], pchan->pose_mat[1]);
		copy_v3_v3(rmat[2], pchan->pose_mat[2]);
		normalize_m3(rmat);

		/* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
		normalize_v3(splineVec);

		/* calculate smallest axis-angle rotation necessary for getting from the
		 * current orientation of the bone, to the spline-imposed direction
		 */
		cross_v3_v3v3(raxis, rmat[1], splineVec);

		rangle = dot_v3v3(rmat[1], splineVec);
		CLAMP(rangle, -1.0f, 1.0f);
		rangle = acosf(rangle);

		/* multiply the magnitude of the angle by the influence of the constraint to
		 * control the influence of the SplineIK effect
		 */
		rangle *= tree->con->enforce;

		/* construct rotation matrix from the axis-angle rotation found above
		 *	- this call takes care to make sure that the axis provided is a unit vector first
		 */
		axis_angle_to_mat3(dmat, raxis, rangle);

		/* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
		 * while still maintaining roll control from the existing bone animation
		 */
		mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
		normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
		copy_m4_m3(poseMat, tmat);
	}

	/* step 4: set the scaling factors for the axes */
	{
		/* only multiply the y-axis by the scaling factor to get nice volume-preservation */
		mul_v3_fl(poseMat[1], scaleFac);

		/* set the scaling factors of the x and z axes from... */
		switch (ikData->xzScaleMode) {
			case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
			{
				/* original scales get used */
				float scale;

				/* x-axis scale */
				scale = len_v3(pchan->pose_mat[0]);
				mul_v3_fl(poseMat[0], scale);
				/* z-axis scale */
				scale = len_v3(pchan->pose_mat[2]);
				mul_v3_fl(poseMat[2], scale);
				break;
			}
			case CONSTRAINT_SPLINEIK_XZS_INVERSE:
			{
				/* old 'volume preservation' method using the inverse scale */
				float scale;

				/* calculate volume preservation factor which is
				 * basically the inverse of the y-scaling factor
				 */
				if (fabsf(scaleFac) != 0.0f) {
					scale = 1.0f / fabsf(scaleFac);

					/* we need to clamp this within sensible values */
					/* NOTE: these should be fine for now, but should get sanitised in future */
					CLAMP(scale, 0.0001f, 100000.0f);
				}
				else
					scale = 1.0f;

				/* apply the scaling */
				mul_v3_fl(poseMat[0], scale);
				mul_v3_fl(poseMat[2], scale);
				break;
			}
			case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
			{
				/* improved volume preservation based on the Stretch To constraint */
				float final_scale;
				
				/* as the basis for volume preservation, we use the inverse scale factor... */
				if (fabsf(scaleFac) != 0.0f) {
					/* NOTE: The method here is taken wholesale from the Stretch To constraint */
					float bulge = powf(1.0f / fabsf(scaleFac), ikData->bulge);
					
					if (bulge > 1.0f) {
						if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
							float bulge_max = max_ff(ikData->bulge_max, 1.0f);
							float hard = min_ff(bulge, bulge_max);
							
							float range = bulge_max - 1.0f;
							float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
							float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / (float)M_PI_2;
							
							bulge = interpf(soft, hard, ikData->bulge_smooth);
						}
					}
					if (bulge < 1.0f) {
						if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
							float bulge_min = CLAMPIS(ikData->bulge_min, 0.0f, 1.0f);
							float hard = max_ff(bulge, bulge_min);
							
							float range = 1.0f - bulge_min;
							float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
							float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / (float)M_PI_2;
							
							bulge = interpf(soft, hard, ikData->bulge_smooth);
						}
					}
					
					/* compute scale factor for xz axes from this value */
					final_scale = sqrtf(bulge);
				}
				else {
					/* no scaling, so scale factor is simple */
					final_scale = 1.0f;
				}
				
				/* apply the scaling (assuming normalised scale) */
				mul_v3_fl(poseMat[0], final_scale);
				mul_v3_fl(poseMat[2], final_scale);
				break;
			}
		}

		/* finally, multiply the x and z scaling by the radius of the curve too,
		 * to allow automatic scales to get tweaked still
		 */
		if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
			mul_v3_fl(poseMat[0], radius);
			mul_v3_fl(poseMat[2], radius);
		}
	}

	/* step 5: set the location of the bone in the matrix */
	if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
		/* when the 'no-root' option is affected, the chain can retain
		 * the shape but be moved elsewhere
		 */
		copy_v3_v3(poseHead, pchan->pose_head);
	}
	else if (tree->con->enforce < 1.0f) {
		/* when the influence is too low
		 *	- blend the positions for the 'root' bone
		 *	- stick to the parent for any other
		 */
		if (pchan->parent) {
			copy_v3_v3(poseHead, pchan->pose_head);
		}
		else {
			/* FIXME: this introduces popping artifacts when we reach 0.0 */
			interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
		}
	}
	copy_v3_v3(poseMat[3], poseHead);

	/* finally, store the new transform */
	copy_m4_m4(pchan->pose_mat, poseMat);
	copy_v3_v3(pchan->pose_head, poseHead);

	/* recalculate tail, as it's now outdated after the head gets adjusted above! */
	BKE_pose_where_is_bone_tail(pchan);

	/* done! */
	pchan->flag |= POSE_DONE;
}
示例#29
0
struct chartrans *BKE_text_to_curve(Main *bmain, Scene *scene, Object *ob, int mode)
{
	VFont *vfont, *oldvfont;
	VFontData *vfd= NULL;
	Curve *cu;
	CharInfo *info = NULL, *custrinfo;
	TextBox *tb;
	VChar *che;
	struct chartrans *chartransdata=NULL, *ct;
	float *f, xof, yof, xtrax, linedist, *linedata, *linedata2, *linedata3, *linedata4;
	float twidth, maxlen= 0;
	int i, slen, j;
	int curbox;
	int selstart, selend;
	int utf8len;
	short cnr=0, lnr=0, wsnr= 0;
	wchar_t *mem, *tmp, ascii;

	/* renark: do calculations including the trailing '\0' of a string
	 * because the cursor can be at that location */

	if (ob->type!=OB_FONT) return NULL;

	// Set font data
	cu= (Curve *) ob->data;
	vfont= cu->vfont;
	
	if (cu->str == NULL) return NULL;
	if (vfont == NULL) return NULL;

	// Create unicode string
	utf8len = BLI_strlen_utf8(cu->str);
	mem = MEM_callocN(((utf8len + 1) * sizeof(wchar_t)), "convertedmem");
	
	BLI_strncpy_wchar_from_utf8(mem, cu->str, utf8len + 1);

	// Count the wchar_t string length
	slen = wcslen(mem);

	if (cu->ulheight == 0.0f)
		cu->ulheight = 0.05f;
	
	if (cu->strinfo==NULL)	/* old file */
		cu->strinfo = MEM_callocN((slen+4) * sizeof(CharInfo), "strinfo compat");
	
	custrinfo= cu->strinfo;
	if (cu->editfont)
		custrinfo= cu->editfont->textbufinfo;
	
	if (cu->tb==NULL)
		cu->tb= MEM_callocN(MAXTEXTBOX*sizeof(TextBox), "TextBox compat");

	vfd= vfont_get_data(bmain, vfont);

	/* The VFont Data can not be found */
	if (!vfd) {
		if (mem)
			MEM_freeN(mem);	
		return NULL;
	}

	/* calc offset and rotation of each char */
	ct = chartransdata =
		(struct chartrans*)MEM_callocN((slen+1)* sizeof(struct chartrans),"buildtext");

	/* We assume the worst case: 1 character per line (is freed at end anyway) */

	linedata= MEM_mallocN(sizeof(float)*(slen*2 + 1),"buildtext2");
	linedata2= MEM_mallocN(sizeof(float)*(slen*2 + 1),"buildtext3");
	linedata3= MEM_callocN(sizeof(float)*(slen*2 + 1),"buildtext4");	
	linedata4= MEM_callocN(sizeof(float)*(slen*2 + 1),"buildtext5");		
	
	linedist= cu->linedist;
	
	xof= cu->xof + (cu->tb[0].x/cu->fsize);
	yof= cu->yof + (cu->tb[0].y/cu->fsize);

	xtrax= 0.5f*cu->spacing-0.5f;

	oldvfont = NULL;

	for (i=0; i<slen; i++) custrinfo[i].flag &= ~(CU_CHINFO_WRAP|CU_CHINFO_SMALLCAPS_CHECK);

	if (cu->selboxes) MEM_freeN(cu->selboxes);
	cu->selboxes = NULL;
	if (BKE_font_getselection(ob, &selstart, &selend))
		cu->selboxes = MEM_callocN((selend-selstart+1)*sizeof(SelBox), "font selboxes");

	tb = &(cu->tb[0]);
	curbox= 0;
	for (i = 0 ; i<=slen ; i++) {
	makebreak:
		// Characters in the list
		info = &(custrinfo[i]);
		ascii = mem[i];
		if (info->flag & CU_CHINFO_SMALLCAPS) {
			ascii = towupper(ascii);
			if (mem[i] != ascii) {
				mem[i]= ascii;
				info->flag |= CU_CHINFO_SMALLCAPS_CHECK;
			}
		}

		vfont = which_vfont(cu, info);
		
		if (vfont==NULL) break;

		che= find_vfont_char(vfd, ascii);

		/*
		 * The character wasn't in the current curve base so load it
		 * But if the font is FO_BUILTIN_NAME then do not try loading since
		 * whole font is in the memory already
		 */
		if (che == NULL && strcmp(vfont->name, FO_BUILTIN_NAME))	{
			BLI_vfontchar_from_freetypefont(vfont, ascii);
		}

		/* Try getting the character again from the list */
		che= find_vfont_char(vfd, ascii);

		/* No VFont found */
		if (vfont==NULL) {
			if (mem)
				MEM_freeN(mem);
			MEM_freeN(chartransdata);
			return NULL;
		}

		if (vfont != oldvfont) {
			vfd= vfont_get_data(bmain, vfont);
			oldvfont = vfont;
		}

		/* VFont Data for VFont couldn't be found */
		if (!vfd) {
			if (mem)
				MEM_freeN(mem);
			MEM_freeN(chartransdata);
			return NULL;
		}

		twidth = char_width(cu, che, info);

		// Calculate positions
		if ((tb->w != 0.0f) && (ct->dobreak==0) && ((xof-(tb->x/cu->fsize)+twidth)*cu->fsize) > tb->w + cu->xof*cu->fsize) {
	//		fprintf(stderr, "linewidth exceeded: %c%c%c...\n", mem[i], mem[i+1], mem[i+2]);
			for (j=i; j && (mem[j] != '\n') && (mem[j] != '\r') && (chartransdata[j].dobreak==0); j--) {
				if (mem[j]==' ' || mem[j]=='-') {
					ct -= (i-(j-1));
					cnr -= (i-(j-1));
					if (mem[j] == ' ') wsnr--;
					if (mem[j] == '-') wsnr++;
					i = j-1;
					xof = ct->xof;
					ct[1].dobreak = 1;
					custrinfo[i+1].flag |= CU_CHINFO_WRAP;
					goto makebreak;
				}
				if (chartransdata[j].dobreak) {
	//				fprintf(stderr, "word too long: %c%c%c...\n", mem[j], mem[j+1], mem[j+2]);
					ct->dobreak= 1;
					custrinfo[i+1].flag |= CU_CHINFO_WRAP;
					ct -= 1;
					cnr -= 1;
					i--;
					xof = ct->xof;
					goto makebreak;
				}
			}
		}
		if (ascii== '\n' || ascii== '\r' || ascii==0 || ct->dobreak) {
			ct->xof= xof;
			ct->yof= yof;
			ct->linenr= lnr;
			ct->charnr= cnr;
			
			yof-= linedist;
			
			maxlen= MAX2(maxlen, (xof-tb->x/cu->fsize));
			linedata[lnr]= xof-tb->x/cu->fsize;
			linedata2[lnr]= cnr;
			linedata3[lnr]= tb->w/cu->fsize;
			linedata4[lnr]= wsnr;
			
			if ( (tb->h != 0.0f) &&
				 ((-(yof-(tb->y/cu->fsize))) > ((tb->h/cu->fsize)-(linedist*cu->fsize)) - cu->yof) &&
				 (cu->totbox > (curbox+1)) ) {
				maxlen= 0;
				tb++;
				curbox++;
				yof= cu->yof + tb->y/cu->fsize;
			}

			/* XXX, has been unused for years, need to check if this is useful, r4613 r5282 - campbell */
#if 0
			if (ascii == '\n' || ascii == '\r')
				xof = cu->xof;
			else
				xof= cu->xof + (tb->x/cu->fsize);
#else
			xof= cu->xof + (tb->x/cu->fsize);
#endif
			lnr++;
			cnr= 0;
			wsnr= 0;
		}
		else if (ascii==9) {	/* TAB */
			float tabfac;
			
			ct->xof= xof;
			ct->yof= yof;
			ct->linenr= lnr;
			ct->charnr= cnr++;

			tabfac= (xof-cu->xof+0.01f);
			tabfac= 2.0f*ceilf(tabfac/2.0f);
			xof= cu->xof+tabfac;
		}
		else {
			SelBox *sb= NULL;
			float wsfac;

			ct->xof= xof;
			ct->yof= yof;
			ct->linenr= lnr;
			ct->charnr= cnr++;

			if (cu->selboxes && (i>=selstart) && (i<=selend)) {
				sb = &(cu->selboxes[i-selstart]);
				sb->y = yof*cu->fsize-linedist*cu->fsize*0.1f;
				sb->h = linedist*cu->fsize;
				sb->w = xof*cu->fsize;
			}
	
			if (ascii==32) {
				wsfac = cu->wordspace; 
				wsnr++;
			} 
			else wsfac = 1.0f;
			
			// Set the width of the character
			twidth = char_width(cu, che, info);

			xof += (twidth*wsfac*(1.0f+(info->kern/40.0f)) ) + xtrax;
			
			if (sb) 
				sb->w = (xof*cu->fsize) - sb->w;
		}
		ct++;
	}
	
	cu->lines= 1;
	ct= chartransdata;
	tmp = mem;
	for (i= 0; i<=slen; i++, tmp++, ct++) {
		ascii = *tmp;
		if (ascii== '\n' || ascii== '\r' || ct->dobreak) cu->lines++;
	}	

	// linedata is now: width of line
	// linedata2 is now: number of characters
	// linedata3 is now: maxlen of that line
	// linedata4 is now: number of whitespaces of line

	if (cu->spacemode!=CU_LEFT) {
		ct= chartransdata;

		if (cu->spacemode==CU_RIGHT) {
			for (i=0;i<lnr;i++) linedata[i]= linedata3[i]-linedata[i];
			for (i=0; i<=slen; i++) {
				ct->xof+= linedata[ct->linenr];
				ct++;
			}
		}
		else if (cu->spacemode==CU_MIDDLE) {
			for (i=0;i<lnr;i++) linedata[i]= (linedata3[i]-linedata[i])/2;
			for (i=0; i<=slen; i++) {
				ct->xof+= linedata[ct->linenr];
				ct++;
			}
		}
		else if ((cu->spacemode==CU_FLUSH) &&
				  (cu->tb[0].w != 0.0f)) {
			for (i=0;i<lnr;i++)
				if (linedata2[i]>1)
					linedata[i]= (linedata3[i]-linedata[i])/(linedata2[i]-1);
			for (i=0; i<=slen; i++) {
				for (j=i; (!ELEM3(mem[j], '\0', '\n', '\r')) && (chartransdata[j].dobreak == 0) && (j < slen); j++) {
					/* do nothing */
				}

//				if ((mem[j]!='\r') && (mem[j]!='\n') && (mem[j])) {
					ct->xof+= ct->charnr*linedata[ct->linenr];
//				}
				ct++;
			}
		} 
		else if ((cu->spacemode==CU_JUSTIFY) && (cu->tb[0].w != 0.0f)) {
			float curofs= 0.0f;
			for (i=0; i<=slen; i++) {
				for (j=i; (mem[j]) && (mem[j]!='\n') && 
						  (mem[j]!='\r') && (chartransdata[j].dobreak==0) && (j<slen); j++);
				if ((mem[j]!='\r') && (mem[j]!='\n') &&
					((chartransdata[j].dobreak!=0))) {
					if (mem[i]==' ') curofs += (linedata3[ct->linenr]-linedata[ct->linenr])/linedata4[ct->linenr];
					ct->xof+= curofs;
				}
				if (mem[i]=='\n' || mem[i]=='\r' || chartransdata[i].dobreak) curofs= 0;
				ct++;
			}			
		}
	}
	
	/* TEXT ON CURVE */
	/* Note: Only OB_CURVE objects could have a path  */
	if (cu->textoncurve && cu->textoncurve->type==OB_CURVE) {
		Curve *cucu= cu->textoncurve->data;
		int oldflag= cucu->flag;
		
		cucu->flag |= (CU_PATH+CU_FOLLOW);
		
		if (cucu->path==NULL) makeDispListCurveTypes(scene, cu->textoncurve, 0);
		if (cucu->path) {
			float distfac, imat[4][4], imat3[3][3], cmat[3][3];
			float minx, maxx, miny, maxy;
			float timeofs, sizefac;
			
			invert_m4_m4(imat, ob->obmat);
			copy_m3_m4(imat3, imat);

			copy_m3_m4(cmat, cu->textoncurve->obmat);
			mul_m3_m3m3(cmat, cmat, imat3);
			sizefac= normalize_v3(cmat[0])/cu->fsize;
			
			minx=miny= 1.0e20f;
			maxx=maxy= -1.0e20f;
			ct= chartransdata;
			for (i=0; i<=slen; i++, ct++) {
				if (minx>ct->xof) minx= ct->xof;
				if (maxx<ct->xof) maxx= ct->xof;
				if (miny>ct->yof) miny= ct->yof;
				if (maxy<ct->yof) maxy= ct->yof;
			}
			
			/* we put the x-coordinaat exact at the curve, the y is rotated */
			
			/* length correction */
			distfac= sizefac*cucu->path->totdist/(maxx-minx);
			timeofs= 0.0f;
			
			if (distfac > 1.0f) {
				/* path longer than text: spacemode involves */
				distfac= 1.0f/distfac;
				
				if (cu->spacemode==CU_RIGHT) {
					timeofs= 1.0f-distfac;
				}
				else if (cu->spacemode==CU_MIDDLE) {
					timeofs= (1.0f-distfac)/2.0f;
				}
				else if (cu->spacemode==CU_FLUSH) distfac= 1.0f;
				
			}
			else distfac= 1.0;
			
			distfac/= (maxx-minx);
			
			timeofs+= distfac*cu->xof;	/* not cyclic */
			
			ct= chartransdata;
			for (i=0; i<=slen; i++, ct++) {
				float ctime, dtime, vec[4], tvec[4], rotvec[3];
				float si, co;
				
				/* rotate around center character */
				ascii = mem[i];

				che= find_vfont_char(vfd, ascii);
	
				twidth = char_width(cu, che, info);

				dtime= distfac*0.5f*twidth;

				ctime= timeofs + distfac*( ct->xof - minx);
				CLAMP(ctime, 0.0f, 1.0f);

				/* calc the right loc AND the right rot separately */
				/* vec, tvec need 4 items */
				where_on_path(cu->textoncurve, ctime, vec, tvec, NULL, NULL, NULL);
				where_on_path(cu->textoncurve, ctime+dtime, tvec, rotvec, NULL, NULL, NULL);
				
				mul_v3_fl(vec, sizefac);
				
				ct->rot= (float)(M_PI-atan2(rotvec[1], rotvec[0]));

				si= (float)sin(ct->rot);
				co= (float)cos(ct->rot);

				yof= ct->yof;
				
				ct->xof= vec[0] + si*yof;
				ct->yof= vec[1] + co*yof;
				
			}
			cucu->flag= oldflag;
		}
	}

	if (cu->selboxes) {
		ct= chartransdata;
		for (i=0; i<=selend; i++, ct++) {
			if (i>=selstart) {
				cu->selboxes[i-selstart].x = ct->xof*cu->fsize;
				cu->selboxes[i-selstart].y = ct->yof*cu->fsize;				
			}
		}
	}

	if (mode==FO_CURSUP || mode==FO_CURSDOWN || mode==FO_PAGEUP || mode==FO_PAGEDOWN) {
		/* 2: curs up
		 * 3: curs down */
		ct= chartransdata+cu->pos;
		
		if ((mode==FO_CURSUP || mode==FO_PAGEUP) && ct->linenr==0);
		else if ((mode==FO_CURSDOWN || mode==FO_PAGEDOWN) && ct->linenr==lnr);
		else {
			switch(mode) {
				case FO_CURSUP:		lnr= ct->linenr-1; break;
				case FO_CURSDOWN:	lnr= ct->linenr+1; break;
				case FO_PAGEUP:		lnr= ct->linenr-10; break;
				case FO_PAGEDOWN:	lnr= ct->linenr+10; break;
			}
			cnr= ct->charnr;
			/* seek for char with lnr en cnr */
			cu->pos= 0;
			ct= chartransdata;
			for (i= 0; i<slen; i++) {
				if (ct->linenr==lnr) {
					if (ct->charnr==cnr) break;
					if ( (ct+1)->charnr==0) break;
				}
				else if (ct->linenr>lnr) break;
				cu->pos++;
				ct++;
			}
		}
	}
	
	/* cursor first */
	if (cu->editfont) {
		float si, co;
		
		ct= chartransdata+cu->pos;
		si= (float)sin(ct->rot);
		co= (float)cos(ct->rot);
				
		f= cu->editfont->textcurs[0];
		
		f[0]= cu->fsize*(-0.1f*co + ct->xof);
		f[1]= cu->fsize*(0.1f*si + ct->yof);
		
		f[2]= cu->fsize*(0.1f*co + ct->xof);
		f[3]= cu->fsize*(-0.1f*si + ct->yof);
		
		f[4]= cu->fsize*( 0.1f*co + 0.8f*si + ct->xof);
		f[5]= cu->fsize*(-0.1f*si + 0.8f*co + ct->yof);
		
		f[6]= cu->fsize*(-0.1f*co + 0.8f*si + ct->xof);
		f[7]= cu->fsize*( 0.1f*si + 0.8f*co + ct->yof);
		
	}

	MEM_freeN(linedata);
	MEM_freeN(linedata2);		
	MEM_freeN(linedata3);
	MEM_freeN(linedata4);

	if (mode == FO_SELCHANGE) {
		MEM_freeN(chartransdata);
		MEM_freeN(mem);
		return NULL;
	}

	if (mode == FO_EDIT) {
		/* make nurbdata */
		freeNurblist(&cu->nurb);
		
		ct= chartransdata;
		if (cu->sepchar==0) {
			for (i= 0; i<slen; i++) {
				unsigned long cha = (uintptr_t) mem[i];
				info = &(custrinfo[i]);
				if (info->mat_nr > (ob->totcol)) {
					/* printf("Error: Illegal material index (%d) in text object, setting to 0\n", info->mat_nr); */
					info->mat_nr = 0;
				}
				// We do not want to see any character for \n or \r
				if (cha != '\n' && cha != '\r')
					buildchar(bmain, cu, cha, info, ct->xof, ct->yof, ct->rot, i);
				
				if ((info->flag & CU_CHINFO_UNDERLINE) && (cu->textoncurve == NULL) && (cha != '\n') && (cha != '\r')) {
					float ulwidth, uloverlap= 0.0f;
					
					if ( (i<(slen-1)) && (mem[i+1] != '\n') && (mem[i+1] != '\r') &&
						 ((mem[i+1] != ' ') || (custrinfo[i+1].flag & CU_CHINFO_UNDERLINE)) && ((custrinfo[i+1].flag & CU_CHINFO_WRAP)==0)
						 ) {
						uloverlap = xtrax + 0.1f;
					}
					// Find the character, the characters has to be in the memory already 
					// since character checking has been done earlier already.
					che= find_vfont_char(vfd, cha);

					twidth = char_width(cu, che, info);
					ulwidth = cu->fsize * ((twidth* (1.0f+(info->kern/40.0f)))+uloverlap);
					build_underline(cu, ct->xof*cu->fsize, ct->yof*cu->fsize + (cu->ulpos-0.05f)*cu->fsize,
									ct->xof*cu->fsize + ulwidth, 
									ct->yof*cu->fsize + (cu->ulpos-0.05f)*cu->fsize - cu->ulheight*cu->fsize,
									i, info->mat_nr);
				}
				ct++;
			}
		}
		else {
			int outta = 0;
			for (i= 0; (i<slen) && (outta==0); i++) {
				ascii = mem[i];
				info = &(custrinfo[i]);
				if (cu->sepchar == (i+1)) {
					float vecyo[3];

					vecyo[0]= ct->xof;
					vecyo[1]= ct->yof;
					vecyo[2]= 0.0f;

					mem[0] = ascii;
					mem[1] = 0;
					custrinfo[0]= *info;
					cu->pos = 1;
					cu->len = 1;
					mul_v3_m4v3(ob->loc, ob->obmat, vecyo);
					outta = 1;
					cu->sepchar = 0;
				}
				ct++;
			}
		}
	}

	if (mode==FO_DUPLI) {
		MEM_freeN(mem);
		return chartransdata;
	}

	if (mem)
		MEM_freeN(mem);

	MEM_freeN(chartransdata);
	return NULL;
}
示例#30
0
PyObject* BL_ArmatureChannel::py_attr_get_joint_rotation(void *self_v, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
	bPoseChannel* pchan = static_cast<bPoseChannel*>(self_v);
	// decompose the pose matrix in euler rotation
	float rest_mat[3][3];
	float pose_mat[3][3];
	float joint_mat[3][3];
	float joints[3];
	float norm;
	double sa, ca;
	// get rotation in armature space
	copy_m3_m4(pose_mat, pchan->pose_mat);
	normalize_m3(pose_mat);
	if (pchan->parent) {
		// bone has a parent, compute the rest pose of the bone taking actual pose of parent
		mult_m3_m3m4(rest_mat, pchan->parent->pose_mat, pchan->bone->bone_mat);
		normalize_m3(rest_mat);
	} else {
		// otherwise, the bone matrix in armature space is the rest pose
		copy_m3_m4(rest_mat, pchan->bone->arm_mat);
	}
	// remove the rest pose to get the joint movement
	transpose_m3(rest_mat);
	mul_m3_m3m3(joint_mat, rest_mat, pose_mat);		
	joints[0] = joints[1] = joints[2] = 0.f;
	// returns a 3 element list that gives corresponding joint
	int flag = 0;
	if (!(pchan->ikflag & BONE_IK_NO_XDOF))
		flag |= 1;
	if (!(pchan->ikflag & BONE_IK_NO_YDOF))
		flag |= 2;
	if (!(pchan->ikflag & BONE_IK_NO_ZDOF))
		flag |= 4;
	switch (flag) {
	case 0:	// fixed joint
		break;
	case 1:	// X only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[1] = joints[2] = 0.f;
		break;
	case 2:	// Y only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = joints[2] = 0.f;
		break;
	case 3:	// X+Y
		mat3_to_eulO( joints, EULER_ORDER_ZYX,joint_mat);
		joints[2] = 0.f;
		break;
	case 4:	// Z only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = joints[1] = 0.f;
		break;
	case 5:	// X+Z
		// decompose this as an equivalent rotation vector in X/Z plane
		joints[0] = joint_mat[1][2];
		joints[2] = -joint_mat[1][0];
		norm = normalize_v3(joints);
		if (norm < FLT_EPSILON) {
			norm = (joint_mat[1][1] < 0.f) ? M_PI : 0.f;
		} else {
			norm = acos(joint_mat[1][1]);
		}
		mul_v3_fl(joints, norm);
		break;
	case 6:	// Y+Z
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = 0.f;
		break;
	case 7: // X+Y+Z
		// equivalent axis
		joints[0] = (joint_mat[1][2]-joint_mat[2][1])*0.5f;
		joints[1] = (joint_mat[2][0]-joint_mat[0][2])*0.5f;
		joints[2] = (joint_mat[0][1]-joint_mat[1][0])*0.5f;
		sa = len_v3(joints);
		ca = (joint_mat[0][0]+joint_mat[1][1]+joint_mat[1][1]-1.0f)*0.5f;
		if (sa > FLT_EPSILON) {
			norm = atan2(sa,ca)/sa;
		} else {
			if (ca < 0.0) {
				norm = M_PI;
				mul_v3_fl(joints,0.f);
				if (joint_mat[0][0] > 0.f) {
					joints[0] = 1.0f;
				} else if (joint_mat[1][1] > 0.f) {
					joints[1] = 1.0f;
				} else {
					joints[2] = 1.0f;
				}
			} else {
				norm = 0.0;
			}
		}
		mul_v3_fl(joints,norm);
		break;
	}
	return Vector_CreatePyObject(joints, 3, Py_NEW, NULL);
}