示例#1
0
VertexData TransformUnit::ReadVertex(VertexReader& vreader)
{
	VertexData vertex;

	float pos[3];
	// VertexDecoder normally scales z, but we want it unscaled.
	vreader.ReadPosThroughZ16(pos);

	if (!gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV()) {
		float uv[2];
		vreader.ReadUV(uv);
		vertex.texturecoords = Vec2<float>(uv[0], uv[1]);
	}

	if (vreader.hasNormal()) {
		float normal[3];
		vreader.ReadNrm(normal);
		vertex.normal = Vec3<float>(normal[0], normal[1], normal[2]);

		if (gstate.areNormalsReversed())
			vertex.normal = -vertex.normal;
	}

	if (vertTypeIsSkinningEnabled(gstate.vertType) && !gstate.isModeThrough()) {
		float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f };
		vreader.ReadWeights(W);

		Vec3<float> tmppos(0.f, 0.f, 0.f);
		Vec3<float> tmpnrm(0.f, 0.f, 0.f);

		for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) {
			Mat3x3<float> bone(&gstate.boneMatrix[12*i]);
			tmppos += (bone * ModelCoords(pos[0], pos[1], pos[2]) + Vec3<float>(gstate.boneMatrix[12*i+9], gstate.boneMatrix[12*i+10], gstate.boneMatrix[12*i+11])) * W[i];
			if (vreader.hasNormal())
				tmpnrm += (bone * vertex.normal) * W[i];
		}

		pos[0] = tmppos.x;
		pos[1] = tmppos.y;
		pos[2] = tmppos.z;
		if (vreader.hasNormal())
			vertex.normal = tmpnrm;
	}

	if (vreader.hasColor0()) {
		float col[4];
		vreader.ReadColor0(col);
		vertex.color0 = Vec4<int>(col[0]*255, col[1]*255, col[2]*255, col[3]*255);
	} else {
		vertex.color0 = Vec4<int>(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB(), gstate.getMaterialAmbientA());
	}

	if (vreader.hasColor1()) {
		float col[3];
		vreader.ReadColor1(col);
		vertex.color1 = Vec3<int>(col[0]*255, col[1]*255, col[2]*255);
	} else {
		vertex.color1 = Vec3<int>(0, 0, 0);
	}

	if (!gstate.isModeThrough()) {
		vertex.modelpos = ModelCoords(pos[0], pos[1], pos[2]);
		vertex.worldpos = WorldCoords(TransformUnit::ModelToWorld(vertex.modelpos));
		ModelCoords viewpos = TransformUnit::WorldToView(vertex.worldpos);
		vertex.clippos = ClipCoords(TransformUnit::ViewToClip(viewpos));
		if (gstate.isFogEnabled()) {
			float fog_end = getFloat24(gstate.fog1);
			float fog_slope = getFloat24(gstate.fog2);
			// Same fixup as in ShaderManagerGLES.cpp
			if (my_isnanorinf(fog_end)) {
				// Not really sure what a sensible value might be, but let's try 64k.
				fog_end = std::signbit(fog_end) ? -65535.0f : 65535.0f;
			}
			if (my_isnanorinf(fog_slope)) {
				fog_slope = std::signbit(fog_slope) ? -65535.0f : 65535.0f;
			}
			vertex.fogdepth = (viewpos.z + fog_end) * fog_slope;
		} else {
			vertex.fogdepth = 1.0f;
		}
		vertex.screenpos = ClipToScreenInternal(vertex.clippos, &outside_range_flag);

		if (vreader.hasNormal()) {
			vertex.worldnormal = TransformUnit::ModelToWorldNormal(vertex.normal);
			// TODO: Isn't there a flag that controls whether to normalize the normal?
			vertex.worldnormal /= vertex.worldnormal.Length();
		} else {
			vertex.worldnormal = Vec3<float>(0.0f, 0.0f, 1.0f);
		}

		Lighting::Process(vertex, vreader.hasColor0());
	} else {
		vertex.screenpos.x = (int)(pos[0] * 16) + gstate.getOffsetX16();
		vertex.screenpos.y = (int)(pos[1] * 16) + gstate.getOffsetY16();
		vertex.screenpos.z = pos[2];
		vertex.clippos.w = 1.f;
		vertex.fogdepth = 1.f;
	}

	return vertex;
}
示例#2
0
void BaseUpdateUniforms(UB_VS_FS_Base *ub, uint64_t dirtyUniforms, bool flipViewport) {
	if (dirtyUniforms & DIRTY_TEXENV) {
		Uint8x3ToFloat4(ub->texEnvColor, gstate.texenvcolor);
	}
	if (dirtyUniforms & DIRTY_ALPHACOLORREF) {
		Uint8x3ToInt4_Alpha(ub->alphaColorRef, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask());
	}
	if (dirtyUniforms & DIRTY_ALPHACOLORMASK) {
		Uint8x3ToInt4_Alpha(ub->colorTestMask, gstate.getColorTestMask(), gstate.getAlphaTestMask());
	}
	if (dirtyUniforms & DIRTY_FOGCOLOR) {
		Uint8x3ToFloat4(ub->fogColor, gstate.fogcolor);
	}
	if (dirtyUniforms & DIRTY_SHADERBLEND) {
		Uint8x3ToFloat4(ub->blendFixA, gstate.getFixA());
		Uint8x3ToFloat4(ub->blendFixB, gstate.getFixB());
	}
	if (dirtyUniforms & DIRTY_TEXCLAMP) {
		const float invW = 1.0f / (float)gstate_c.curTextureWidth;
		const float invH = 1.0f / (float)gstate_c.curTextureHeight;
		const int w = gstate.getTextureWidth(0);
		const int h = gstate.getTextureHeight(0);
		const float widthFactor = (float)w * invW;
		const float heightFactor = (float)h * invH;

		// First wrap xy, then half texel xy (for clamp.)
		ub->texClamp[0] = widthFactor;
		ub->texClamp[1] = heightFactor;
		ub->texClamp[2] = invW * 0.5f;
		ub->texClamp[3] = invH * 0.5f;
		ub->texClampOffset[0] = gstate_c.curTextureXOffset * invW;
		ub->texClampOffset[1] = gstate_c.curTextureYOffset * invH;
	}

	if (dirtyUniforms & DIRTY_PROJMATRIX) {
		Matrix4x4 flippedMatrix;
		memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));

		const bool invertedY = gstate_c.vpHeight < 0;
		if (invertedY) {
			flippedMatrix[1] = -flippedMatrix[1];
			flippedMatrix[5] = -flippedMatrix[5];
			flippedMatrix[9] = -flippedMatrix[9];
			flippedMatrix[13] = -flippedMatrix[13];
		}
		const bool invertedX = gstate_c.vpWidth < 0;
		if (invertedX) {
			flippedMatrix[0] = -flippedMatrix[0];
			flippedMatrix[4] = -flippedMatrix[4];
			flippedMatrix[8] = -flippedMatrix[8];
			flippedMatrix[12] = -flippedMatrix[12];
		}
		if (flipViewport) {
			ConvertProjMatrixToD3D11(flippedMatrix);
		} else {
			ConvertProjMatrixToVulkan(flippedMatrix);
		}

		if (g_Config.iRenderingMode == 0 && g_display_rotation != DisplayRotation::ROTATE_0) {
			flippedMatrix = flippedMatrix * g_display_rot_matrix;
		}

		CopyMatrix4x4(ub->proj, flippedMatrix.getReadPtr());
	}

	if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) {
		Matrix4x4 proj_through;
		if (flipViewport) {
			proj_through.setOrthoD3D(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0, 0, 1);
		} else {
			proj_through.setOrthoVulkan(0.0f, gstate_c.curRTWidth, 0, gstate_c.curRTHeight, 0, 1);
		}
		if (g_Config.iRenderingMode == 0 && g_display_rotation != DisplayRotation::ROTATE_0) {
			proj_through = proj_through * g_display_rot_matrix;
		}
		CopyMatrix4x4(ub->proj_through, proj_through.getReadPtr());
	}

	// Transform
	if (dirtyUniforms & DIRTY_WORLDMATRIX) {
		ConvertMatrix4x3To3x4Transposed(ub->world, gstate.worldMatrix);
	}
	if (dirtyUniforms & DIRTY_VIEWMATRIX) {
		ConvertMatrix4x3To3x4Transposed(ub->view, gstate.viewMatrix);
	}
	if (dirtyUniforms & DIRTY_TEXMATRIX) {
		ConvertMatrix4x3To3x4Transposed(ub->tex, gstate.tgenMatrix);
	}

	// Combined two small uniforms
	if (dirtyUniforms & (DIRTY_FOGCOEF | DIRTY_STENCILREPLACEVALUE)) {
		float fogcoef_stencil[3] = {
			getFloat24(gstate.fog1),
			getFloat24(gstate.fog2),
			(float)gstate.getStencilTestRef()/255.0f
		};
		if (my_isinf(fogcoef_stencil[1])) {
			// not really sure what a sensible value might be.
			fogcoef_stencil[1] = fogcoef_stencil[1] < 0.0f ? -10000.0f : 10000.0f;
		} else if (my_isnan(fogcoef_stencil[1])) {
			// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
			// Just put the fog far away at a large finite distance.
			// Infinities and NaNs are rather unpredictable in shaders on many GPUs
			// so it's best to just make it a sane calculation.
			fogcoef_stencil[0] = 100000.0f;
			fogcoef_stencil[1] = 1.0f;
		}
#ifndef MOBILE_DEVICE
		else if (my_isnanorinf(fogcoef_stencil[1]) || my_isnanorinf(fogcoef_stencil[0])) {
			ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef_stencil[0], fogcoef_stencil[1]);
		}
#endif
		CopyFloat3(ub->fogCoef_stencil, fogcoef_stencil);
	}

	// Note - this one is not in lighting but in transformCommon as it has uses beyond lighting
	if (dirtyUniforms & DIRTY_MATAMBIENTALPHA) {
		Uint8x3ToFloat4_AlphaUint8(ub->matAmbient, gstate.materialambient, gstate.getMaterialAmbientA());
	}

	// Texturing
	if (dirtyUniforms & DIRTY_UVSCALEOFFSET) {
		const float invW = 1.0f / (float)gstate_c.curTextureWidth;
		const float invH = 1.0f / (float)gstate_c.curTextureHeight;
		const int w = gstate.getTextureWidth(0);
		const int h = gstate.getTextureHeight(0);
		const float widthFactor = (float)w * invW;
		const float heightFactor = (float)h * invH;
		if (gstate_c.bezier || gstate_c.spline) {
			// When we are generating UV coordinates through the bezier/spline, we need to apply the scaling.
			// However, this is missing a check that we're not getting our UV:s supplied for us in the vertices.
			ub->uvScaleOffset[0] = gstate_c.uv.uScale * widthFactor;
			ub->uvScaleOffset[1] = gstate_c.uv.vScale * heightFactor;
			ub->uvScaleOffset[2] = gstate_c.uv.uOff * widthFactor;
			ub->uvScaleOffset[3] = gstate_c.uv.vOff * heightFactor;
		} else {
			ub->uvScaleOffset[0] = widthFactor;
			ub->uvScaleOffset[1] = heightFactor;
			ub->uvScaleOffset[2] = 0.0f;
			ub->uvScaleOffset[3] = 0.0f;
		}
	}

	if (dirtyUniforms & DIRTY_DEPTHRANGE) {
		float viewZScale = gstate.getViewportZScale();
		float viewZCenter = gstate.getViewportZCenter();

		// We had to scale and translate Z to account for our clamped Z range.
		// Therefore, we also need to reverse this to round properly.
		//
		// Example: scale = 65535.0, center = 0.0
		// Resulting range = -65535 to 65535, clamped to [0, 65535]
		// gstate_c.vpDepthScale = 2.0f
		// gstate_c.vpZOffset = -1.0f
		//
		// The projection already accounts for those, so we need to reverse them.
		//
		// Additionally, D3D9 uses a range from [0, 1].  We double and move the center.
		viewZScale *= (1.0f / gstate_c.vpDepthScale) * 2.0f;
		viewZCenter -= 65535.0f * gstate_c.vpZOffset + 32768.5f;

		float viewZInvScale;
		if (viewZScale != 0.0) {
			viewZInvScale = 1.0f / viewZScale;
		} else {
			viewZInvScale = 0.0;
		}

		ub->depthRange[0] = viewZScale;
		ub->depthRange[1] = viewZCenter;
		ub->depthRange[2] = viewZCenter;
		ub->depthRange[3] = viewZInvScale;
	}

	if (dirtyUniforms & DIRTY_BEZIERSPLINE) {
		ub->spline_count_u = gstate_c.spline_count_u;
		ub->spline_count_v = gstate_c.spline_count_v;
		ub->spline_type_u = gstate_c.spline_type_u;
		ub->spline_type_v = gstate_c.spline_type_v;
	}
}
示例#3
0
void ShaderManagerVulkan::BaseUpdateUniforms(int dirtyUniforms) {
	if (dirtyUniforms & DIRTY_TEXENV) {
		Uint8x3ToFloat4(ub_base.texEnvColor, gstate.texenvcolor);
	}
	if (dirtyUniforms & DIRTY_ALPHACOLORREF) {
		Uint8x3ToInt4_Alpha(ub_base.alphaColorRef, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask());
	}
	if (dirtyUniforms & DIRTY_ALPHACOLORMASK) {
		Uint8x3ToInt4_Alpha(ub_base.colorTestMask, gstate.getColorTestMask(), gstate.getAlphaTestMask());
	}
	if (dirtyUniforms & DIRTY_FOGCOLOR) {
		Uint8x3ToFloat4(ub_base.fogColor, gstate.fogcolor);
	}
	if (dirtyUniforms & DIRTY_SHADERBLEND) {
		Uint8x3ToFloat4(ub_base.blendFixA, gstate.getFixA());
		Uint8x3ToFloat4(ub_base.blendFixB, gstate.getFixB());
	}
	if (dirtyUniforms & DIRTY_TEXCLAMP) {
		const float invW = 1.0f / (float)gstate_c.curTextureWidth;
		const float invH = 1.0f / (float)gstate_c.curTextureHeight;
		const int w = gstate.getTextureWidth(0);
		const int h = gstate.getTextureHeight(0);
		const float widthFactor = (float)w * invW;
		const float heightFactor = (float)h * invH;

		// First wrap xy, then half texel xy (for clamp.)
		ub_base.texClamp[0] = widthFactor;
		ub_base.texClamp[1] = heightFactor;
		ub_base.texClamp[2] = invW * 0.5f;
		ub_base.texClamp[3] = invH * 0.5f;
		ub_base.texClampOffset[0] = gstate_c.curTextureXOffset * invW;
		ub_base.texClampOffset[1] = gstate_c.curTextureYOffset * invH;
	}

	if (dirtyUniforms & DIRTY_PROJMATRIX) {
		Matrix4x4 flippedMatrix;
		memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));

		const bool invertedY = gstate_c.vpHeight < 0;
		if (invertedY) {
			flippedMatrix[1] = -flippedMatrix[1];
			flippedMatrix[5] = -flippedMatrix[5];
			flippedMatrix[9] = -flippedMatrix[9];
			flippedMatrix[13] = -flippedMatrix[13];
		}
		const bool invertedX = gstate_c.vpWidth < 0;
		if (invertedX) {
			flippedMatrix[0] = -flippedMatrix[0];
			flippedMatrix[4] = -flippedMatrix[4];
			flippedMatrix[8] = -flippedMatrix[8];
			flippedMatrix[12] = -flippedMatrix[12];
		}
		ConvertProjMatrixToVulkan(flippedMatrix, invertedX, invertedY);
		CopyMatrix4x4(ub_base.proj, flippedMatrix.getReadPtr());
	}

	if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) {
		Matrix4x4 proj_through;
		proj_through.setOrthoVulkan(0.0f, gstate_c.curRTWidth, 0, gstate_c.curRTHeight, 0, 1);
		CopyMatrix4x4(ub_base.proj_through, proj_through.getReadPtr());
	}

	// Transform
	if (dirtyUniforms & DIRTY_WORLDMATRIX) {
		ConvertMatrix4x3To4x4(ub_base.world, gstate.worldMatrix);
	}
	if (dirtyUniforms & DIRTY_VIEWMATRIX) {
		ConvertMatrix4x3To4x4(ub_base.view, gstate.viewMatrix);
	}
	if (dirtyUniforms & DIRTY_TEXMATRIX) {
		ConvertMatrix4x3To4x4(ub_base.tex, gstate.tgenMatrix);
	}

	// Combined two small uniforms
	if (dirtyUniforms & (DIRTY_FOGCOEF | DIRTY_STENCILREPLACEVALUE)) {
		float fogcoef_stencil[3] = {
			getFloat24(gstate.fog1),
			getFloat24(gstate.fog2),
			(float)gstate.getStencilTestRef()
		};
		if (my_isinf(fogcoef_stencil[1])) {
			// not really sure what a sensible value might be.
			fogcoef_stencil[1] = fogcoef_stencil[1] < 0.0f ? -10000.0f : 10000.0f;
		} else if (my_isnan(fogcoef_stencil[1])) {
			// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
			// Just put the fog far away at a large finite distance.
			// Infinities and NaNs are rather unpredictable in shaders on many GPUs
			// so it's best to just make it a sane calculation.
			fogcoef_stencil[0] = 100000.0f;
			fogcoef_stencil[1] = 1.0f;
		}
#ifndef MOBILE_DEVICE
		else if (my_isnanorinf(fogcoef_stencil[1]) || my_isnanorinf(fogcoef_stencil[0])) {
			ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef_stencil[0], fogcoef_stencil[1]);
		}
#endif
		CopyFloat3(ub_base.fogCoef_stencil, fogcoef_stencil);
	}

	// Texturing
	if (dirtyUniforms & DIRTY_UVSCALEOFFSET) {
		const float invW = 1.0f / (float)gstate_c.curTextureWidth;
		const float invH = 1.0f / (float)gstate_c.curTextureHeight;
		const int w = gstate.getTextureWidth(0);
		const int h = gstate.getTextureHeight(0);
		const float widthFactor = (float)w * invW;
		const float heightFactor = (float)h * invH;
		ub_base.uvScaleOffset[0] = widthFactor;
		ub_base.uvScaleOffset[1] = heightFactor;
		ub_base.uvScaleOffset[2] = 0.0f;
		ub_base.uvScaleOffset[3] = 0.0f;
	}

	if (dirtyUniforms & DIRTY_DEPTHRANGE) {
		float viewZScale = gstate.getViewportZScale();
		float viewZCenter = gstate.getViewportZCenter();
		float viewZInvScale;

		// We had to scale and translate Z to account for our clamped Z range.
		// Therefore, we also need to reverse this to round properly.
		//
		// Example: scale = 65535.0, center = 0.0
		// Resulting range = -65535 to 65535, clamped to [0, 65535]
		// gstate_c.vpDepthScale = 2.0f
		// gstate_c.vpZOffset = -1.0f
		//
		// The projection already accounts for those, so we need to reverse them.
		//
		// Additionally, D3D9 uses a range from [0, 1].  We double and move the center.
		viewZScale *= (1.0f / gstate_c.vpDepthScale) * 2.0f;
		viewZCenter -= 65535.0f * gstate_c.vpZOffset + 32768.5f;

		if (viewZScale != 0.0) {
			viewZInvScale = 1.0f / viewZScale;
		} else {
			viewZInvScale = 0.0;
		}

		ub_base.depthRange[0] = viewZScale;
		ub_base.depthRange[1] = viewZCenter;
		ub_base.depthRange[2] = viewZCenter;
		ub_base.depthRange[3] = viewZInvScale;
	}
}
示例#4
0
void ShaderManagerVulkan::BaseUpdateUniforms(int dirtyUniforms) {
	if (dirtyUniforms & DIRTY_TEXENV) {
		Uint8x3ToFloat4(ub_base.texEnvColor, gstate.texenvcolor);
	}
	if (dirtyUniforms & DIRTY_ALPHACOLORREF) {
		Uint8x3ToInt4_Alpha(ub_base.alphaColorRef, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask());
	}
	if (dirtyUniforms & DIRTY_ALPHACOLORMASK) {
		Uint8x3ToInt4_Alpha(ub_base.colorTestMask, gstate.getColorTestMask(), gstate.getAlphaTestMask());
	}
	if (dirtyUniforms & DIRTY_FOGCOLOR) {
		Uint8x3ToFloat4(ub_base.fogColor, gstate.fogcolor);
	}
	if (dirtyUniforms & DIRTY_SHADERBLEND) {
		Uint8x3ToFloat4(ub_base.blendFixA, gstate.getFixA());
		Uint8x3ToFloat4(ub_base.blendFixB, gstate.getFixB());
	}
	if (dirtyUniforms & DIRTY_TEXCLAMP) {
		const float invW = 1.0f / (float)gstate_c.curTextureWidth;
		const float invH = 1.0f / (float)gstate_c.curTextureHeight;
		const int w = gstate.getTextureWidth(0);
		const int h = gstate.getTextureHeight(0);
		const float widthFactor = (float)w * invW;
		const float heightFactor = (float)h * invH;

		// First wrap xy, then half texel xy (for clamp.)
		const float texclamp[4] = {
			widthFactor,
			heightFactor,
			invW * 0.5f,
			invH * 0.5f,
		};
		const float texclampoff[2] = {
			gstate_c.curTextureXOffset * invW,
			gstate_c.curTextureYOffset * invH,
		};
		CopyFloat4(ub_base.texClamp, texclamp);
		CopyFloat2(ub_base.texClampOffset, texclampoff);
	}

	if (dirtyUniforms & DIRTY_PROJMATRIX) {
		Matrix4x4 flippedMatrix;
		memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));

		const bool invertedY = gstate_c.vpHeight < 0;
		if (invertedY) {
			flippedMatrix[1] = -flippedMatrix[1];
			flippedMatrix[5] = -flippedMatrix[5];
			flippedMatrix[9] = -flippedMatrix[9];
			flippedMatrix[13] = -flippedMatrix[13];
		}
		const bool invertedX = gstate_c.vpWidth < 0;
		if (invertedX) {
			flippedMatrix[0] = -flippedMatrix[0];
			flippedMatrix[4] = -flippedMatrix[4];
			flippedMatrix[8] = -flippedMatrix[8];
			flippedMatrix[12] = -flippedMatrix[12];
		}
		ConvertProjMatrixToVulkan(flippedMatrix, invertedX, invertedY);
		CopyMatrix4x4(ub_base.proj, flippedMatrix.getReadPtr());
	}

	if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) {
		Matrix4x4 proj_through;
		proj_through.setOrthoVulkan(0.0f, gstate_c.curRTWidth, 0, gstate_c.curRTHeight, 0, 1);
		CopyMatrix4x4(ub_base.proj_through, proj_through.getReadPtr());
	}

	// Transform
	if (dirtyUniforms & DIRTY_WORLDMATRIX) {
		ConvertMatrix4x3To4x4(ub_base.world, gstate.worldMatrix);
	}
	if (dirtyUniforms & DIRTY_VIEWMATRIX) {
		ConvertMatrix4x3To4x4(ub_base.view, gstate.viewMatrix);
	}
	if (dirtyUniforms & DIRTY_TEXMATRIX) {
		ConvertMatrix4x3To4x4(ub_base.tex, gstate.tgenMatrix);
	}

	// Combined two small uniforms
	if (dirtyUniforms & (DIRTY_FOGCOEF | DIRTY_STENCILREPLACEVALUE)) {
		float fogcoef_stencil[3] = {
			getFloat24(gstate.fog1),
			getFloat24(gstate.fog2),
			(float)gstate.getStencilTestRef()
		};
		if (my_isinf(fogcoef_stencil[1])) {
			// not really sure what a sensible value might be.
			fogcoef_stencil[1] = fogcoef_stencil[1] < 0.0f ? -10000.0f : 10000.0f;
		} else if (my_isnan(fogcoef_stencil[1])) {
			// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
			// Just put the fog far away at a large finite distance.
			// Infinities and NaNs are rather unpredictable in shaders on many GPUs
			// so it's best to just make it a sane calculation.
			fogcoef_stencil[0] = 100000.0f;
			fogcoef_stencil[1] = 1.0f;
		}
#ifndef MOBILE_DEVICE
		else if (my_isnanorinf(fogcoef_stencil[1]) || my_isnanorinf(fogcoef_stencil[0])) {
			ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef_stencil[0], fogcoef_stencil[1]);
		}
#endif
		CopyFloat3(ub_base.fogCoef_stencil, fogcoef_stencil);
	}

	// Texturing
	if (dirtyUniforms & DIRTY_UVSCALEOFFSET) {
		const float invW = 1.0f / (float)gstate_c.curTextureWidth;
		const float invH = 1.0f / (float)gstate_c.curTextureHeight;
		const int w = gstate.getTextureWidth(0);
		const int h = gstate.getTextureHeight(0);
		const float widthFactor = (float)w * invW;
		const float heightFactor = (float)h * invH;

		static const float rescale[4] = { 1.0f, 2 * 127.5f / 128.f, 2 * 32767.5f / 32768.f, 1.0f };
		const float factor = rescale[(gstate.vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT];

		float uvscaleoff[4];

		switch (gstate.getUVGenMode()) {
		case GE_TEXMAP_TEXTURE_COORDS:
			// Not sure what GE_TEXMAP_UNKNOWN is, but seen in Riviera.  Treating the same as GE_TEXMAP_TEXTURE_COORDS works.
		case GE_TEXMAP_UNKNOWN:
			if (g_Config.bPrescaleUV) {
				// We are here but are prescaling UV in the decoder? Let's do the same as in the other case
				// except consider *Scale and *Off to be 1 and 0.
				uvscaleoff[0] = widthFactor;
				uvscaleoff[1] = heightFactor;
				uvscaleoff[2] = 0.0f;
				uvscaleoff[3] = 0.0f;
			} else {
				uvscaleoff[0] = gstate_c.uv.uScale * factor * widthFactor;
				uvscaleoff[1] = gstate_c.uv.vScale * factor * heightFactor;
				uvscaleoff[2] = gstate_c.uv.uOff * widthFactor;
				uvscaleoff[3] = gstate_c.uv.vOff * heightFactor;
			}
			break;

			// These two work the same whether or not we prescale UV.

		case GE_TEXMAP_TEXTURE_MATRIX:
			// We cannot bake the UV coord scale factor in here, as we apply a matrix multiplication
			// before this is applied, and the matrix multiplication may contain translation. In this case
			// the translation will be scaled which breaks faces in Hexyz Force for example.
			// So I've gone back to applying the scale factor in the shader.
			uvscaleoff[0] = widthFactor;
			uvscaleoff[1] = heightFactor;
			uvscaleoff[2] = 0.0f;
			uvscaleoff[3] = 0.0f;
			break;

		case GE_TEXMAP_ENVIRONMENT_MAP:
			// In this mode we only use uvscaleoff to scale to the texture size.
			uvscaleoff[0] = widthFactor;
			uvscaleoff[1] = heightFactor;
			uvscaleoff[2] = 0.0f;
			uvscaleoff[3] = 0.0f;
			break;

		default:
			ERROR_LOG_REPORT(G3D, "Unexpected UV gen mode: %d", gstate.getUVGenMode());
		}
		CopyFloat4(ub_base.uvScaleOffset, uvscaleoff);
	}

	if (dirtyUniforms & DIRTY_DEPTHRANGE) {
		float viewZScale = gstate.getViewportZScale();
		float viewZCenter = gstate.getViewportZCenter();
		float viewZInvScale;

		// We had to scale and translate Z to account for our clamped Z range.
		// Therefore, we also need to reverse this to round properly.
		//
		// Example: scale = 65535.0, center = 0.0
		// Resulting range = -65535 to 65535, clamped to [0, 65535]
		// gstate_c.vpDepthScale = 2.0f
		// gstate_c.vpZOffset = -1.0f
		//
		// The projection already accounts for those, so we need to reverse them.
		//
		// Additionally, D3D9 uses a range from [0, 1].  We double and move the center.
		viewZScale *= (1.0f / gstate_c.vpDepthScale) * 2.0f;
		viewZCenter -= 65535.0f * gstate_c.vpZOffset + 32768.5f;

		if (viewZScale != 0.0) {
			viewZInvScale = 1.0f / viewZScale;
		} else {
			viewZInvScale = 0.0;
		}

		float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale };
		CopyFloat4(ub_base.depthRange, data);
	}
}
示例#5
0
void ShaderManagerDX9::VSUpdateUniforms(int dirtyUniforms) {
	// Update any dirty uniforms before we draw
	if (dirtyUniforms & DIRTY_PROJMATRIX) {
		Matrix4x4 flippedMatrix;
		memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));

		const bool invertedY = gstate_c.vpHeight < 0;
		if (!invertedY) {
			flippedMatrix[1] = -flippedMatrix[1];
			flippedMatrix[5] = -flippedMatrix[5];
			flippedMatrix[9] = -flippedMatrix[9];
			flippedMatrix[13] = -flippedMatrix[13];
		}
		const bool invertedX = gstate_c.vpWidth < 0;
		if (invertedX) {
			flippedMatrix[0] = -flippedMatrix[0];
			flippedMatrix[4] = -flippedMatrix[4];
			flippedMatrix[8] = -flippedMatrix[8];
			flippedMatrix[12] = -flippedMatrix[12];
		}

		ConvertProjMatrixToD3D(flippedMatrix, invertedX, invertedY);

		VSSetMatrix(CONST_VS_PROJ, flippedMatrix.getReadPtr());
	}
	if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) {
		Matrix4x4 proj_through;
		proj_through.setOrtho(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0, 0, 1);

		ConvertProjMatrixToD3DThrough(proj_through);

		VSSetMatrix(CONST_VS_PROJ_THROUGH, proj_through.getReadPtr());
	}
	// Transform
	if (dirtyUniforms & DIRTY_WORLDMATRIX) {
		VSSetMatrix4x3_3(CONST_VS_WORLD, gstate.worldMatrix);
	}
	if (dirtyUniforms & DIRTY_VIEWMATRIX) {
		VSSetMatrix4x3_3(CONST_VS_VIEW, gstate.viewMatrix);
	}
	if (dirtyUniforms & DIRTY_TEXMATRIX) {
		VSSetMatrix4x3_3(CONST_VS_TEXMTX, gstate.tgenMatrix);
	}
	if (dirtyUniforms & DIRTY_FOGCOEF) {
		float fogcoef[2] = {
			getFloat24(gstate.fog1),
			getFloat24(gstate.fog2),
		};
		if (my_isinf(fogcoef[1])) {
			// not really sure what a sensible value might be.
			fogcoef[1] = fogcoef[1] < 0.0f ? -10000.0f : 10000.0f;
		} else if (my_isnan(fogcoef[1])) {
			// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
			// Just put the fog far away at a large finite distance.
			// Infinities and NaNs are rather unpredictable in shaders on many GPUs
			// so it's best to just make it a sane calculation.
			fogcoef[0] = 100000.0f;
			fogcoef[1] = 1.0f;
		}
#ifndef MOBILE_DEVICE
		else if (my_isnanorinf(fogcoef[1]) || my_isnanorinf(fogcoef[0])) {
			ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef[0], fogcoef[1]);
		}
#endif
		VSSetFloatArray(CONST_VS_FOGCOEF, fogcoef, 2);
	}
	// TODO: Could even set all bones in one go if they're all dirty.
#ifdef USE_BONE_ARRAY
	if (u_bone != 0) {
		float allBones[8 * 16];

		bool allDirty = true;
		for (int i = 0; i < numBones; i++) {
			if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
				ConvertMatrix4x3To4x4(allBones + 16 * i, gstate.boneMatrix + 12 * i);
			} else {
				allDirty = false;
			}
		}
		if (allDirty) {
			// Set them all with one call
			//glUniformMatrix4fv(u_bone, numBones, GL_FALSE, allBones);
		} else {
			// Set them one by one. Could try to coalesce two in a row etc but too lazy.
			for (int i = 0; i < numBones; i++) {
				if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
					//glUniformMatrix4fv(u_bone + i, 1, GL_FALSE, allBones + 16 * i);
				}
			}
		}
	}
#else
	for (int i = 0; i < 8; i++) {
		if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
			VSSetMatrix4x3_3(CONST_VS_BONE0 + 3 * i, gstate.boneMatrix + 12 * i);
		}
	}
#endif

	// Texturing
	if (dirtyUniforms & DIRTY_UVSCALEOFFSET) {
		const float invW = 1.0f / (float)gstate_c.curTextureWidth;
		const float invH = 1.0f / (float)gstate_c.curTextureHeight;
		const int w = gstate.getTextureWidth(0);
		const int h = gstate.getTextureHeight(0);
		const float widthFactor = (float)w * invW;
		const float heightFactor = (float)h * invH;

		float uvscaleoff[4];

		switch (gstate.getUVGenMode()) {
		case GE_TEXMAP_TEXTURE_COORDS:
			// Not sure what GE_TEXMAP_UNKNOWN is, but seen in Riviera.  Treating the same as GE_TEXMAP_TEXTURE_COORDS works.
		case GE_TEXMAP_UNKNOWN:
			if (g_Config.bPrescaleUV) {
				// We are here but are prescaling UV in the decoder? Let's do the same as in the other case
				// except consider *Scale and *Off to be 1 and 0.
				uvscaleoff[0] = widthFactor;
				uvscaleoff[1] = heightFactor;
				uvscaleoff[2] = 0.0f;
				uvscaleoff[3] = 0.0f;
			} else {
				uvscaleoff[0] = gstate_c.uv.uScale * widthFactor;
				uvscaleoff[1] = gstate_c.uv.vScale * heightFactor;
				uvscaleoff[2] = gstate_c.uv.uOff * widthFactor;
				uvscaleoff[3] = gstate_c.uv.vOff * heightFactor;
			}
			break;

		// These two work the same whether or not we prescale UV.

		case GE_TEXMAP_TEXTURE_MATRIX:
			// We cannot bake the UV coord scale factor in here, as we apply a matrix multiplication
			// before this is applied, and the matrix multiplication may contain translation. In this case
			// the translation will be scaled which breaks faces in Hexyz Force for example.
			// So I've gone back to applying the scale factor in the shader.
			uvscaleoff[0] = widthFactor;
			uvscaleoff[1] = heightFactor;
			uvscaleoff[2] = 0.0f;
			uvscaleoff[3] = 0.0f;
			break;

		case GE_TEXMAP_ENVIRONMENT_MAP:
			// In this mode we only use uvscaleoff to scale to the texture size.
			uvscaleoff[0] = widthFactor;
			uvscaleoff[1] = heightFactor;
			uvscaleoff[2] = 0.0f;
			uvscaleoff[3] = 0.0f;
			break;

		default:
			ERROR_LOG_REPORT(G3D, "Unexpected UV gen mode: %d", gstate.getUVGenMode());
		}
		VSSetFloatArray(CONST_VS_UVSCALEOFFSET, uvscaleoff, 4);
	}

	if (dirtyUniforms & DIRTY_DEPTHRANGE)	{
		// Depth is [0, 1] mapping to [minz, maxz], not too hard.
		float vpZScale = gstate.getViewportZScale();
		float vpZCenter = gstate.getViewportZCenter();

		// These are just the reverse of the formulas in GPUStateUtils.
		float halfActualZRange = vpZScale / gstate_c.vpDepthScale;
		float minz = -((gstate_c.vpZOffset * halfActualZRange) - vpZCenter) - halfActualZRange;
		float viewZScale = halfActualZRange * 2.0f;
		// Account for the half pixel offset.
		float viewZCenter = minz + (DepthSliceFactor() / 256.0f) * 0.5f;
		float viewZInvScale;

		if (viewZScale != 0.0) {
			viewZInvScale = 1.0f / viewZScale;
		} else {
			viewZInvScale = 0.0;
		}

		float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale };
		VSSetFloatUniform4(CONST_VS_DEPTHRANGE, data);
	}
	// Lighting
	if (dirtyUniforms & DIRTY_AMBIENT) {
		VSSetColorUniform3Alpha(CONST_VS_AMBIENT, gstate.ambientcolor, gstate.getAmbientA());
	}
	if (dirtyUniforms & DIRTY_MATAMBIENTALPHA) {
		VSSetColorUniform3Alpha(CONST_VS_MATAMBIENTALPHA, gstate.materialambient, gstate.getMaterialAmbientA());
	}
	if (dirtyUniforms & DIRTY_MATDIFFUSE) {
		VSSetColorUniform3(CONST_VS_MATDIFFUSE, gstate.materialdiffuse);
	}
	if (dirtyUniforms & DIRTY_MATEMISSIVE) {
		VSSetColorUniform3(CONST_VS_MATEMISSIVE, gstate.materialemissive);
	}
	if (dirtyUniforms & DIRTY_MATSPECULAR) {
		VSSetColorUniform3ExtraFloat(CONST_VS_MATSPECULAR, gstate.materialspecular, getFloat24(gstate.materialspecularcoef));
	}
	for (int i = 0; i < 4; i++) {
		if (dirtyUniforms & (DIRTY_LIGHT0 << i)) {
			if (gstate.isDirectionalLight(i)) {
				// Prenormalize
				float x = getFloat24(gstate.lpos[i * 3 + 0]);
				float y = getFloat24(gstate.lpos[i * 3 + 1]);
				float z = getFloat24(gstate.lpos[i * 3 + 2]);
				float len = sqrtf(x*x + y*y + z*z);
				if (len == 0.0f)
					len = 1.0f;
				else
					len = 1.0f / len;
				float vec[3] = { x * len, y * len, z * len };
				VSSetFloatArray(CONST_VS_LIGHTPOS + i, vec, 3);
			} else {
				VSSetFloat24Uniform3(CONST_VS_LIGHTPOS + i, &gstate.lpos[i * 3]);
			}
			VSSetFloat24Uniform3(CONST_VS_LIGHTDIR + i, &gstate.ldir[i * 3]);
			VSSetFloat24Uniform3(CONST_VS_LIGHTATT + i, &gstate.latt[i * 3]);
			VSSetFloat(CONST_VS_LIGHTANGLE + i, getFloat24(gstate.lcutoff[i]));
			VSSetFloat(CONST_VS_LIGHTSPOTCOEF + i, getFloat24(gstate.lconv[i]));
			VSSetColorUniform3(CONST_VS_LIGHTAMBIENT + i, gstate.lcolor[i * 3]);
			VSSetColorUniform3(CONST_VS_LIGHTDIFFUSE + i, gstate.lcolor[i * 3 + 1]);
			VSSetColorUniform3(CONST_VS_LIGHTSPECULAR + i, gstate.lcolor[i * 3 + 2]);
		}
	}
}
void SoftwareTransform(
	int prim, int vertexCount, u32 vertType, u16 *&inds, int indexType,
	const DecVtxFormat &decVtxFormat, int &maxIndex, TransformedVertex *&drawBuffer, int &numTrans, bool &drawIndexed, const SoftwareTransformParams *params, SoftwareTransformResult *result) {
	u8 *decoded = params->decoded;
	FramebufferManagerCommon *fbman = params->fbman;
	TextureCacheCommon *texCache = params->texCache;
	TransformedVertex *transformed = params->transformed;
	TransformedVertex *transformedExpanded = params->transformedExpanded;
	float ySign = 1.0f;
	bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
	bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled();

	float uscale = 1.0f;
	float vscale = 1.0f;
	if (throughmode) {
		uscale /= gstate_c.curTextureWidth;
		vscale /= gstate_c.curTextureHeight;
	}

	bool skinningEnabled = vertTypeIsSkinningEnabled(vertType);

	const int w = gstate.getTextureWidth(0);
	const int h = gstate.getTextureHeight(0);
	float widthFactor = (float) w / (float) gstate_c.curTextureWidth;
	float heightFactor = (float) h / (float) gstate_c.curTextureHeight;

	Lighter lighter(vertType);
	float fog_end = getFloat24(gstate.fog1);
	float fog_slope = getFloat24(gstate.fog2);
	// Same fixup as in ShaderManagerGLES.cpp
	if (my_isnanorinf(fog_end)) {
		// Not really sure what a sensible value might be, but let's try 64k.
		fog_end = std::signbit(fog_end) ? -65535.0f : 65535.0f;
	}
	if (my_isnanorinf(fog_slope)) {
		fog_slope = std::signbit(fog_slope) ? -65535.0f : 65535.0f;
	}

	int provokeIndOffset = 0;
	if (params->provokeFlatFirst) {
		provokeIndOffset = ColorIndexOffset(prim, gstate.getShadeMode(), gstate.isModeClear());
	}

	VertexReader reader(decoded, decVtxFormat, vertType);
	if (throughmode) {
		for (int index = 0; index < maxIndex; index++) {
			// Do not touch the coordinates or the colors. No lighting.
			reader.Goto(index);
			// TODO: Write to a flexible buffer, we don't always need all four components.
			TransformedVertex &vert = transformed[index];
			reader.ReadPos(vert.pos);

			if (reader.hasColor0()) {
				if (provokeIndOffset != 0 && index + provokeIndOffset < maxIndex) {
					reader.Goto(index + provokeIndOffset);
					reader.ReadColor0_8888(vert.color0);
					reader.Goto(index);
				} else {
					reader.ReadColor0_8888(vert.color0);
				}
			} else {
				vert.color0_32 = gstate.getMaterialAmbientRGBA();
			}

			if (reader.hasUV()) {
				reader.ReadUV(vert.uv);

				vert.u *= uscale;
				vert.v *= vscale;
			} else {
				vert.u = 0.0f;
				vert.v = 0.0f;
			}

			// Ignore color1 and fog, never used in throughmode anyway.
			// The w of uv is also never used (hardcoded to 1.0.)
		}
	} else {
		// Okay, need to actually perform the full transform.
		for (int index = 0; index < maxIndex; index++) {
			reader.Goto(index);

			float v[3] = {0, 0, 0};
			Vec4f c0 = Vec4f(1, 1, 1, 1);
			Vec4f c1 = Vec4f(0, 0, 0, 0);
			float uv[3] = {0, 0, 1};
			float fogCoef = 1.0f;

			float out[3];
			float pos[3];
			Vec3f normal(0, 0, 1);
			Vec3f worldnormal(0, 0, 1);
			reader.ReadPos(pos);

			float ruv[2] = { 0.0f, 0.0f };
			if (reader.hasUV())
				reader.ReadUV(ruv);

			// Read all the provoking vertex values here.
			Vec4f unlitColor;
			if (provokeIndOffset != 0 && index + provokeIndOffset < maxIndex)
				reader.Goto(index + provokeIndOffset);
			if (reader.hasColor0())
				reader.ReadColor0(unlitColor.AsArray());
			else
				unlitColor = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA());
			if (reader.hasNormal())
				reader.ReadNrm(normal.AsArray());

			if (!skinningEnabled) {
				Vec3ByMatrix43(out, pos, gstate.worldMatrix);
				if (reader.hasNormal()) {
					if (gstate.areNormalsReversed()) {
						normal = -normal;
					}
					Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix);
					worldnormal = worldnormal.Normalized();
				}
			} else {
				float weights[8];
				// TODO: For flat, are weights from the provoking used for color/normal?
				reader.Goto(index);
				reader.ReadWeights(weights);

				// Skinning
				Vec3f psum(0, 0, 0);
				Vec3f nsum(0, 0, 0);
				for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) {
					if (weights[i] != 0.0f) {
						Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12);
						Vec3f tpos(out);
						psum += tpos * weights[i];
						if (reader.hasNormal()) {
							Vec3f norm;
							Norm3ByMatrix43(norm.AsArray(), normal.AsArray(), gstate.boneMatrix+i*12);
							nsum += norm * weights[i];
						}
					}
				}

				// Yes, we really must multiply by the world matrix too.
				Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix);
				if (reader.hasNormal()) {
					normal = nsum;
					if (gstate.areNormalsReversed()) {
						normal = -normal;
					}
					Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix);
					worldnormal = worldnormal.Normalized();
				}
			}

			// Perform lighting here if enabled.
			if (gstate.isLightingEnabled()) {
				float litColor0[4];
				float litColor1[4];
				lighter.Light(litColor0, litColor1, unlitColor.AsArray(), out, worldnormal);

				// Don't ignore gstate.lmode - we should send two colors in that case
				for (int j = 0; j < 4; j++) {
					c0[j] = litColor0[j];
				}
				if (lmode) {
					// Separate colors
					for (int j = 0; j < 4; j++) {
						c1[j] = litColor1[j];
					}
				} else {
					// Summed color into c0 (will clamp in ToRGBA().)
					for (int j = 0; j < 4; j++) {
						c0[j] += litColor1[j];
					}
				}
			} else {
				if (reader.hasColor0()) {
					for (int j = 0; j < 4; j++) {
						c0[j] = unlitColor[j];
					}
				} else {
					c0 = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA());
				}
				if (lmode) {
					// c1 is already 0.
				}
			}

			// Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights.
			switch (gstate.getUVGenMode()) {
			case GE_TEXMAP_TEXTURE_COORDS:	// UV mapping
			case GE_TEXMAP_UNKNOWN: // Seen in Riviera.  Unsure of meaning, but this works.
				// We always prescale in the vertex decoder now.
				uv[0] = ruv[0];
				uv[1] = ruv[1];
				uv[2] = 1.0f;
				break;

			case GE_TEXMAP_TEXTURE_MATRIX:
				{
					// TODO: What's the correct behavior with flat shading?  Provoked normal or real normal?

					// Projection mapping
					Vec3f source;
					switch (gstate.getUVProjMode())	{
					case GE_PROJMAP_POSITION: // Use model space XYZ as source
						source = pos;
						break;

					case GE_PROJMAP_UV: // Use unscaled UV as source
						source = Vec3f(ruv[0], ruv[1], 0.0f);
						break;

					case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source
						source = normal.Normalized();
						if (!reader.hasNormal()) {
							ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
						}
						break;

					case GE_PROJMAP_NORMAL: // Use non-normalized normal as source!
						source = normal;
						if (!reader.hasNormal()) {
							ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
						}
						break;
					}

					float uvw[3];
					Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix);
					uv[0] = uvw[0];
					uv[1] = uvw[1];
					uv[2] = uvw[2];
				}
				break;

			case GE_TEXMAP_ENVIRONMENT_MAP:
				// Shade mapping - use two light sources to generate U and V.
				{
					auto getLPosFloat = [&](int l, int i) {
						return getFloat24(gstate.lpos[l * 3 + i]);
					};
					auto getLPos = [&](int l) {
						return Vec3f(getLPosFloat(l, 0), getLPosFloat(l, 1), getLPosFloat(l, 2));
					};
					auto calcShadingLPos = [&](int l) {
						Vec3f pos = getLPos(l);
						if (pos.Length2() == 0.0f) {
							return Vec3f(0.0f, 0.0f, 1.0f);
						} else {
							return pos.Normalized();
						}
					};
					// Might not have lighting enabled, so don't use lighter.
					Vec3f lightpos0 = calcShadingLPos(gstate.getUVLS0());
					Vec3f lightpos1 = calcShadingLPos(gstate.getUVLS1());

					uv[0] = (1.0f + Dot(lightpos0, worldnormal))/2.0f;
					uv[1] = (1.0f + Dot(lightpos1, worldnormal))/2.0f;
					uv[2] = 1.0f;
				}
				break;

			default:
				// Illegal
				ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode());
				break;
			}

			uv[0] = uv[0] * widthFactor;
			uv[1] = uv[1] * heightFactor;

			// Transform the coord by the view matrix.
			Vec3ByMatrix43(v, out, gstate.viewMatrix);
			fogCoef = (v[2] + fog_end) * fog_slope;

			// TODO: Write to a flexible buffer, we don't always need all four components.
			memcpy(&transformed[index].x, v, 3 * sizeof(float));
			transformed[index].fog = fogCoef;
			memcpy(&transformed[index].u, uv, 3 * sizeof(float));
			transformed[index].color0_32 = c0.ToRGBA();
			transformed[index].color1_32 = c1.ToRGBA();

			// The multiplication by the projection matrix is still performed in the vertex shader.
			// So is vertex depth rounding, to simulate the 16-bit depth buffer.
		}
	}

	// Here's the best opportunity to try to detect rectangles used to clear the screen, and
	// replace them with real clears. This can provide a speedup on certain mobile chips.
	//
	// An alternative option is to simply ditch all the verts except the first and last to create a single
	// rectangle out of many. Quite a small optimization though.
	// Experiment: Disable on PowerVR (see issue #6290)
	// TODO: This bleeds outside the play area in non-buffered mode. Big deal? Probably not.
	// TODO: Allow creating a depth clear and a color draw.
	bool reallyAClear = false;
	if (maxIndex > 1 && prim == GE_PRIM_RECTANGLES && gstate.isModeClear() && params->allowClear) {
		int scissorX2 = gstate.getScissorX2() + 1;
		int scissorY2 = gstate.getScissorY2() + 1;
		reallyAClear = IsReallyAClear(transformed, maxIndex, scissorX2, scissorY2);
	}
	if (reallyAClear && gl_extensions.gpuVendor != GPU_VENDOR_IMGTEC) {
		// If alpha is not allowed to be separate, it must match for both depth/stencil and color.  Vulkan requires this.
		bool alphaMatchesColor = gstate.isClearModeColorMask() == gstate.isClearModeAlphaMask();
		bool depthMatchesStencil = gstate.isClearModeAlphaMask() == gstate.isClearModeDepthMask();
		bool matchingComponents = params->allowSeparateAlphaClear || (alphaMatchesColor && depthMatchesStencil);
		bool stencilNotMasked = !gstate.isClearModeAlphaMask() || gstate.getStencilWriteMask() == 0x00;
		if (matchingComponents && stencilNotMasked) {
			result->color = transformed[1].color0_32;
			// Need to rescale from a [0, 1] float.  This is the final transformed value.
			result->depth = ToScaledDepthFromIntegerScale((int)(transformed[1].z * 65535.0f));
			result->action = SW_CLEAR;
			gpuStats.numClears++;
			return;
		}
	}

	// This means we're using a framebuffer (and one that isn't big enough.)
	if (gstate_c.curTextureHeight < (u32)h && maxIndex >= 2) {
		// Even if not rectangles, this will detect if either of the first two are outside the framebuffer.
		// HACK: Adding one pixel margin to this detection fixes issues in Assassin's Creed : Bloodlines,
		// while still keeping BOF working (see below).
		const float invTexH = 1.0f / gstate_c.curTextureHeight; // size of one texel.
		bool tlOutside;
		bool tlAlmostOutside;
		bool brOutside;
		// If we're outside heightFactor, then v must be wrapping or clamping.  Avoid this workaround.
		// If we're <= 1.0f, we're inside the framebuffer (workaround not needed.)
		// We buffer that 1.0f a little more with a texel to avoid some false positives.
		tlOutside = transformed[0].v <= heightFactor && transformed[0].v > 1.0f + invTexH;
		brOutside = transformed[1].v <= heightFactor && transformed[1].v > 1.0f + invTexH;
		// Careful: if br is outside, but tl is well inside, this workaround still doesn't make sense.
		// We go with halfway, since we overestimate framebuffer heights sometimes but not by much.
		tlAlmostOutside = transformed[0].v <= heightFactor && transformed[0].v >= 0.5f;
		if (tlOutside || (brOutside && tlAlmostOutside)) {
			// Okay, so we're texturing from outside the framebuffer, but inside the texture height.
			// Breath of Fire 3 does this to access a render surface at an offset.
			const u32 bpp = fbman->GetTargetFormat() == GE_FORMAT_8888 ? 4 : 2;
			const u32 prevH = texCache->AttachedDrawingHeight();
			const u32 fb_size = bpp * fbman->GetTargetStride() * prevH;
			const u32 prevYOffset = gstate_c.curTextureYOffset;
			if (texCache->SetOffsetTexture(fb_size)) {
				const float oldWidthFactor = widthFactor;
				const float oldHeightFactor = heightFactor;
				widthFactor = (float) w / (float) gstate_c.curTextureWidth;
				heightFactor = (float) h / (float) gstate_c.curTextureHeight;

				// We've already baked in the old gstate_c.curTextureYOffset, so correct.
				const float yDiff = (float) (prevH + prevYOffset - gstate_c.curTextureYOffset) / (float) h;
				for (int index = 0; index < maxIndex; ++index) {
					transformed[index].u *= widthFactor / oldWidthFactor;
					// Inverse it back to scale to the new FBO, and add 1.0f to account for old FBO.
					transformed[index].v = (transformed[index].v / oldHeightFactor - yDiff) * heightFactor;
				}
			}
		}
	}

	// Step 2: expand rectangles.
	drawBuffer = transformed;
	numTrans = 0;
	drawIndexed = false;

	if (prim != GE_PRIM_RECTANGLES) {
		// We can simply draw the unexpanded buffer.
		numTrans = vertexCount;
		drawIndexed = true;
	} else {
		bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE;
		if (useBufferedRendering)
			ySign = -ySign;

		float flippedMatrix[16];
		if (!throughmode) {
			memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));

			const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0);
			if (invertedY) {
				flippedMatrix[1] = -flippedMatrix[1];
				flippedMatrix[5] = -flippedMatrix[5];
				flippedMatrix[9] = -flippedMatrix[9];
				flippedMatrix[13] = -flippedMatrix[13];
			}
			const bool invertedX = gstate_c.vpWidth < 0;
			if (invertedX) {
				flippedMatrix[0] = -flippedMatrix[0];
				flippedMatrix[4] = -flippedMatrix[4];
				flippedMatrix[8] = -flippedMatrix[8];
				flippedMatrix[12] = -flippedMatrix[12];
			}
		}

		//rectangles always need 2 vertices, disregard the last one if there's an odd number
		vertexCount = vertexCount & ~1;
		numTrans = 0;
		drawBuffer = transformedExpanded;
		TransformedVertex *trans = &transformedExpanded[0];
		const u16 *indsIn = (const u16 *)inds;
		u16 *newInds = inds + vertexCount;
		u16 *indsOut = newInds;
		maxIndex = 4 * (vertexCount / 2);
		for (int i = 0; i < vertexCount; i += 2) {
			const TransformedVertex &transVtxTL = transformed[indsIn[i + 0]];
			const TransformedVertex &transVtxBR = transformed[indsIn[i + 1]];

			// We have to turn the rectangle into two triangles, so 6 points.
			// This is 4 verts + 6 indices.

			// bottom right
			trans[0] = transVtxBR;

			// top right
			trans[1] = transVtxBR;
			trans[1].y = transVtxTL.y;
			trans[1].v = transVtxTL.v;

			// top left
			trans[2] = transVtxBR;
			trans[2].x = transVtxTL.x;
			trans[2].y = transVtxTL.y;
			trans[2].u = transVtxTL.u;
			trans[2].v = transVtxTL.v;

			// bottom left
			trans[3] = transVtxBR;
			trans[3].x = transVtxTL.x;
			trans[3].u = transVtxTL.u;

			// That's the four corners. Now process UV rotation.
			if (throughmode)
				RotateUVThrough(trans);
			else
				RotateUV(trans, flippedMatrix, ySign);

			// Triangle: BR-TR-TL
			indsOut[0] = i * 2 + 0;
			indsOut[1] = i * 2 + 1;
			indsOut[2] = i * 2 + 2;
			// Triangle: BL-BR-TL
			indsOut[3] = i * 2 + 3;
			indsOut[4] = i * 2 + 0;
			indsOut[5] = i * 2 + 2;
			trans += 4;
			indsOut += 6;

			numTrans += 6;
		}
		inds = newInds;
		drawIndexed = true;

		// We don't know the color until here, so we have to do it now, instead of in StateMapping.
		// Might want to reconsider the order of things later...
		if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) {
			result->setStencil = true;
			if (vertexCount > 1) {
				// Take the bottom right alpha value of the first rect as the stencil value.
				// Technically, each rect could individually fill its stencil, but most of the
				// time they use the same one.
				result->stencilValue = transformed[indsIn[1]].color0[3];
			} else {
				result->stencilValue = 0;
			}
		}
	}

	if (gstate.isModeClear()) {
		gpuStats.numClears++;
	}

	result->action = SW_DRAW_PRIMITIVES;
}