示例#1
0
文件: ndf.c 项目: timj/starlink-pyndf
static int
pyndf_cput_helper ( int ndfid, const char * comp, const char * value )
{
  int status = SAI__OK;
  errBegin(&status);
  if (value) {
    ndfCput(value, ndfid, comp, &status);
  } else {
    ndfReset( ndfid, comp, &status );
  }
  if (raiseNDFException(&status)) return -1;
  return 0;
}
示例#2
0
void smf_open_ndfname( const HDSLoc *loc, const char accmode[],
                       const char extname[], const char state[], const char dattype[],
                       const int ndims, const int lbnd[], const int ubnd[],
                       const char datalabel[], const char dataunits[],
                       const AstFrameSet* wcs,
                       smfData **ndfdata,
                       int *status) {

  /* Local variables */
  void *datarr[] = { NULL, NULL }; /* Pointers for data */
  int dims[NDF__MXDIM];         /* Extent of each dimension */
  smf_dtype dtype;              /* Data type */
  int flags = 0;                /* Flags for creating smfDA, smfFile and
				   smfHead components in the output smfData */
  int i;
  int ndat;                     /* Number of elements mapped in the requested NDF */
  char ndfaccmode[NDF__SZMMD+1];/* Access mode to use to open the file */
  int ndimsmapped;              /* Number of dimensions in mapped NDF */
  int ndfid;                    /* NDF identifier */
  AstFrameSet *ndfwcs = NULL;   /* Copy of input FrameSet to write to NDF */
  smfFile *newfile = NULL;      /* New smfFile with details of requested NDF */
  int place;                    /* Placeholder for NDF */
  int updating = 0;             /* True if the extension is being updated */

  /* Initialize the output smfData to NULL pointer */
  *ndfdata = NULL;

  if ( *status != SAI__OK ) return;

  /* Check to see if the HDS Locator is null and retrieve the NDF id */
  if ( loc ==  NULL ) {
    errRep( FUNC_NAME, "Given HDS locator is NULL", status );
    return;
  }

  /* Start be assuming the requested access mode can be used for mapping
     and file opening */
  one_strlcpy( ndfaccmode, accmode, sizeof(ndfaccmode), status );

  /* Note: write access clears the contents of the NDF */
  if ( strncmp( accmode, "WRITE", 5 ) == 0 ) {
    msgOutif(MSG__DEBUG," ", "Opening NDF with WRITE access: this will clear the current contents if the NDF exists.", status);
    updating = 1;

    /* We can have WRITE/ZERO or WRITE/BAD so we need to force WRITE
       into the NDF open access mode */
    one_strlcpy( ndfaccmode, "WRITE", sizeof(ndfaccmode), status );

  } else if ( strncmp( accmode, "UPDATE", 6) == 0) {
    updating = 1;
  }
  ndfOpen( loc, extname, ndfaccmode, state, &ndfid, &place, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME,
	    "Call to ndfOpen failed: unable to obtain an NDF identifier",
	    status );
    return;
  }

  /* No placeholder => NDF exists */
  if ( place != NDF__NOPL ) {
    /* Define properties of NDF */
    ndfNew( dattype, ndims, lbnd, ubnd, &place, &ndfid, status );
    if ( *status != SAI__OK ) {
      errRep( FUNC_NAME, "Unable to create a new NDF", status );
      return;
    }
  }

  /* Convert the data type string to SMURF dtype */
  dtype = smf_dtype_fromstring( dattype, status );

  /* First step is to create an empty smfData with no extra components */
  flags |= SMF__NOCREATE_DA;
  flags |= SMF__NOCREATE_FTS;
  flags |= SMF__NOCREATE_HEAD;
  flags |= SMF__NOCREATE_FILE;
  *ndfdata = smf_create_smfData( flags, status);
  /* Set the requested data type */
  (*ndfdata)->dtype = dtype;

  /* OK, now map the data array */
  ndfMap( ndfid, "DATA", dattype, accmode, &datarr[0], &ndat, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME, "Unable to map data array: invalid NDF identifier?", status );
  }
  /* Retrieve dimensions of mapped array */
  ndfDim( ndfid, NDF__MXDIM, dims, &ndimsmapped, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME, "Problem identifying dimensions of requested NDF", status );
  }
  /* Consistency check */
  if ( ndimsmapped != ndims ) {
    if ( *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRep( FUNC_NAME, "Number of dimensions in new NDF not equal to number of dimensions specified", status );
    }
  }

  if (*status == SAI__OK) {
    for (i=0; i<ndims; i++) {
      ((*ndfdata)->dims)[i] = dims[i];
      ((*ndfdata)->lbnd)[i] = lbnd[i];
    }
  }

  /* Allow for label, units and WCS to be written */
  if (updating) {
    if (datalabel) ndfCput( datalabel, ndfid, "Label", status );
    if (dataunits) ndfCput( dataunits, ndfid, "Unit", status );
    if (wcs) {
      /* Take a copy of the input WCS and modify if necessary that
	 before writing to the NDF */
      ndfwcs = astCopy( wcs );
      smf_set_moving( (AstFrame *) ndfwcs, NULL, status );
      ndfPtwcs( ndfwcs, ndfid, status );
      if (ndfwcs) ndfwcs = astAnnul( ndfwcs );
    }
  }


  /* Create the smfFile */
  newfile = smf_construct_smfFile( newfile, ndfid, 0, 0, NULL, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME, "Unable to construct new smfFile", status );
  }

  /* And populate the new smfData */
  *ndfdata = smf_construct_smfData( *ndfdata, newfile, NULL, NULL, NULL, dtype,
                                    datarr, NULL, SMF__QFAM_NULL, NULL, 0, 1,
                                    (*ndfdata)->dims, (*ndfdata)->lbnd, ndims,
                                    0, 0, NULL, NULL, status );

}
示例#3
0
static double *smf1_calc_mapcoord1( smfData *data, dim_t nbolo,
                                    dim_t ntslice, AstSkyFrame *oskyfrm,
                                    int *indf, int axis, int *status ){
/*
*  Name:
*     smf1_calc_mapcoord1

*  Purpose:
*     Create and map an NDF to receive the longitude or latitude values
*     at every sample.

*  Language:
*     Starlink ANSI C

*  Type of Module:
*     C function

*  Invocation:
*     double *smf1_calc_mapcoord1( smfData *data, dim_t nbolo,
*                                  dim_t ntslice, AstFrame *oskyfrm,
*                                  int *indf, int axis, int *status )

*  Arguments:
*     data = smfData* (Given)
*        Pointer to smfData struct
*     nbolo = dim_t (Given)
*        The number of bolometers.
*     ntslice = dim_t (Given)
*        The number of time slices.
*     oskyfrm = AstFrame * (Given)
*        Pointer to the SkyFrame describing the output spatial cords.
*     indf = int * (Returned)
*        Address ayt which to return the identifier for the new NDF.
*     axis = int (Given)
*        Axis of the SkyFrame to use (1 or 2).
*     status = int* (Given and Returned)
*        Pointer to global status.

*  Returned Value:
*     Pointer to the mapped DATA array.

*  Description:
*     This function creates a new NDF with a named formed by appending
*     the axis symbol from oskyframe to the end of the file name associated
*     with the supplied smfData. The firts pixel axis spans bolometer
*     index and the second spans time slice index. The NDF character
*     components are set to describe the requested ais values.

*/

/* Local Variables: */
   char name[SMF_PATH_MAX+1];
   char sym[ 100 ];
   const char *label = NULL;
   const char *ttl = NULL;
   double *result = NULL;
   int el;
   int place;
   int pos_lbnd[2];
   int pos_ubnd[2];

/* Check inherited status */
   if( *status != SAI__OK ) return result;

/* Check the input file path is known. */
   if( data->file ) {

/* Remove any DIMM suffix, and any leading directory from the file path. */
      smf_stripsuffix( data->file->name, SMF__DIMM_SUFFIX, name, status );

/* Get the Frame title, and axis label. */
      ttl = astGetC( oskyfrm, "Title" );
      label = astGetC( oskyfrm, ( axis == 1 ) ? "Label(1)" : "Label(2)" );

/* Get a lower case copy of the axis symbol. */
      astChrCase( astGetC( oskyfrm,
                           ( axis == 1 ) ? "Symbol(1)" : "Symbol(2)" ), sym,
                           0, sizeof(sym) );

/* Append the lower case axis symbol to the file base name. */
       one_strlcat( name, "_", SMF_PATH_MAX + 1, status );
       one_strlcat( name, sym, SMF_PATH_MAX + 1, status );

/* Store the pixel bounds for the NDF. */
       pos_lbnd[ 0 ] = pos_lbnd[ 1 ] = 0;
       pos_ubnd[ 0 ] = nbolo - 1;
       pos_ubnd[ 1 ] = ntslice - 1;

/* Create the NDF and map its Data array. */
       ndfPlace( NULL, name, &place, status );
       ndfNew( "_DOUBLE", 2, pos_lbnd, pos_ubnd, &place, indf, status );
       ndfMap( *indf, "DATA", "_DOUBLE", "WRITE", (void **) &result, &el,
               status );

/* Set the NDF character components. */
       ndfCput( ttl, *indf, "TITLE", status );
       ndfCput( label, *indf, "LABEL", status );
       ndfCput( "deg", *indf, "UNITS", status );
       ndfAcput( "Bolometer index", *indf, "LABEL", 1, status );
       ndfAcput( "Time slice index", *indf, "LABEL", 2, status );
    }

/* Return the pointer to the mapped data array. */
   return result;
}
示例#4
0
void cupidGCNdfClump( HDSLoc **obj, double sum, double *par, double rms,
                    int ndim, int *lbox, int *ubox, int list_size,
                    double *mlist, int *plist, int *lbnd, int iclump,
                    int *dax, AstKeyMap *extra, int bad, int *status ){
/*
*+
*  Name:
*     cupidGCNdfClump

*  Purpose:
*     Create an NDF containing a description of a single clump.

*  Language:
*     Starlink C

*  Synopsis:
*     void cupidGCNdfClump( HDSLoc **obj, double sum, double *par, double rms,
*                         int ndim, int *lbox, int *ubox, int list_size,
*                         double *mlist, int *plist, int *lbnd, int iclump,
*                         int *dax, AstKeyMap *extra, int bad,
*                         int *status )

*  Description:
*     This function creates a temporary NDF and stores the integrated
*     intensity of the clump in its Data component. The bounds of the NDF
*     will be the smallest possible which still encompass the clump. In
*     addition, if required it will create a Cupid extension in the NDF
*     containing
*
*     - The parameters of a Gaussian approximation to the clump (if supplied).
*     - Any supplied extra information.

*  Parameters:
*     obj
*        A pointer to a locator for an HDS array of NDF objects. The array
*        will be extended to accomodate the new NDF. If NULL is supplied a
*        new temporary HDS object is created, and the locator stored at the
*        given address.
*     sum
*        The integrated intensity in the clump. Note, unlike par[0] and
*        par[1], this value should not be normalised to the RMS noise.
*     par
*        Pointer to an array holding the parameters of a Gaussian
*        approximation to the clump, or NULL. How many of these are used
*        depends on the value of "ndim": if "ndim" is 1 only elements 0 to
*        3 are used, if "ndim" is 2 only elements 0 to 6 are used, if "ndim"
*        is 3 all elements are used. All axis values are represented in GRID
*        pixels:
*
*           par[0]: Peak intensity of clump (in units of the RMS noise level).
*           par[1]: Constant intensity offset (in units of the RMS noise level).
*           par[2]: Model centre on internal axis 0 (in pixels)
*           par[3]: Intrinsic FWHM on axis 0 (in pixels)
*           par[4]: Model centre on internal axis 1 (in pixels)
*           par[5]: Intrinsic FWHM on axis 1 (in pixels)
*           par[6]: Spatial orientation angle (in radians, positive from
*                   +ve GRID1 axis to +ve GRID2 axis).
*           par[7]: Model centre on internal axis 3 (velocity) (in pixels)
*           par[8]: Intrinsic FWHM on velocity axis (in pixels)
*           par[9]: Axis 0 of internal velocity gradient vector (in velocity
*                   pixels per spatial pixel).
*           par[10]: Axis 1 of internal velocity gradient vector (in
*                   velocity pixels per spatial pixel).
*     rms
*        The RMS noise level.
*     ndim
*        The number of pixel axes in the array.
*     lbox
*        The lower grid index bounds of the area containing the clump
*        (using internal axis numbering).
*     ubox
*        The upper grid index bounds of the area containing the clump
*        (using internal axis numbering).
*     list_size
*        The number of values supplied in mlist and plist.
*     mlist
*        An array of "list_size" elements containing the clump values at
*        each pixel.
*     plist
*        An array of "ndim*list_size" elements in which each group of
*        "ndim" adjacent values forms the grid indices of the corresponding
*        value in "mlist". This uses external axis ordering.
*     lbnd
*        Pointer to array holding the pixel indices of the first pixel in
*        the user-supplied NDF (using external axis numbering).
*     iclump
*        The index of the current clump.
*     dax
*        Array holding external axis number indexed by internal axis number.
*     extra
*        An AstKeyMap holding extra diagnositic information to add to the
*        clump structure.
*     bad
*        Set the Unit component of the NDF to "BAD". This is used as a
*        flag to indicate that the clump touches too many areas of bad
*        pixels.
*     status
*        Pointer to the inherited status value.

*  Copyright:
*     Copyright (C) 2009 Science and Technology Facilities Council.
*     Copyright (C) 2005,2007 Particle Physics & Astronomy Research Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software; you can redistribute it and/or
*     modify it under the terms of the GNU General Public License as
*     published by the Free Software Foundation; either version 2 of
*     the License, or (at your option) any later version.
*
*     This program is distributed in the hope that it will be
*     useful, but WITHOUT ANY WARRANTY; without even the implied
*     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
*     PURPOSE. See the GNU General Public License for more details.
*
*     You should have received a copy of the GNU General Public License
*     along with this program; if not, write to the Free Software
*     Foundation, Inc., 51 Franklin Street,Fifth Floor, Boston, MA
*     02110-1301, USA

*  Authors:
*     DSB: David S. Berry
*     TIMJ: Tim Jenness (JAC, Hawaii)
*     {enter_new_authors_here}

*  History:
*     10-NOV-2005 (DSB):
*        Original version.
*     5-MAR-2007 (DSB):
*        Initiaslise "exloc" locator to NULL before calling datFind.
*     13-JAN-2009 (TIMJ):
*        DO NOT CAST int* to size_t* since that is not going to work for long.
*     26-JAN-2011 (DSB):
*        Ensure the "m" pointer is incremented even if the currrent model pixel
*        is off the edge of the NDF. Previously, this bug caused a stripey
*        "aliasing" type effect if the supplied model data extends outside the
*        bounds of the NDF.
*     25-MAY-2017 (DSB):
*        Switch off group history and provenance recording during this
*        function. This is because it can inflate the time taken to run
*        findclumps enormously if there are many thousands of clumps.
*     {enter_further_changes_here}

*  Bugs:
*     {note_any_bugs_here}

*-
*/

/* Local Variables: */

   const char *cen[] = { "CENTRE1", "CENTRE2", "CENTRE3" };
   const char *fwhm[] = { "FWHM1", "FWHM2", "FWHM3" };
   const char *vgrad[] = { "VGRAD1", "VGRAD2", "VGRAD3" };

   HDSLoc *cloc;                /* Cell locator */
   HDSLoc *dloc;                /* Component locator */
   HDSLoc *xloc;                /* Extension locator */
   HDSLoc *exloc;               /* Locator for structure holding extra info */
   const char *key;             /* KeyMap key name */
   double *ipd;                 /* Pointer to Data array */
   double *m;                   /* Pointer to next data value */
   double dval;                 /* Double value to store */
   int *p;                      /* Pointer to next grid axis value */
   int el;                      /* Number of elements mapped */
   int elb[ 3 ];                /* The lower NDF limit on each external axis */
   int elbox[ 3 ];              /* The lower box limit on each external axis */
   int estep[ 3 ];              /* The step size on each external axis */
   int eub[ 3 ];                /* The upper NDF limit on each external axis */
   int eubox[ 3 ];              /* The upper box limit on each external axis */
   int i;                       /* Point index */
   int indf;                    /* NDF identifier */
   int iv;                      /* 1D vector index for current data value */
   int j;                       /* Axis index */
   int lb[ 3 ];                 /* Lower pixel index bounds of NDF */
   int nex;                     /* No. of extra items of information */
   int ok;                      /* Pixel within clump NDF? */
   int old_ghstate;             /* Non-zero if group history recording is switched on */
   int old_pvstate;             /* Non-zero if provenance recording is switched on */
   int place;                   /* NDF place holder */
   int pv;                      /* Pixel offset */
   size_t oldsize;              /* Size of original NDF */
   hdsdim size[1];              /* No of elements in NDF array */
   int step[ 3 ];               /* The step size on each internal axis */
   int ub[ 3 ];                 /* Upper pixel index bounds of NDF */

/* Abort if an error has already occurred. */
   if( *status != SAI__OK ) return;

/* If no array was supplied create one of length 1. */
   if( !(*obj) ) {
      size[0] = 1;
      datTemp( "NDF", 1, size, obj, status );

/* Otherwise, get the number of NDFs already in the supplied array of
   NDFs, and increase it by 1. */
   } else {
      datSize( *obj, &oldsize, status );
      size[0] = oldsize + 1;
      datAlter( *obj, 1, size, status );
   }

/* Get a locator for the new cell. */
   cloc = NULL;
   datCell( *obj, 1, size, &cloc, status );

/* Begin an NDF context */
   ndfBegin();

/* Temporaily switch off group history and provenance recording since there
   can be thousands of clump NDFs. */
   ndgHltgh( 0, &old_ghstate, status );
   ndgHltpv( 0, &old_pvstate, status );

/* Find the pixel index bounds of the NDF and the step between adjacent
   pixels on each axis. */
   lb[ 0 ] = lbox[ 0 ] - 1 + lbnd[ dax[ 0 ] ];
   ub[ 0 ] = ubox[ 0 ] - 1 + lbnd[ dax[ 0 ] ];
   step[ 0 ] = 1;

   for( i = 1; i < ndim; i++ ) {
      lb[ i ] = lbox[ i ] - 1 + lbnd[ dax[ i ] ];
      ub[ i ] = ubox[ i ] - 1 + lbnd[ dax[ i ] ];
      step[ i ] = ( ub[ i - 1 ] - lb[ i - 1 ] + 1 )*step[ i - 1 ];
   }

/* Convert lbox, lb, ub and step from internal axis numbering to external axis
   numbering. */
   for( i = 0; i < ndim; i++ ) {
     elbox[ dax[ i ] ] = lbox[ i ];
     eubox[ dax[ i ] ] = ubox[ i ];
     elb[ dax[ i ] ] = lb[ i ];
     eub[ dax[ i ] ] = ub[ i ];
     estep[ dax[ i ] ] = step[ i ];
   }

/* Create a place holder for the new NDF within the new cell. The NDF will be
   copied to its final resting place before the program exits. */
   ndfPlace( cloc, " ", &place, status );

/* Create the NDF to receive the clump values. The size of this NDF is the
   minimum needed to contain the clump. */
   ndfNew( "_DOUBLE", ndim, elb, eub, &place, &indf, status );

/* Map the NDFs Data array, filling it with bad values. */
   ndfMap( indf, "DATA", "_DOUBLE", "WRITE/BAD", (void *) &ipd, &el, status );
   if( ipd ) {

/* Store every supplied model value in the NDF data array. */
      m = mlist;
      p = plist;
      for( i = 0; i < list_size; i++,m++ ) {

/* Find the 1D vector index into the NDF data array corresponding to the
   grid indices (within the user supplied NDF) of the current point.*/
         pv = *(p++);
         iv = pv - elbox[ 0 ];
         ok = ( pv >= elbox[ 0 ] && pv <= eubox[ 0 ] );
         for( j = 1; j < ndim; j++ ) {
            pv = *(p++);
            iv += ( pv - elbox[ j ] )*estep[ j ];
            if( pv < elbox[ j ] || pv > eubox[ j ] ) ok = 0;
         }

/* Store the value. */
         if( ok ) ipd[ iv ] = *m;
      }

/* Unmap the NDFs Data array. */
      ndfUnmap( indf, "DATA", status );
   }

/* If required, create a Cupid extension in the NDF. */
   if( par || extra ) {
      xloc = NULL;
      ndfXnew( indf, "CUPID", "CUPID_EXT", 0, NULL, &xloc, status );

/* First do Gaussian parameters. */
      if( par ) {

/* Store the integrated intensity in the clump. */
         dloc = NULL;
         datNew( xloc, "SUM", "_DOUBLE", 0, NULL, status );
         datFind( xloc, "SUM", &dloc, status );
         datPutD( dloc, 0, NULL, &sum, status );
         datAnnul( &dloc, status );

/* Store the parameters of the Gaussian approximation, taking out the
   normalisation by the RMS noise level.*/
         datNew( xloc, "PEAK", "_DOUBLE", 0, NULL, status );
         datFind( xloc, "PEAK", &dloc, status );
         dval = rms*par[ 0 ];
         datPutD( dloc, 0, NULL, &dval, status );
         datAnnul( &dloc, status );

         datNew( xloc, "OFFSET", "_DOUBLE", 0, NULL, status );
         datFind( xloc, "OFFSET", &dloc, status );
         dval = rms*par[ 1 ];
         datPutD( dloc, 0, NULL, &dval, status );
         datAnnul( &dloc, status );

         datNew( xloc, cen[ dax[ 0 ] ], "_DOUBLE", 0, NULL, status );
         datFind( xloc, cen[ dax[ 0 ] ], &dloc, status );
         dval = par[ 2 ] + lbnd[ dax[ 0 ] ] - 1.5;
         datPutD( dloc, 0, NULL, &dval, status );
         datAnnul( &dloc, status );

         datNew( xloc, fwhm[ dax[ 0 ] ], "_DOUBLE", 0, NULL, status );
         datFind( xloc, fwhm[ dax[ 0 ] ], &dloc, status );
         datPutD( dloc, 0, NULL, par + 3, status );
         datAnnul( &dloc, status );

         if( ndim > 1 ) {
            datNew( xloc, cen[ dax[ 1 ] ], "_DOUBLE", 0, NULL, status );
            datFind( xloc, cen[ dax[ 1 ] ], &dloc, status );
            dval = par[ 4 ] + lbnd[ dax[ 1 ] ] - 1.5;
            datPutD( dloc, 0, NULL, &dval, status );
            datAnnul( &dloc, status );

            datNew( xloc, fwhm[ dax[ 1 ] ], "_DOUBLE", 0, NULL, status );
            datFind( xloc, fwhm[ dax[ 1 ] ], &dloc, status );
            datPutD( dloc, 0, NULL, par + 5, status );
            datAnnul( &dloc, status );

            datNew( xloc, "ANGLE", "_DOUBLE", 0, NULL, status );
            datFind( xloc, "ANGLE", &dloc, status );
            dval = par[ 6 ]*AST__DR2D;
            datPutD( dloc, 0, NULL,  &dval, status );
            datAnnul( &dloc, status );

            if( ndim > 2 ) {

               datNew( xloc, cen[ dax[ 2 ] ], "_DOUBLE", 0, NULL, status );
               datFind( xloc, cen[ dax[ 2 ] ], &dloc, status );
               dval = par[ 7 ] + lbnd[ dax[ 2 ] ] - 1.5;
               datPutD( dloc, 0, NULL, &dval, status );
               datAnnul( &dloc, status );

               datNew( xloc, fwhm[ dax[ 2 ] ], "_DOUBLE", 0, NULL, status );
               datFind( xloc, fwhm[ dax[ 2 ] ], &dloc, status );
               datPutD( dloc, 0, NULL, par + 8, status );
               datAnnul( &dloc, status );

               datNew( xloc, vgrad[ dax[ 0 ] ], "_DOUBLE", 0, NULL, status );
               datFind( xloc, vgrad[ dax[ 0 ] ], &dloc, status );
               datPutD( dloc, 0, NULL, par + 9, status );
               datAnnul( &dloc, status );

               datNew( xloc, vgrad[ dax[ 1 ] ], "_DOUBLE", 0, NULL, status );
               datFind( xloc, vgrad[ dax[ 1 ] ], &dloc, status );
               datPutD( dloc, 0, NULL, par + 10, status );
               datAnnul( &dloc, status );

            }
         }
      }

/* Now store any extra diagnostic information. */
      if( extra ) {
         datNew( xloc, "EXTRA", "EXTRA", 0, NULL, status );
         exloc = NULL;
         datFind( xloc, "EXTRA", &exloc, status );

         nex = astMapSize( extra );
         for( i = 0; i < nex; i++ ) {
            key = astMapKey( extra, i );
            if( astMapGet0D( extra, key, &dval ) ) {
               datNew( exloc, key, "_DOUBLE", 0, NULL, status );
               datFind( exloc, key, &dloc, status );
               datPutD( dloc, 0, NULL, &dval, status );
               datAnnul( &dloc, status );
            }
         }

         datAnnul( &exloc, status );

      }

/* Release the extension locator. */
      datAnnul( &xloc, status );
   }

/* If required set the Unit component to "BAD". */
   if( bad ) ndfCput( "BAD", indf, "Unit", status );

/* Switch group history and provenance recording back to their original
   states. */
   ndgHltgh( old_ghstate, NULL, status );
   ndgHltpv( old_pvstate, NULL, status );

/* End the NDF context */
   ndfEnd( status );

/* Release the cell locator. */
   datAnnul( &cloc, status );

}
示例#5
0
void smurf_jsatileinfo( int *status ) {

/* Local Variables */
   AstCmpRegion *overlap;
   AstFitsChan *fc;
   AstFrameSet *fs;
   AstObject *obj;
   AstRegion *region;
   AstRegion *target;
   HDSLoc *cloc = NULL;
   HDSLoc *xloc = NULL;
   char *jcmt_tiles;
   char *tilendf = NULL;
   char text[ 200 ];
   double dec[ 8 ];
   double dist;
   double dlbnd[ 2 ];
   double dubnd[ 2 ];
   double gx[ 8 ];
   double gy[ 8 ];
   double maxdist;
   double norm_radec[2];
   double point1[ 2 ];
   double point2[ 2 ];
   double ra[ 8 ];
   double ra0;
   double dec0;
   int *ipntr;
   int axes[ 2 ];
   int create;
   int dirlen;
   int el;
   int exists;
   int flag;
   int i;
   int indf1;
   int indf2;
   int indf3;
   int itile;
   int iv;
   int jtile;
   int lbnd[ 2 ];
   int local_origin;
   int nc;
   int place;
   int tlbnd[ 2 ];
   int tubnd[ 2 ];
   int ubnd[ 2 ];
   smf_jsaproj_t proj;
   int xt;
   int yt;
   smfJSATiling skytiling;
   void *pntr;

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Start a new AST context. */
   astBegin;

/* Get the instrument to use abnd get the parameters describing the
   layout of its JSA tiles. */
   smf_jsainstrument( "INSTRUMENT", NULL, SMF__INST_NONE, &skytiling,
                      status );

/* Return the maximum tile index. */
   parPut0i( "MAXTILE", skytiling.ntiles - 1, status );

/* Abort if an error has occurred. */
   if( *status != SAI__OK ) goto L999;

/* Decide what sort of projection to use. */
   parChoic( "PROJ", "HPX", "HPX,HPX12,XPHN,XPHS", 1, text, sizeof(text),
             status );
   proj = smf_jsaproj_fromstr( text, 1, status );

/* If required, create an all-sky NDF in which each pixel covers the area
   of a single tile, and holds the integer tile index. The NDF has an
   initial size of 1x1 pixels, but is expanded later to the required size. */
   lbnd[ 0 ] = ubnd[ 0 ] = lbnd[ 1 ] = ubnd[ 1 ] = 1;
   ndfCreat( "ALLSKY", "_INTEGER", 2, lbnd, ubnd, &indf3, status );

/* If a null (!) value was supplied for parameter ALLSKY, annull the
   error and pass on. */
   if( *status == PAR__NULL ) {
      errAnnul( status );

/* Otherwise, create a FrameSet describing the whole sky in which each
   pixel corresponds to a single tile. */
   } else {
      smf_jsatile( -1, &skytiling, 0, proj, NULL, &fs, NULL, lbnd, ubnd,
                   status );

/* Change the bounds of the output NDF. */
      ndfSbnd( 2, lbnd, ubnd, indf3, status );

/* Store the FrameSet in the NDF. */
      ndfPtwcs( fs, indf3, status );

/* Map the data array. */
      ndfMap( indf3, "Data", "_INTEGER", "WRITE/BAD", (void **) &ipntr, &el,
              status );

/* Create all-sky map using XPH projection. */
      if( *status == SAI__OK ) {

/* Loop round every tile index. */
         for( jtile = 0; jtile < skytiling.ntiles; jtile++ ) {

/* Get the zero-based (x,y) indices of the tile within an HPX projection.
   This flips the bottom left half-facet up to the top right. */
            smf_jsatilei2xy( jtile, &skytiling, &xt, &yt, NULL, status );

/* Convert these HPX indices to the corresponding indices within the
   required projection. Note, the lower left facet is split by the above
   call to smf_jsatilei2xy tile (i.e. (xt,yt) indices are *not* in the
   "raw" mode). For instance, (0,0) is not a valid tile. */
            smf_jsatilexyconv( &skytiling, proj, xt, yt, 0, &xt, &yt, status );

/* Get the vector index of the corresponding element of the all-sky NDF. */
            if( proj == SMF__JSA_HPX || proj == SMF__JSA_HPX12 ) {
               iv = xt + 5*skytiling.ntpf*yt;
            } else {
               iv = xt + 4*skytiling.ntpf*yt;
            }

/* Report an error if this element has already been assigned a tile
   index. Otherwise, store the tile index. */
            if( ipntr[ iv ] == VAL__BADI ) {
               ipntr[ iv ] = jtile;
            } else if( *status == SAI__OK ) {
               *status = SAI__ERROR;
               errRepf( "", "%s projection assigns multiple tiles to "
                        "pixel (%d,%d).", status, text, xt, yt );
               break;
            }
         }
      }

/* Store NDF title. */
      sprintf( text, "JSA tile indices for %s data", skytiling.name );
      ndfCput( text, indf3, "TITLE", status );

/* Store the instrument as a component in the SMURF extension. */
      ndfXnew( indf3, "SMURF", "INSTRUMENT", 0, 0, &xloc, status );
      ndfXpt0c( skytiling.name, indf3, "SMURF", "INSTRUMENT", status );
      datAnnul( &xloc, status );

/* Close the NDF. */
      ndfAnnul( &indf3, status );
   }

/* Abort if an error has occurred. */
   if( *status != SAI__OK ) goto L999;

/* Get the zero-based index of the required tile. If a null value is
   supplied, annull the error and skip to the end. */
   parGdr0i( "ITILE", 0, 0, skytiling.ntiles - 1, 0, &itile, status );
   if( *status == PAR__NULL ) {
       errAnnul( status );
       goto L999;
   }

/* See if the pixel origin is to be at the centre of the tile. */
   parGet0l( "LOCAL", &local_origin, status );

/* Display the tile number. */
   msgBlank( status );
   msgSeti( "ITILE", itile );
   msgSeti( "MAXTILE", skytiling.ntiles - 1);
   msgOut( " ", "   Tile ^ITILE (from 0 to ^MAXTILE):", status );

/* Get the FITS header, FrameSet and Region defining the tile, and the tile
   bounds in pixel indices. */
   smf_jsatile( itile, &skytiling, local_origin,  proj, &fc, &fs, &region,
                lbnd, ubnd, status );

/* Write the FITS headers out to a file, annulling the error if the
   header is not required. */
   if( *status == SAI__OK ) {
      atlDumpFits( "HEADER", fc, status );
      if( *status == PAR__NULL ) errAnnul( status );
   }

/* If required, write the Region out to a text file. */
   if( *status == SAI__OK ) {
      atlCreat( "REGION", (AstObject *) region, status );
      if( *status == PAR__NULL ) errAnnul( status );
   }

/* Store the lower and upper pixel bounds of the tile. */
   parPut1i( "LBND", 2, lbnd, status );
   parPut1i( "UBND", 2, ubnd, status );

/* Display pixel bounds on the screen. */
   msgSeti( "XL", lbnd[ 0 ] );
   msgSeti( "XU", ubnd[ 0 ] );
   msgSeti( "YL", lbnd[ 1 ] );
   msgSeti( "YU", ubnd[ 1 ] );
   msgOut( " ", "      Pixel bounds: (^XL:^XU,^YL:^YU)", status );

/* Get the RA,Dec at the tile centre. */
   if( astTest( fs, "SkyRef" ) ) {
      ra0 = astGetD( fs, "SkyRef(1)" );
      dec0 = astGetD( fs, "SkyRef(2)" );

/* Format the central RA and Dec. and display. Call astNorm on the
   coordinates provided that the frame set has the correct number of
   axes (which it should as it comes from smf_jsatile). */
      norm_radec[0] = ra0;
      norm_radec[1] = dec0;
      if (astGetI(fs, "Naxes") == 2) astNorm(fs, norm_radec);
      msgSetc( "RACEN",  astFormat( fs, 1, norm_radec[ 0 ] ));
      msgSetc( "DECCEN",  astFormat( fs, 2, norm_radec[ 1 ] ));
      msgOut( " ", "      Centre (ICRS): RA=^RACEN DEC=^DECCEN", status );

/* Transform a collection of points on the edge of the region (corners and
   side mid-points) from GRID coords to RA,Dec. */
      point1[ 0 ] = 0.5;
      point1[ 1 ] = 0.5;
      point2[ 0 ] = ubnd[ 0 ] - lbnd[ 0 ] + 1;
      point2[ 1 ] = ubnd[ 1 ] - lbnd[ 1 ] + 1;

      gx[ 0 ] = point1[ 0 ];         /* Bottom left */
      gy[ 0 ] = point1[ 1 ];

      gx[ 1 ] = point1[ 0 ];         /* Centre left */
      gy[ 1 ] = gy[ 0 ];

      gx[ 2 ] = point1[ 0 ];         /* Top left */
      gy[ 2 ] = point2[ 1 ];

      gx[ 3 ] = gx[ 0 ];             /* Top centre */
      gy[ 3 ] = point2[ 1 ];

      gx[ 4 ] = point2[ 0 ];         /* Top right */
      gy[ 4 ] = point2[ 1 ];

      gx[ 5 ] = point2[ 0 ];         /* Centre right */
      gy[ 5 ] = gy[ 0 ];

      gx[ 6 ] = point2[ 0 ];         /* Bottom right */
      gy[ 6 ] = point1[ 1 ];

      gx[ 7 ] = gx[ 0 ];             /* Bottom centre */
      gy[ 7 ] = point1[ 1 ];

      astTran2( fs, 8, gx, gy, 1, ra, dec );

/* Find the arc-distance from the centre to the furthest point from the
   centre. */
      point1[ 0 ] = ra0;
      point1[ 1 ] = dec0;
      maxdist = -1.0;

      for( i = 1; i < 8; i++ ) {
         if( ra[ i ] != AST__BAD && dec[ i ] != AST__BAD ) {
            point2[ 0 ] = ra[ i ];
            point2[ 1 ] = dec[ i ];
            dist = astDistance( fs, point1, point2 );
            if( dist > maxdist ) maxdist = dist;
         }
      }

/* Convert from radius to diameter. */
      maxdist *= 2.0;

/* Format this size as a dec value (i.e. arc-distance) and display it. */
      if( maxdist > 0.0 ) {
         msgSetc( "SIZE",  astFormat( fs, 2, maxdist ) );
         msgOut( " ", "      Size: ^SIZE", status );
      } else {
         maxdist = AST__BAD;
         msgOut( " ", "      Size: <unknown>", status );
      }

/* If a discontinuity passes through the tile, the centre and size may be
   unknown. */
   } else {
      ra0 = AST__BAD;
      dec0 = AST__BAD;
      maxdist = AST__BAD;
      msgOut( " ", "      Centre (ICRS): RA=<unknown> DEC=<unknown>", status );
      msgOut( " ", "      Size: <unknown>", status );
   }

/* Write the tile centre ra and dec in radians to the output parameters. */
   parPut0d( "RACEN", norm_radec[ 0 ], status );
   parPut0d( "DECCEN", norm_radec[ 1 ], status );

/* Write the size to the output parameter as radians. */
   parPut0d( "SIZE", maxdist, status );

/* Get the translation of the environment variable JSA_TILE_DIR. */
   jcmt_tiles = getenv( "JSA_TILE_DIR" );

/* Initialise the path to the tile's NDF to hold the root directory.
   Use the current working directory if JSA_TILE_DIR is undefined. */
   if( jcmt_tiles ) {
      nc = 0;
      tilendf = astAppendString( tilendf, &nc, jcmt_tiles );

   } else {

      nc = 512;
      jcmt_tiles = astMalloc( nc );

      while( !getcwd( jcmt_tiles, nc ) ) {
         nc *= 2;
         jcmt_tiles = astRealloc( jcmt_tiles, nc );
      }

      nc = 0;
      tilendf = astAppendString( tilendf, &nc, jcmt_tiles );
      jcmt_tiles = astFree( jcmt_tiles );
   }

/* Complete the path to the tile's NDF. */
   tilendf = astAppendString( tilendf, &nc, "/" );
   tilendf = astAppendString( tilendf, &nc, skytiling.subdir );
   dirlen = nc;
   sprintf( text, "/tile_%d.sdf", itile );
   tilendf = astAppendString( tilendf, &nc, text );

/* Write it to the output parameter. */
   parPut0c( "TILENDF", tilendf, status );

/* See if the NDF exists, and store the flag in the output parameter. */
   exists = access( tilendf, F_OK ) ? 0 : 1;
   parPut0l( "EXISTS", exists, status );

/* If the NDF does not exist, create it if required. */
   parGet0l( "CREATE", &create, status );
   if( !exists && create && *status == SAI__OK ) {

/* Write the NDF info to the screen. */
      msgSetc( "NDF",  tilendf );
      msgOutif( MSG__NORM, " ", "      NDF: ^NDF (created)", status );

/* Temporarily terminate the NDF path at the end of the subdirectory. */
      tilendf[ dirlen ] = 0;

/* Create the required directory (does nothing if the directory
   already exists).  It is given read/write/search permissions for owner
   and group, and read/search permissions for others. */
      (void) mkdir( tilendf, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );

/* Replace the character temporarily overwritten above. */
      tilendf[ dirlen ] = '/';

/* Now create the tile's NDF. */
      ndfPlace( NULL, tilendf, &place, status );
      ndfNew( skytiling.type, 2, lbnd, ubnd, &place, &indf1, status );

/* Fill its data array with zeros. */
      ndfMap( indf1, "Data", skytiling.type, "WRITE/ZERO", &pntr, &el,
              status );

/* Store the WCS FrameSet. */
      ndfPtwcs( fs, indf1, status );

/* If the instrument jsatiles.have variance, fill the variance array with zeros. */
      if( skytiling.var ) {
         ndfMap( indf1, "Variance", skytiling.type, "WRITE/ZERO", &pntr,
                 &el, status );
      }

/* Create a SMURF extension. */
      ndfXnew( indf1, SMURF__EXTNAME, SMURF__EXTTYPE, 0, NULL, &xloc, status );

/* Store the tile number and instrument name in the extension. */
      datNew0I( xloc, "TILE", status );
      datFind( xloc, "TILE", &cloc, status );
      datPut0I( cloc, itile, status );
      datAnnul( &cloc, status );

      datNew0C( xloc, "INSTRUMENT", strlen( skytiling.name ), status );
      datFind( xloc, "INSTRUMENT", &cloc, status );
      datPut0C( cloc, skytiling.name, status );
      datAnnul( &cloc, status );

/* Create a weights NDF within the SMURF extension, and fill its data
   array with zeros. */
      ndfPlace( xloc, "WEIGHTS", &place, status );
      ndfNew( skytiling.type, 2, lbnd, ubnd, &place, &indf2, status );
      ndfMap( indf2, "Data", skytiling.type, "WRITE/ZERO", &pntr, &el,
              status );
      ndfPtwcs( fs, indf2, status );
      ndfAnnul( &indf2, status );

/* Annul the extension locator and the main NDF identifier. */
      datAnnul( &xloc, status );
      ndfAnnul( &indf1, status );

/* Write the NDF info to the screen. */
   } else {
      msgSetc( "NDF",  tilendf );
      msgSetc( "E",  exists ? "exists" : "does not exist" );
      msgOut( " ", "      NDF: ^NDF (^E)", status );
   }

/* Initialise TBND and TLBND to indicate no overlap. */
   tlbnd[ 0 ] = 1;
   tlbnd[ 1 ] = 1;
   tubnd[ 0 ] = 0;
   tubnd[ 1 ] = 0;

/* Attempt to to get an AST Region (assumed to be in some 2D sky coordinate
   system) using parameter "TARGET". */
   if( *status == SAI__OK ) {
      kpg1Gtobj( "TARGET", "Region",
                 (void (*)( void )) F77_EXTERNAL_NAME(ast_isaregion),
                 &obj, status );

/* Annul the error if none was obtained. */
      if( *status == PAR__NULL ) {
         errAnnul( status );

/* Otherwise, use the supplied object. */
      } else {
         target = (AstRegion *) obj;

/* If the target Region is 3-dimensional, remove the third axis, which
   is assumed to be a spectral axis. */
         if( astGetI( target, "Naxes" ) == 3 ) {
            axes[ 0 ] = 1;
            axes[ 1 ] = 2;
            target = astPickAxes( target, 2, axes, NULL );
         }

/* See if there is any overlap between the target and the tile. */
         overlap = NULL;
         flag = astOverlap( region, target );

         if( flag == 0 ) {
            msgOut( "", "      Cannot convert between the coordinate system of the "
                    "supplied target and the tile.", status );

         } else if( flag == 1 || flag == 6 ) {
            msgOut( "", "      There is no overlap between the target and the tile.",
                    status );

         } else if( flag == 2 ) {
            msgOut( "", "      The tile is contained within the target.",
                    status );
            tlbnd[ 0 ] = lbnd[ 0 ];
            tlbnd[ 1 ] = lbnd[ 1 ];
            tubnd[ 0 ] = ubnd[ 0 ];
            tubnd[ 1 ] = ubnd[ 1 ];

         } else if( flag == 3 ) {
            overlap = astCmpRegion( region, target, AST__AND, " " );

         } else if( flag == 4 ) {
            overlap = astCmpRegion( region, target, AST__AND, " " );

         } else if( flag == 5 ) {
            msgOut( "", "      The target and tile are identical.",
                    status );
            tlbnd[ 0 ] = lbnd[ 0 ];
            tlbnd[ 1 ] = lbnd[ 1 ];
            tubnd[ 0 ] = ubnd[ 0 ];
            tubnd[ 1 ] = ubnd[ 1 ];

         } else if( *status == SAI__OK ) {
            *status = SAI__OK;
            errRepf( "", "Unexpected value %d returned by astOverlap "
                     "(programming error).", status, flag );
         }

/* If a region containing the intersection of the tile and target was
   created above, map it into the grid coordinate system of the tile. */
         if( overlap ) {
            overlap = astMapRegion( overlap, astGetMapping( fs, AST__CURRENT,
                                                            AST__BASE ),
                                    astGetFrame( fs, AST__BASE ) );

/* Get its GRID bounds. */
            astGetRegionBounds( overlap, dlbnd, dubnd );

/* Convert to integer. */
            tlbnd[ 0 ] = ceil( dlbnd[ 0 ] - 0.5 );
            tlbnd[ 1 ] = ceil( dlbnd[ 1 ] - 0.5 );
            tubnd[ 0 ] = ceil( dubnd[ 0 ] - 0.5 );
            tubnd[ 1 ] = ceil( dubnd[ 1 ] - 0.5 );

/* Convert to PIXEL indices within the tile. */
            tlbnd[ 0 ] += lbnd[ 0 ] - 1;
            tlbnd[ 1 ] += lbnd[ 1 ] - 1;
            tubnd[ 0 ] += lbnd[ 0 ] - 1;
            tubnd[ 1 ] += lbnd[ 1 ] - 1;

            msgOutf( "", "      The target overlaps section (%d:%d,%d:%d).",
                     status, tlbnd[ 0 ], tubnd[ 0 ], tlbnd[ 1 ], tubnd[ 1 ] );
         }
      }
   }

/* Store the pixel index bounds of the tiles overlap with the target. */
   parPut1i( "TLBND", 2, tlbnd, status );
   parPut1i( "TUBND", 2, tubnd, status );

/* Arrive here if an error occurs. */
   L999:;

/* Free resources. */
   tilendf = astFree( tilendf );

/* End the AST context. */
   astEnd;

/* Issue a status indication.*/
   msgBlank( status );
   if( *status == SAI__OK ) {
      msgOutif( MSG__VERB, "", "JSATILEINFO succeeded.", status);
   } else {
      msgOutif( MSG__VERB, "", "JSATILEINFO failed.", status);
   }
}
示例#6
0
void smf_labelunit( Grp *igrp,  int size, smfData *odata, int *status ){

/* Local Variables */
   char label1[ SMF__CHARLABEL ];/* Label from first NDF */
   char unit1[ SMF__CHARLABEL ]; /* Unit from first NDF */
   int ifile;            /* Index of current input file */
   smfData *data = NULL; /* Pointer to data struct for current input file */

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Loop round all the input NDFs. */
   for( ifile = 1; ifile <= size && *status == SAI__OK; ifile++ ) {
     char * unit = NULL;
     char * label = NULL;

/* Obtain information about the current input NDF. */
     smf_open_file( NULL, igrp, ifile, "READ", 0, &data, status );

     if (*status == SAI__OK) {
       unit = data->hdr->units;
       label = data->hdr->dlabel;

/* If this is the first input NDF, copy the Label and Unit string to the
   output NDF, and save them for later use. */
       if( ifile == 1 ) {
         if( strlen( label ) ) {
            ndfCput( label, odata->file->ndfid, "Label", status );
         }

         if( strlen( unit ) ) {
            ndfCput( unit, odata->file->ndfid, "Unit", status );
         }

         one_strlcpy( label1, label, sizeof(label1), status );
         one_strlcpy( unit1, unit, sizeof(unit1), status );

/* Otherwise, compare the Label and Unit strings for this input NDF with
   those from the first input NDF. If any difference is found issue a
   warning. */
       } else if( *status == SAI__OK && strcmp( label, label1 ) ) {
         msgSeti( "I", ifile );
         msgSetc( "L1", label1 );
         msgSetc( "L", label );
         smf_smfFile_msg( data->file, "N", 1, "<unknown file>" );
         msgOutif( MSG__NORM, " ", "   WARNING: Input ^I (^N) has Label "
                   "'^L' but the first input had Label '^L1'.", status );

       } else if( *status == SAI__OK && strcmp( unit, unit1 ) ) {
         msgSeti( "I", ifile );
         msgSetc( "U1", unit1 );
         msgSetc( "U", unit );
         smf_smfFile_msg( data->file, "N", 1, "<unknown file>" );
         msgOutif( MSG__NORM, " ", "   WARNING: Input ^I (^N) has Unit "
                   "'^U' but the first input had Unit '^U1'.", status );

       }
     }

/* Close the current input data file. */
      smf_close_file( NULL, &data, status );
      data = NULL;

   }
}