示例#1
0
int
main (int argc, char *argv[])
{
    char my_url[NSSI_URL_LEN];

    nssi_rpc_init(NSSI_DEFAULT_TRANSPORT, NSSI_DEFAULT_ENCODE, NULL);

    nssi_get_url(NSSI_DEFAULT_TRANSPORT, my_url, NSSI_URL_LEN);

    printf("%s\n", my_url);

    nssi_rpc_fini(NSSI_DEFAULT_TRANSPORT);

    return 0;
}
示例#2
0
static void *do_wait(void *args)
{
    nssi_service svc;

    // service init
    nssi_service_init(NSSI_DEFAULT_TRANSPORT, NSSI_SHORT_REQUEST_SIZE, &svc);
    nssi_get_url(NSSI_DEFAULT_TRANSPORT, &my_url[0], NSSI_URL_LEN);

    // client is waiting for us to initialize
    pthread_barrier_wait(&barrier);

    svc.max_reqs = -1;
    int rc = nssi_service_start(&svc);
    if (rc != NSSI_OK) {
        log_info(selfsend_debug_level, "exited selfsend_svc: %s",
                 nssi_err_str(rc));
    }

    /* finalize the service */
    nssi_service_fini(&svc);

    return(NULL);
}
示例#3
0
/**
 * @brief The NSSI injection-server.
 *
 * NSSI has already been initialized and the client already knows the URL of the
 * server.  This function simply registers the server methods and starts the
 * service loop.   The client will send a request to kill the service upon completion.
 *
 */
int injection_server_main(struct injection_args &args, MPI_Comm server_comm)
{
    int rc = NSSI_OK;

    nssi_service injection_svc;
    log_level debug_level;
    int server_rank;

    MPI_Comm_rank(server_comm, &server_rank);

    /* options that can be overriden by the command-line */
    int verbose = 3;  /* default debug_level */
    std::string server_url(NSSI_URL_LEN, '\0');          /* NNTI-style url of the server */
    std::string logfile("");
    const char *log_str=NULL;


    memset(&injection_svc, 0, sizeof(nssi_service));


    /* initialize the nssi service */
    rc = nssi_service_init((nssi_rpc_transport)args.transport, NSSI_SHORT_REQUEST_SIZE, &injection_svc);
    if (rc != NSSI_OK) {
        log_error(injection_debug_level, "could not init injection_svc: %s",
                nssi_err_str(rc));
        return -1;
    }

    // register callbacks for the service methods
    NSSI_REGISTER_SERVER_STUB(INJECTION_EMPTY_REQUEST_OP, injection_empty_request_srvr, void, void);


    // Get the Server URL
    std::string url(NSSI_URL_LEN, '\0');
    nssi_get_url((nssi_rpc_transport)args.transport, &url[0], NSSI_URL_LEN);


    // Set the maxumum number of requests to handle (-1 == infinite)
    injection_svc.max_reqs = -1;
    //        injection_svc.progress_callback=(uint64_t)make_progress;
    //        injection_svc.progress_callback_timeout=100;

    log_debug(injection_debug_level, "Starting Server: url = %s", url.c_str());

    // Tell the NSSI server to output log data
    //rpc_debug_level = injection_debug_level;

    // start processing requests, the client will send a request to exit when done
    rc = nssi_service_start(&injection_svc);
    if (rc != NSSI_OK) {
        log_info(injection_debug_level, "exited injection_svc: %s",
                nssi_err_str(rc));
    }

    sleep(5);

    /* shutdown the injection_svc */
    log_debug(injection_debug_level, "shutting down service library");
    nssi_service_fini(&injection_svc);


    return rc;
}
示例#4
0
int main(int argc, char *argv[])
{
    int np=1, rank=0;
    int splitrank, splitsize;
    int rc = 0;
    nssi_service xfer_svc;

    int server_index=0;
    int rank_in_server=0;

    int transport_index=-1;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &np);

    MPI_Barrier(MPI_COMM_WORLD);

    Teuchos::oblackholestream blackhole;
    std::ostream &out = ( rank == 0 ? std::cout : blackhole );

    struct xfer_args args;

    const int num_io_methods = 8;
    const int io_method_vals[] = {
            XFER_WRITE_ENCODE_SYNC, XFER_WRITE_ENCODE_ASYNC,
            XFER_WRITE_RDMA_SYNC, XFER_WRITE_RDMA_ASYNC,
            XFER_READ_ENCODE_SYNC, XFER_READ_ENCODE_ASYNC,
            XFER_READ_RDMA_SYNC, XFER_READ_RDMA_ASYNC};
    const char * io_method_names[] = {
            "write-encode-sync", "write-encode-async",
            "write-rdma-sync", "write-rdma-async",
            "read-encode-sync", "read-encode-async",
            "read-rdma-sync", "read-rdma-async"};

    const int nssi_transport_list[] = {
            NSSI_RPC_PTL,
            NSSI_RPC_PTL,
            NSSI_RPC_IB,
            NSSI_RPC_IB,
            NSSI_RPC_GEMINI,
            NSSI_RPC_GEMINI,
            NSSI_RPC_BGPDCMF,
            NSSI_RPC_BGPDCMF,
            NSSI_RPC_BGQPAMI,
            NSSI_RPC_BGQPAMI,
            NSSI_RPC_MPI};

    const int num_nssi_transports = 11;
    const int nssi_transport_vals[] = {
            0,
            1,
            2,
            3,
            4,
            5,
            6,
            7,
            8,
            9,
            10
            };
    const char * nssi_transport_names[] = {
            "portals",
            "ptl",
            "infiniband",
            "ib",
            "gemini",
            "gni",
            "bgpdcmf",
            "dcmf",
            "bgqpami",
            "pami",
            "mpi"
    };


    // Initialize arguments
    args.transport=NSSI_DEFAULT_TRANSPORT;
    args.len = 1;
    args.delay = 1;
    args.io_method = XFER_WRITE_RDMA_SYNC;
    args.debug_level = LOG_WARN;
    args.num_trials = 1;
    args.num_reqs = 1;
    args.result_file_mode = "a";
    args.result_file = "";
    args.url_file = "";
    args.logfile = "";
    args.client_flag = true;
    args.server_flag = true;
    args.num_servers = 1;
    args.num_threads = 0;
    args.timeout = 500;
    args.num_retries = 5;
    args.validate_flag = true;
    args.kill_server_flag = true;
    args.block_distribution = true;


    bool success = true;

    /**
     * We make extensive use of the \ref Teuchos::CommandLineProcessor for command-line
     * options to control the behavior of the test code.   To evaluate performance,
     * the "num-trials", "num-reqs", and "len" options control the amount of data transferred
     * between client and server.  The "io-method" selects the type of data transfer.  The
     * server-url specifies the URL of the server.  If running as a server, the server-url
     * provides a recommended URL when initializing the network transport.
     */
    try {

        //out << Teuchos::Teuchos_Version() << std::endl << std::endl;

        // Creating an empty command line processor looks like:
        Teuchos::CommandLineProcessor parser;
        parser.setDocString(
                "This example program demonstrates a simple data-transfer service "
                "built using the NEtwork Scalable Service Interface (Nessie)."
        );

        /* To set and option, it must be given a name and default value.  Additionally,
           each option can be given a help std::string.  Although it is not necessary, a help
           std::string aids a users comprehension of the acceptable command line arguments.
           Some examples of setting command line options are:
         */

        parser.setOption("delay", &args.delay, "time(s) for client to wait for server to start" );
        parser.setOption("timeout", &args.timeout, "time(ms) to wait for server to respond" );
        parser.setOption("server", "no-server", &args.server_flag, "Run the server" );
        parser.setOption("client", "no-client", &args.client_flag, "Run the client");
        parser.setOption("len", &args.len, "The number of structures in an input buffer");
        parser.setOption("debug",(int*)(&args.debug_level), "Debug level");
        parser.setOption("logfile", &args.logfile, "log file");
        parser.setOption("num-trials", &args.num_trials, "Number of trials (experiments)");
        parser.setOption("num-reqs", &args.num_reqs, "Number of reqs/trial");
        parser.setOption("result-file", &args.result_file, "Where to store results");
        parser.setOption("result-file-mode", &args.result_file_mode, "Write mode for the result");
        parser.setOption("server-url-file", &args.url_file, "File that has URL client uses to find server");
        parser.setOption("validate", "no-validate", &args.validate_flag, "Validate the data");
        parser.setOption("num-servers", &args.num_servers, "Number of server processes");
        parser.setOption("num-threads", &args.num_threads, "Number of threads used by each server process");
        parser.setOption("kill-server", "no-kill-server", &args.kill_server_flag, "Kill the server at the end of the experiment");
        parser.setOption("block-distribution", "rr-distribution", &args.block_distribution,
                "Use a block distribution scheme to assign clients to servers");

        // Set an enumeration command line option for the io_method
        parser.setOption("io-method", &args.io_method, num_io_methods, io_method_vals, io_method_names,
                "I/O Methods for the example: \n"
                "\t\t\twrite-encode-sync : Write data through the RPC args, synchronous\n"
                "\t\t\twrite-encode-async: Write data through the RPC args - asynchronous\n"
                "\t\t\twrite-rdma-sync : Write data using RDMA (server pulls) - synchronous\n"
                "\t\t\twrite-rdma-async: Write data using RDMA (server pulls) - asynchronous\n"
                "\t\t\tread-encode-sync : Read data through the RPC result - synchronous\n"
                "\t\t\tread-encode-async: Read data through the RPC result - asynchronous\n"
                "\t\t\tread-rdma-sync : Read data using RDMA (server puts) - synchronous\n"
                "\t\t\tread-rdma-async: Read data using RDMA (server puts) - asynchronous");


        // Set an enumeration command line option for the NNTI transport
        parser.setOption("transport", &transport_index, num_nssi_transports, nssi_transport_vals, nssi_transport_names,
                "NSSI transports (not all are available on every platform): \n"
                "\t\t\tportals|ptl    : Cray or Schutt\n"
                "\t\t\tinfiniband|ib  : libibverbs\n"
                "\t\t\tgemini|gni     : Cray libugni (Gemini or Aries)\n"
                "\t\t\tbgpdcmf|dcmf   : IBM BG/P DCMF\n"
                "\t\t\tbgqpami|pami   : IBM BG/Q PAMI\n"
                "\t\t\tmpi            : isend/irecv implementation\n"
                );



        /* There are also two methods that control the behavior of the
           command line processor.  First, for the command line processor to
           allow an unrecognized a command line option to be ignored (and
           only have a warning printed), use:
         */
        parser.recogniseAllOptions(true);

        /* Second, by default, if the parser finds a command line option it
           doesn't recognize or finds the --help option, it will throw an
           std::exception.  If you want prevent a command line processor from
           throwing an std::exception (which is important in this program since
           we don't have an try/catch around this) when it encounters a
           unrecognized option or help is printed, use:
         */
        parser.throwExceptions(false);

        /* We now parse the command line where argc and argv are passed to
           the parse method.  Note that since we have turned off std::exception
           throwing above we had better grab the return argument so that
           we can see what happened and act accordingly.
         */
        Teuchos::CommandLineProcessor::EParseCommandLineReturn parseReturn= parser.parse( argc, argv );

        if( parseReturn == Teuchos::CommandLineProcessor::PARSE_HELP_PRINTED ) {
            return 0;
        }

        if( parseReturn != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL   ) {
            return 1; // Error!

        }

        // Here is where you would use these command line arguments but for this example program
        // we will just print the help message with the new values of the command-line arguments.
        //if (rank == 0)
        //    out << "\nPrinting help message with new values of command-line arguments ...\n\n";

        //parser.printHelpMessage(argv[0],out);

    }

    TEUCHOS_STANDARD_CATCH_STATEMENTS(true,std::cerr,success);

    log_debug(args.debug_level, "transport_index=%d", transport_index);
    if (transport_index > -1) {
    	args.transport     =nssi_transport_list[transport_index];
    	args.transport_name=std::string(nssi_transport_names[transport_index]);
    }
	args.io_method_name=std::string(io_method_names[args.io_method]);

    log_debug(args.debug_level, "%d: Finished processing arguments", rank);


    if (!success) {
        MPI_Abort(MPI_COMM_WORLD, 1);
    }

    if (!args.server_flag && args.client_flag) {
        /* initialize logger */
        if (args.logfile.empty()) {
            logger_init(args.debug_level, NULL);
        } else {
            char fn[1024];
            sprintf(fn, "%s.client.%03d.log", args.logfile.c_str(), rank);
            logger_init(args.debug_level, fn);
        }
    } else if (args.server_flag && !args.client_flag) {
        /* initialize logger */
        if (args.logfile.empty()) {
            logger_init(args.debug_level, NULL);
        } else {
            char fn[1024];
            sprintf(fn, "%s.server.%03d.log", args.logfile.c_str(), rank);
            logger_init(args.debug_level, fn);
        }
    } else if (args.server_flag && args.client_flag) {
        /* initialize logger */
        if (args.logfile.empty()) {
            logger_init(args.debug_level, NULL);
        } else {
            char fn[1024];
            sprintf(fn, "%s.%03d.log", args.logfile.c_str(), rank);
            logger_init(args.debug_level, fn);
        }
    }

    log_level debug_level = args.debug_level;

    // Communicator used for both client and server (may split if using client and server)
    MPI_Comm comm;

    log_debug(debug_level, "%d: Starting xfer-service test", rank);

#ifdef TRIOS_ENABLE_COMMSPLITTER
    if (args.transport == NSSI_RPC_MPI) {
        MPI_Pcontrol(0);
    }
#endif

    /**
     * Since this test can be run as a server, client, or both, we need to play some fancy
     * MPI games to get the communicators working correctly.  If we're executing as both
     * a client and a server, we split the communicator so that the client thinks its
     * running by itself.
     */
    int color = 0;  // color=0-->server, color=1-->client
    if (args.client_flag && args.server_flag) {
        if (np < 2) {
            log_error(debug_level, "Must use at least 2 MPI processes for client and server mode");
            MPI_Abort(MPI_COMM_WORLD, -1);
        }

        // Split the communicators. Put all the servers as the first ranks.
        if (rank < args.num_servers) {
            color = 0;
            log_debug(debug_level, "rank=%d is a server", rank);
        }
        else {
            color = 1;  // all others are clients
            log_debug(debug_level, "rank=%d is a client", rank);
        }

        MPI_Comm_split(MPI_COMM_WORLD, color, rank, &comm);
    }
    else {
        if (args.client_flag) {
            color=1;
            log_debug(debug_level, "rank=%d is a client", rank);
        }
        else if (args.server_flag) {
            color=0;
            log_debug(debug_level, "rank=%d is a server", rank);
        }
        else {
            log_error(debug_level, "Must be either a client or a server");
            MPI_Abort(MPI_COMM_WORLD, -1);
        }
        MPI_Comm_split(MPI_COMM_WORLD, color, rank, &comm);
    }

    MPI_Comm_rank(comm, &splitrank);
    MPI_Comm_size(comm, &splitsize);

    log_debug(debug_level, "%d: Finished splitting communicators", rank);

    /**
     * Initialize the Nessie interface by specifying a transport, encoding scheme, and a
     * recommended URL.  \ref NSSI_DEFAULT_TRANSPORT is usually the best choice, since it
     * is often the case that only one type of transport exists on a particular platform.
     * Currently supported transports are \ref NSSI_RPC_PTL, \ref NSSI_RPC_GNI, and
     * \ref NSSI_RPC_IB.  We only support one type of encoding scheme so NSSI_DEFAULT_ENCODE
     * should always be used for the second argument.   The URL can be specified (as we did for
     * the server, or NULL (as we did for the client).  This is a recommended value.  Use the
     * \ref nssi_get_url function to find the actual value.
     */
    nssi_rpc_init((nssi_rpc_transport)args.transport, NSSI_DEFAULT_ENCODE, NULL);

    // Get the Server URL
    std::string my_url(NSSI_URL_LEN, '\0');
    nssi_get_url((nssi_rpc_transport)args.transport, &my_url[0], NSSI_URL_LEN);

    // If running as both client and server, gather and distribute
    // the server URLs to all the clients.
    if (args.server_flag && args.client_flag) {

        std::string all_urls;

        // This needs to be a vector of chars, not a string
        all_urls.resize(args.num_servers * NSSI_URL_LEN, '\0');

        // Have servers gather their URLs
        if (color == 0) {
            assert(args.num_servers == splitsize);  // these should be equal

            log_debug(debug_level, "%d: Gathering urls: my_url=%s", rank, my_url.c_str());

            // gather all urls to rank 0 of the server comm (also rank 0 of MPI_COMM_WORLD)
            MPI_Gather(&my_url[0], NSSI_URL_LEN, MPI_CHAR,
                    &all_urls[0], NSSI_URL_LEN, MPI_CHAR, 0, comm);
        }

        // broadcast the full set of server urls to all processes
        MPI_Bcast(&all_urls[0], all_urls.size(), MPI_CHAR, 0, MPI_COMM_WORLD);

        log_debug(debug_level, "%d: Bcast urls, urls.size=%d", rank, all_urls.size());

        if (color == 1) {

            // For block distribution scheme use the utility function (in xfer_util.cpp)
            if (args.block_distribution) {
                // Use this utility function to calculate the server_index
                xfer_block_partition(args.num_servers, splitsize, splitrank, &server_index, &rank_in_server);
            }

            // Use a simple round robin distribution scheme
            else {
                server_index   = splitrank % args.num_servers;
                rank_in_server = splitrank / args.num_servers;
            }

            // Copy the server url out of the list of urls
            int offset = server_index * NSSI_URL_LEN;

            args.server_url = all_urls.substr(offset, NSSI_URL_LEN);

            log_debug(debug_level, "client %d assigned to server \"%s\"", splitrank, args.server_url.c_str());
        }


        log_debug(debug_level, "%d: Finished distributing server urls, server_url=%s", rank, args.server_url.c_str());
    }

    // If running as a client only, have to get the list of servers from the urlfile.
    else if (!args.server_flag && args.client_flag){

        sleep(args.delay);  // give server time to get started

        std::vector< std::string > urlbuf;
        xfer_read_server_url_file(args.url_file.c_str(), urlbuf, comm);
        args.num_servers = urlbuf.size();

        // For block distribution scheme use the utility function (in xfer_util.cpp)
        if (args.block_distribution) {
            // Use this utility function to calculate the server_index
            xfer_block_partition(args.num_servers, splitsize, splitrank, &server_index, &rank_in_server);
        }

        // Use a simple round robin distribution scheme
        else {
            server_index   = splitrank % args.num_servers;
            rank_in_server = splitrank / args.num_servers;
        }

        args.server_url = urlbuf[server_index];
        log_debug(debug_level, "client %d assigned to server \"%s\"", splitrank, args.server_url.c_str());
    }

    else if (args.server_flag && !args.client_flag) {
        args.server_url = my_url;

        if (args.url_file.empty()) {
            log_error(debug_level, "Must set --url-file");
            MPI_Abort(MPI_COMM_WORLD, -1);
        }

        xfer_write_server_url_file(args.url_file.c_str(), my_url.c_str(), comm);
    }

    // Set the debug level for the xfer service.
    xfer_debug_level = args.debug_level;

    // Print the arguments after they've all been set.
    log_debug(debug_level, "%d: server_url=%s", rank, args.server_url.c_str());

    print_args(out, args, "%");

    log_debug(debug_level, "server_url=%s", args.server_url.c_str());

    //------------------------------------------------------------------------------
    /** If we're running this job with a server, the server always executes on node 0.
     *  In this example, the server is a single process.
     */
    if (color == 0) {
        rc = xfer_server_main((nssi_rpc_transport)args.transport, args.num_threads, comm);
        log_debug(debug_level, "Server is finished");
    }

    // ------------------------------------------------------------------------------
     /**  The parallel client will execute this branch.  The root node, node 0, of the client connects
      *   connects with the server, using the \ref nssi_get_service function.  Then the root
      *   broadcasts the service description to the other clients before starting the main
      *   loop of the client code by calling \ref xfer_client_main.
      */
    else {
        int i;
        int client_rank;

        // get rank within the client communicator
        MPI_Comm_rank(comm, &client_rank);

        nssi_init((nssi_rpc_transport)args.transport);

        // Only one process needs to connect to the service
        // TODO: Make get_service a collective call (some transports do not need a connection)
        //if (client_rank == 0) {
        {


            // connect to remote server
            for (i=0; i < args.num_retries; i++) {
                log_debug(debug_level, "Try to connect to server: attempt #%d, url=%s", i, args.server_url.c_str());
                rc=nssi_get_service((nssi_rpc_transport)args.transport, args.server_url.c_str(), args.timeout, &xfer_svc);
                if (rc == NSSI_OK)
                    break;
                else if (rc != NSSI_ETIMEDOUT) {
                    log_error(xfer_debug_level, "could not get svc description: %s",
                            nssi_err_str(rc));
                    break;
                }
            }
        }

        // wait for all the clients to connect
        MPI_Barrier(comm);

        //MPI_Bcast(&rc, 1, MPI_INT, 0, comm);

        if (rc == NSSI_OK) {
            if (client_rank == 0) log_debug(debug_level, "Connected to service on attempt %d\n", i);

            // Broadcast the service description to the other clients
            //log_debug(xfer_debug_level, "Bcasting svc to other clients");
            //MPI_Bcast(&xfer_svc, sizeof(nssi_service), MPI_BYTE, 0, comm);

            log_debug(debug_level, "Starting client main");
            // Start the client code
            xfer_client_main(args, xfer_svc, comm);


            MPI_Barrier(comm);

            // Tell one of the clients to kill the server
            if ((args.kill_server_flag) && (rank_in_server == 0)) {
                log_debug(debug_level, "%d: Halting xfer service", rank);
                rc = nssi_kill(&xfer_svc, 0, 5000);
            }
            rc=nssi_free_service((nssi_rpc_transport)args.transport, &xfer_svc);
            if (rc != NSSI_OK) {
                log_error(xfer_debug_level, "could not free svc description: %s",
                        nssi_err_str(rc));
            }
        }

        else {
            if (client_rank == 0)
                log_error(debug_level, "Failed to connect to service after %d attempts: ABORTING", i);
            success = false;
            //MPI_Abort(MPI_COMM_WORLD, -1);
        }

        nssi_fini((nssi_rpc_transport)args.transport);

    }

    log_debug(debug_level, "%d: clean up nssi", rank);
    MPI_Barrier(MPI_COMM_WORLD);

    // Clean up nssi_rpc
    rc = nssi_rpc_fini((nssi_rpc_transport)args.transport);
    if (rc != NSSI_OK)
        log_error(debug_level, "Error in nssi_rpc_fini");

    log_debug(debug_level, "%d: MPI_Finalize()", rank);
    MPI_Finalize();

    logger_fini();

    if(success && (rc == NSSI_OK))
    	out << "\nEnd Result: TEST PASSED" << std::endl;
    else
    	out << "\nEnd Result: TEST FAILED" << std::endl;

    return ((success && (rc==NSSI_OK)) ? 0 : 1 );
}
示例#5
0
int main(int argc, char *argv[])
{
    int np=1, rank=0;
    int splitrank, splitsize;
    int rc = 0;
    nssi_service multicast_svc[2];

    int transport_index=-1;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &np);

    MPI_Barrier(MPI_COMM_WORLD);

    Teuchos::oblackholestream blackhole;
    std::ostream &out = ( rank == 0 ? std::cout : blackhole );

    struct multicast_args args;

    const int num_io_methods = 6;
    const int io_method_vals[] = {
            MULTICAST_EMPTY_REQUEST_SYNC, MULTICAST_EMPTY_REQUEST_ASYNC,
            MULTICAST_GET_SYNC,           MULTICAST_GET_ASYNC,
            MULTICAST_PUT_SYNC,           MULTICAST_PUT_ASYNC};
    const char * io_method_names[] = {
            "empty-request-sync", "empty-request-async",
            "get-sync",           "get-async",
            "put-sync",           "put-async"};

    const int nssi_transport_list[] = {
            NSSI_RPC_PTL,
            NSSI_RPC_PTL,
            NSSI_RPC_IB,
            NSSI_RPC_IB,
            NSSI_RPC_GEMINI,
            NSSI_RPC_GEMINI,
            NSSI_RPC_BGPDCMF,
            NSSI_RPC_BGPDCMF,
            NSSI_RPC_BGQPAMI,
            NSSI_RPC_BGQPAMI,
            NSSI_RPC_MPI};

    const int num_nssi_transports = 11;
    const int nssi_transport_vals[] = {
            0,
            1,
            2,
            3,
            4,
            5,
            6,
            7,
            8,
            9,
            10
            };
    const char * nssi_transport_names[] = {
            "portals",
            "ptl",
            "infiniband",
            "ib",
            "gemini",
            "gni",
            "bgpdcmf",
            "dcmf",
            "bgqpami",
            "pami",
            "mpi"
    };


    // Initialize arguments
    args.transport=NSSI_DEFAULT_TRANSPORT;
    args.delay = 1;
    args.io_method = MULTICAST_EMPTY_REQUEST_SYNC;
    args.debug_level = LOG_WARN;
    args.num_trials = 1;
    args.num_reqs = 1;
    args.len = 1;
    args.result_file_mode = "a";
    args.result_file = "";
    args.url_file[0] = "";
    args.url_file[1] = "";
    args.logfile = "";
    args.client_flag = true;
    args.server_flag = true;
    args.timeout = 500;
    args.num_retries = 5;
    args.validate_flag = true;
    args.server_url[0] = "";
    args.server_url[1] = "";

    bool success = true;

    /**
     * We make extensive use of the \ref Teuchos::CommandLineProcessor for command-line
     * options to control the behavior of the test code.   To evaluate performance,
     * the "num-trials", "num-reqs", and "len" options control the amount of data transferred
     * between client and server.  The "io-method" selects the type of data transfer.  The
     * server-url specifies the URL of the server.  If running as a server, the server-url
     * provides a recommended URL when initializing the network transport.
     */
    try {

        //out << Teuchos::Teuchos_Version() << std::endl << std::endl;

        // Creating an empty command line processor looks like:
        Teuchos::CommandLineProcessor parser;
        parser.setDocString(
                "This example program demonstrates a simple data-transfer service "
                "built using the NEtwork Scalable Service Interface (Nessie)."
        );

        /* To set and option, it must be given a name and default value.  Additionally,
           each option can be given a help std::string.  Although it is not necessary, a help
           std::string aids a users comprehension of the acceptable command line arguments.
           Some examples of setting command line options are:
         */

        parser.setOption("delay", &args.delay, "time(s) for client to wait for server to start" );
        parser.setOption("timeout", &args.timeout, "time(ms) to wait for server to respond" );
        parser.setOption("server", "no-server", &args.server_flag, "Run the server" );
        parser.setOption("client", "no-client", &args.client_flag, "Run the client");
        parser.setOption("len", &args.len, "The number of structures in an input buffer");
        parser.setOption("debug",(int*)(&args.debug_level), "Debug level");
        parser.setOption("logfile", &args.logfile, "log file");
        parser.setOption("num-trials", &args.num_trials, "Number of trials (experiments)");
        parser.setOption("num-reqs", &args.num_reqs, "Number of reqs/trial");
        parser.setOption("result-file", &args.result_file, "Where to store results");
        parser.setOption("result-file-mode", &args.result_file_mode, "Write mode for the result");
        parser.setOption("server-url-1", &args.server_url[0], "URL client uses to find the server 1");
        parser.setOption("server-url-2", &args.server_url[1], "URL client uses to find the server 2");
        parser.setOption("server-url-file-1", &args.url_file[0], "File that has URL client uses to find server 1");
        parser.setOption("server-url-file-2", &args.url_file[1], "File that has URL client uses to find server 2");
        parser.setOption("validate", "no-validate", &args.validate_flag, "Validate the data");

        // Set an enumeration command line option for the io_method

        parser.setOption("io-method", &args.io_method, num_io_methods, io_method_vals, io_method_names,
                "I/O Methods for the example: \n"
                "\t\t\tempty-request-sync : Send an empty request - synchronous\n"
                "\t\t\tempty-request-async: Send an empty request - asynchronous\n"
                "\t\t\tget-sync : Servers pull data from client - synchronous\n"
                "\t\t\tget-async: Servers pull data from client - asynchronous\n"
                "\t\t\tput-sync : Servers push data from client - synchronous\n"
                "\t\t\tput-async: Servers push data from client - asynchronous"
                );

        // Set an enumeration command line option for the NNTI transport
        parser.setOption("transport", &transport_index, num_nssi_transports, nssi_transport_vals, nssi_transport_names,
                "NSSI transports (not all are available on every platform): \n"
                "\t\t\tportals|ptl    : Cray or Schutt\n"
                "\t\t\tinfiniband|ib  : libibverbs\n"
                "\t\t\tgemini|gni     : Cray libugni (Gemini or Aries)\n"
                "\t\t\tbgpdcmf|dcmf   : IBM BG/P DCMF\n"
                "\t\t\tbgqpami|pami   : IBM BG/Q PAMI\n"
                "\t\t\tmpi            : isend/irecv implementation\n"
                );



        /* There are also two methods that control the behavior of the
           command line processor.  First, for the command line processor to
           allow an unrecognized a command line option to be ignored (and
           only have a warning printed), use:
         */
        parser.recogniseAllOptions(true);

        /* Second, by default, if the parser finds a command line option it
           doesn't recognize or finds the --help option, it will throw an
           std::exception.  If you want prevent a command line processor from
           throwing an std::exception (which is important in this program since
           we don't have an try/catch around this) when it encounters a
           unrecognized option or help is printed, use:
         */
        parser.throwExceptions(false);

        /* We now parse the command line where argc and argv are passed to
           the parse method.  Note that since we have turned off std::exception
           throwing above we had better grab the return argument so that
           we can see what happened and act accordingly.
         */
        Teuchos::CommandLineProcessor::EParseCommandLineReturn parseReturn= parser.parse( argc, argv );

        if( parseReturn == Teuchos::CommandLineProcessor::PARSE_HELP_PRINTED ) {
            return 0;
        }

        if( parseReturn != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL   ) {
            return 1; // Error!

        }

        // Here is where you would use these command line arguments but for this example program
        // we will just print the help message with the new values of the command-line arguments.
        //if (rank == 0)
        //    out << "\nPrinting help message with new values of command-line arguments ...\n\n";

        //parser.printHelpMessage(argv[0],out);

    }

    TEUCHOS_STANDARD_CATCH_STATEMENTS(true,std::cerr,success);

    log_debug(LOG_ALL, "transport_index=%d", transport_index);
    if (transport_index > -1) {
    	args.transport     =nssi_transport_list[transport_index];
    	args.transport_name=std::string(nssi_transport_names[transport_index]);
    }
    args.io_method_name=io_method_names[args.io_method];

    log_debug(args.debug_level, "%d: Finished processing arguments", rank);


    if (!success) {
        MPI_Abort(MPI_COMM_WORLD, 1);
    }


    if (!args.server_flag && args.client_flag) {
        /* initialize logger */
        if (args.logfile.empty()) {
            logger_init(args.debug_level, NULL);
        } else {
            char fn[1024];
            sprintf(fn, "%s.client.%03d.log", args.logfile.c_str(), rank);
            logger_init(args.debug_level, fn);
        }
    } else if (args.server_flag && !args.client_flag) {
        /* initialize logger */
        if (args.logfile.empty()) {
            logger_init(args.debug_level, NULL);
        } else {
            char fn[1024];
            sprintf(fn, "%s.server.%03d.log", args.logfile.c_str(), rank);
            logger_init(args.debug_level, fn);
        }
    } else if (args.server_flag && args.client_flag) {
        /* initialize logger */
        if (args.logfile.empty()) {
            logger_init(args.debug_level, NULL);
        } else {
            char fn[1024];
            sprintf(fn, "%s.%03d.log", args.logfile.c_str(), rank);
            logger_init(args.debug_level, fn);
        }
    }

    log_level debug_level = args.debug_level;

    // Communicator used for both client and server (may split if using client and server)
    MPI_Comm comm;

    log_debug(debug_level, "%d: Starting multicast-service test", rank);

    /**
     * Since this test can be run as a server, client, or both, we need to play some fancy
     * MPI games to get the communicators working correctly.  If we're executing as both
     * a client and a server, we split the communicator so that the client thinks its
     * running by itself.
     */
    if (args.client_flag && args.server_flag) {
        if (np < 3) {
            log_error(debug_level, "Must use at least 3 MPI processes for client and server mode");
            MPI_Abort(MPI_COMM_WORLD, -1);
        }

        // Split the communicators. Processors with color=0 are servers.

        int color = ((rank == 0)||(rank == 1)) ? 0 : 1; // two server
        MPI_Comm_split(MPI_COMM_WORLD, color, rank, &comm);

        MPI_Comm_rank(comm, &splitrank);
        MPI_Comm_size(comm, &splitsize);

        //    std::cout << "rank=" << rank << "/" << np << ", color=" << color <<
        //            ", new_rank=" << newrank << "/" << newsize << std::endl << std::endl;
        //
        //    std::cout << "my_url=" << my_url <<  ", server_url=" << args.server_url << std::endl;
    }
    else {
        MPI_Comm_dup(MPI_COMM_WORLD, &comm);
    }

    /**
     * Initialize the Nessie interface by specifying a transport, encoding scheme, and a
     * recommended URL.  \ref NSSI_DEFAULT_TRANSPORT is usually the best choice, since it
     * is often the case that only one type of transport exists on a particular platform.
     * Currently supported transports are \ref NSSI_RPC_PTL, \ref NSSI_RPC_GNI, and
     * \ref NSSI_RPC_IB.  We only support one type of encoding scheme so NSSI_DEFAULT_ENCODE
     * should always be used for the second argument.   The URL can be specified (as we did for
     * the server, or NULL (as we did for the client).  This is a recommended value.  Use the
     * \ref nssi_get_url function to find the actual value.
     */
    if (args.server_flag && !args.server_url[rank].empty()) {
        // use the server URL as suggested URL
        nssi_rpc_init((nssi_rpc_transport)args.transport, NSSI_DEFAULT_ENCODE, args.server_url[rank].c_str());
    }
    else {
        nssi_rpc_init((nssi_rpc_transport)args.transport, NSSI_DEFAULT_ENCODE, NULL);
    }

    // Get the Server URL
    std::string my_url(NSSI_URL_LEN, '\0');
    nssi_get_url((nssi_rpc_transport)args.transport, &my_url[0], NSSI_URL_LEN);

    // Broadcast the server URL to all the clients
    args.server_url[0].resize(NSSI_URL_LEN, '\0');
    args.server_url[1].resize(NSSI_URL_LEN, '\0');
    if (args.server_flag && args.client_flag) {
        args.server_url[0] = my_url;
        MPI_Bcast(&args.server_url[0][0], args.server_url[0].size(), MPI_CHAR, 0, MPI_COMM_WORLD);
        args.server_url[1] = my_url;
        MPI_Bcast(&args.server_url[1][0], args.server_url[1].size(), MPI_CHAR, 1, MPI_COMM_WORLD);
    }

    else if (!args.server_flag && args.client_flag){
        if (args.server_url[0].empty()) {

            // check to see if we're supposed to get the URL from a file
            if (!args.url_file[0].empty()) {
                // Fetch the server URL from a file
                sleep(1);
                log_debug(debug_level, "Reading from file %s", args.url_file[0].c_str());
                std::ifstream urlfile (args.url_file[0].c_str());
                if (urlfile.is_open()) {
                    if (urlfile.good())
                        getline(urlfile, args.server_url[0]);
                }
                else {
                    log_error(debug_level, "Failed to open server_url_file=%s", args.url_file[0].c_str());
                    exit(1);
                }
                urlfile.close();
                log_debug(debug_level, "URL = %s", args.server_url[0].c_str());
            }
            else {
                log_error(debug_level, "Need to set --server-url-1=[ADDR] or --server-url-file-1=[PATH]");
            }
        }
        if (args.server_url[1].empty()) {

            // check to see if we're supposed to get the URL from a file
            if (!args.url_file[1].empty()) {
                // Fetch the server URL from a file
                sleep(1);
                log_debug(debug_level, "Reading from file %s", args.url_file[1].c_str());
                std::ifstream urlfile (args.url_file[1].c_str());
                if (urlfile.is_open()) {
                    if (urlfile.good())
                        getline(urlfile, args.server_url[1]);
                }
                else {
                    log_error(debug_level, "Failed to open server_url_file=%s", args.url_file[1].c_str());
                    exit(1);
                }
                urlfile.close();
                log_debug(debug_level, "URL = %s", args.server_url[1].c_str());
            }
            else {
                log_error(debug_level, "Need to set --server-url-1=[ADDR] or --server-url-file-1=[PATH]");
            }
        }
    }

    else if (args.server_flag && !args.client_flag) {
        args.server_url[0] = my_url;
        // If the url_file value is set, write the url to a file
        if (!args.url_file[0].empty()) {
            std::ofstream urlfile (args.url_file[0].c_str());
            if (urlfile.is_open()) {
                urlfile << args.server_url[0].c_str() << std::endl;
            }
            urlfile.close();
            log_debug(debug_level, "Wrote url to file %s", args.url_file[0].c_str());
        }

        args.server_url[1] = my_url;
        // If the url_file value is set, write the url to a file
        if (!args.url_file[1].empty()) {
            std::ofstream urlfile (args.url_file[1].c_str());
            if (urlfile.is_open()) {
                urlfile << args.server_url[1].c_str() << std::endl;
            }
            urlfile.close();
            log_debug(debug_level, "Wrote url to file %s", args.url_file[1].c_str());
        }
    }



    // Set the debug level for the multicast service.
    multicast_debug_level = args.debug_level;

    // Print the arguments after they've all been set.
    print_args(out, args, "%");


    //------------------------------------------------------------------------------
    /** If we're running this job with a server, the server always executes on nodes 0 and 1.
     *  In this example, the server is two process.
     */
    if (args.server_flag && ((rank == 0)|(rank == 1))) {
        rc = multicast_server_main(args, comm);
        log_debug(debug_level, "Server is finished");
    }

    // ------------------------------------------------------------------------------
     /**  The parallel client will execute this branch.  The root node, nodes 0 and 1, of the client connects
      *   connects with the server, using the \ref nssi_get_service function.  Then the root
      *   broadcasts the service description to the other clients before starting the main
      *   loop of the client code by calling \ref multicast_client_main.
      */
    else {
        int i;
        int client_rank;

        // get rank within the client communicator
        MPI_Comm_rank(comm, &client_rank);

        nssi_init((nssi_rpc_transport)args.transport);

        // Only one process needs to connect to the service
        // TODO: Make get_service a collective call (some transports do not need a connection)
        //if (client_rank == 0) {
        {

            sleep(args.delay);  // give server time to get started

            // connect to remote server
            for (i=0; i < args.num_retries; i++) {
                log_debug(debug_level, "Try to connect to server: attempt #%d", i);
                rc=nssi_get_service((nssi_rpc_transport)args.transport, args.server_url[0].c_str(), args.timeout, &multicast_svc[0]);
                if (rc == NSSI_OK)
                    break;
                else if (rc != NSSI_ETIMEDOUT) {
                    log_error(multicast_debug_level, "could not get svc description: %s",
                            nssi_err_str(rc));
                    break;
                }
            }
            // connect to remote server
            for (i=0; i < args.num_retries; i++) {
                log_debug(debug_level, "Try to connect to server: attempt #%d", i);
                rc=nssi_get_service((nssi_rpc_transport)args.transport, args.server_url[1].c_str(), args.timeout, &multicast_svc[1]);
                if (rc == NSSI_OK)
                    break;
                else if (rc != NSSI_ETIMEDOUT) {
                    log_error(multicast_debug_level, "could not get svc description: %s",
                            nssi_err_str(rc));
                    break;
                }
            }
        }

        //MPI_Bcast(&rc, 1, MPI_INT, 0, comm);

        if (rc == NSSI_OK) {
            if (client_rank == 0) log_debug(debug_level, "Connected to service on attempt %d\n", i);

            // Broadcast the service description to the other clients
            //log_debug(multicast_debug_level, "Bcasting svc to other clients");
            //MPI_Bcast(&multicast_svc, sizeof(nssi_service), MPI_BYTE, 0, comm);

            log_debug(debug_level, "Starting client main");
            // Start the client code
            multicast_client_main(args, &multicast_svc[0], comm);


            MPI_Barrier(comm);

            // Tell one of the clients to kill the server
            if (client_rank == 0) {
                log_debug(debug_level, "%d: Halting multicast service", rank);
                rc = nssi_kill(&multicast_svc[0], 0, 5000);
                rc = nssi_kill(&multicast_svc[1], 0, 5000);
            }
        }

        else {
            if (client_rank == 0)
                log_error(debug_level, "Failed to connect to service after %d attempts: ABORTING", i);
            success = false;
            //MPI_Abort(MPI_COMM_WORLD, -1);
        }

        nssi_fini((nssi_rpc_transport)args.transport);

    }

    log_debug(debug_level, "%d: clean up nssi", rank);
    MPI_Barrier(MPI_COMM_WORLD);

    // Clean up nssi_rpc
    rc = nssi_rpc_fini((nssi_rpc_transport)args.transport);
    if (rc != NSSI_OK)
        log_error(debug_level, "Error in nssi_rpc_fini");

    log_debug(debug_level, "%d: MPI_Finalize()", rank);
    MPI_Finalize();

    logger_fini();

    if(success && (rc == NSSI_OK))
      out << "\nEnd Result: TEST PASSED" << std::endl;
    else
        out << "\nEnd Result: TEST FAILED" << std::endl;

    return ((success && (rc==NSSI_OK)) ? 0 : 1 );
}