示例#1
0
main(int argc, char **argv)
#endif
{
	char *stub;
	ASL *asl;
	FILE *nl;
	lprec *lp;
	ograd *og;
	int ct, i, intmin, *is, j, j0, j1, k, nalt, rc;
	short *basis, *lower;
	real *LU, *c, lb, objadj, *rshift, *shift, t, ub, *x, *x0, *x1;
	char buf[256];
	typedef struct { char *msg; int code; } Sol_info;
	static Sol_info solinfo[] = {
		{ "optimal", 0 },
		{ "integer programming failure", 502 },
		{ "infeasible", 200 },
		{ "unbounded", 300 },
		{ "failure", 501 },
		{ "bug", 500 }
		};

	sprintf(lp_solve_version+9, "%.*s", (int)sizeof(lp_solve_version)-10,
		PATCHLEVEL);
	sprintf(lp_solve_vversion, "%s, driver(20001002)", lp_solve_version);
	asl = ASL_alloc(ASL_read_f);
	stub = getstub(&argv, &Oinfo);
	nl = jac0dim(stub, (fint)strlen(stub));
	suf_declare(suftab, sizeof(suftab)/sizeof(SufDecl));

	/* set A_vals to get the constraints column-wise */
	A_vals = (real *)M1alloc(nzc*sizeof(real));

	f_read(nl,0);

	lp = make_lp(n_con, 0);

	Oinfo.uinfo = (char *)lp;
	if (getopts(argv, &Oinfo))
		return 1;

	i = n_var + n_con + 1;
	x = (real*)M1alloc(i*sizeof(real));	/* scratch vector */
	memset(x, 0, i*sizeof(real));
	x0 = x++;
	c = x + n_con;

	/* supply objective */

	objadj = 0;
	if (--nobj >= 0 && nobj < n_obj) {
		for(og = Ograd[nobj]; og; og = og->next)
			c[og->varno] = og->coef;
		if (objtype[nobj])
			set_maxim(lp);
		objadj = objconst(nobj);
		}

	/* supply columns and variable bounds */

	LU = LUv;
	intmin = n_var - (nbv + niv);
	j1 = nalt = 0;
	rshift = shift = 0;
	for(i = 1; i <= n_var; i++, LU += 2) {
		lb = LU[0];
		ub = LU[1];
		j0 = j1;
		j1 = A_colstarts[i];
		*x0 = *c++;	/* cost coefficient */
		if (lb <= negInfinity && ub < Infinity) {
			/* negate this variable */
			nalt++;
			lb = -ub;
			ub = -LU[0];
			for(j = j0; j < j1; j++)
				x[A_rownos[j]] = -A_vals[j];
			*x0 = -*x0;
			add_column(lp, x0);
			if (lb)
				goto shift_check;
			}
		else {
			for(j = j0; j < j1; j++)
				x[A_rownos[j]] = A_vals[j];
			add_column(lp, x0);
			if (lb <= negInfinity) {
				nalt++;
				if (i > intmin)
					set_int(lp, lp->columns, TRUE);
				/* split free variable */
				*x0 = -*x0;
				for(j = j0; j < j1; j++)
					x[A_rownos[j]] *= -1.;
				add_column(lp,x0);
				}
			else if (lb) {
 shift_check:
				if (lb > 0)
					set_lowbo(lp, lp->columns, lb);
				else {
					if (!rshift) {
						rshift = (real*)M1zapalloc(
						  (n_var+n_con)*sizeof(real));
						shift = rshift + n_con - 1;
						}
					shift[i] = lb;
					for(j = j0; j < j1; j++) {
						k = A_rownos[j];
						rshift[k] += lb*x[k];
						}
					if (ub < Infinity)
						ub -= lb;
					objadj += lb**x0;
					}
				}
			if (ub < Infinity)
				set_upbo(lp, lp->columns, ub);
			}
		for(j = j0; j < j1; j++)
			x[A_rownos[j]] = 0;
		if (i > intmin)
			set_int(lp, lp->columns, TRUE);
		}

	if (objadj) {
		/* add a fixed variable to adjust the objective value */
		*x0 = objadj;
		add_column(lp, x0);
		set_lowbo(lp, i, 1.);
		set_upbo(lp, i, 1.);
		}

	/* supply constraint rhs */

	LU = LUrhs;
	for(i = 1; i <= n_con; i++, LU += 2) {
		t = LU[0];
		if (t == LU[1])
			ct = EQ;
		else if (t <= negInfinity) {
			t = LU[1];
			if (t >= Infinity) {
				/* This is possible only with effort: */
				/* one must turn presolve off and */
				/* explicitly specify a constraint */
				/* with infinite bounds. */
				fprintf(Stderr,
					"Sorry, can't handle free rows.\n");
				exit(1);
				}
			ct = LE;
			}
		else
			ct = GE;
		set_constr_type(lp, i, ct);
		set_rh(lp, i, rshift ? t - *rshift++ : t);
		if (ct == GE && LU[1] < Infinity)
			lp->orig_upbo[i] = LU[1] - t;
		}

	if (prlp)
		print_lp(lp);
	if (scaling)
		auto_scale(lp);

	/* Unfortunately, there seems to be no way to suggest */
	/* a starting basis to lp_solve; thus we must ignore  */
	/* any incoming .sstatus values. */

	rc = solve(lp);
	if (rc < 0 || rc > 5)
		rc = 5;
	solve_result_num = solinfo[rc].code;
	i = sprintf(buf, "%s: %s", Oinfo.bsname, solinfo[rc].msg);
	if (rc == OPTIMAL)
		i += sprintf(buf+i, ", objective %.*g", obj_prec(),
			lp->best_solution[0]);
	i += sprintf(buf+i,"\n%d simplex iterations", lp->total_iter);
	if (lp->max_level > 1 || lp->total_nodes > 1)
		sprintf(buf+i, "\n%d branch & bound nodes: depth %d",
			lp->total_nodes, lp->max_level);

	/* Prepare to report solution: deal with split free variables. */

	x1 = lp->best_solution+lp->rows+1;
	if (nalt || shift) {
		x = x0;
		LU = LUv;
		for(i = 0; i < n_var; i++, LU += 2) {
			if (LU[0] > negInfinity)
				x[i] = *x1++;
			else if (LU[1] < Infinity)
				x[i] = -*x1++;
			else {
				x[i] = x1[0] - x1[1];
				x1 += 2;
				}
			if (shift)
				x[i] += *++shift;
			}
		}
	else
		x = x1;

	if (solinfo[rc].code < 500 && !(nbv + niv)) {

		/* return .sstatus values */

		basis = lp->basis;
		lower = lp->lower;
		is = M1alloc((n_var + n_con)*sizeof(int));
		suf_iput("sstatus", ASL_Sufkind_con, is);
		for(i = 0; i < n_con; i++) {
			j = *++lower;
			*is++ = *++basis ? 1 : j ? 3 : 4;
			}
		suf_iput("sstatus", ASL_Sufkind_var, is);
		LU = LUv;
		for(i = 0; i < n_var; i++, LU += 2) {
			j0 = *++basis;
			j1 = *++lower;
			if (LU[0] > negInfinity)
				j = j0 ? 1 : j1 ? 3 : 4;
			else if (LU[1] < Infinity)
				j = j0 ? 1 : j1 ? 4 : 3;
			else {
				++lower;
				j = *++basis || j0;
				}
			*is++ = j;
			}
		}

	write_sol(buf, x, lp->duals+1, &Oinfo);
	/* The following calls would only be needed */
	/* if execution were to continue... */
	delete_lp(lp);
	ASL_free(&asl);
	return 0;
	}
示例#2
0
nl_write(int m, int n, cgrad **cg0, real *LU_bounds, real *LU_ranges, int Max)
#endif
{
	cgrad *cg, **cgt, *nextcg;
	int c, i, j, k, kg, nr;
	int *x;
	char *fmt;
	double *lu, *lue;
	size_t zaplen;

	if (binary_nl) {
		c = 'b';
		pr = bprintf;
		fmt = "wb";
		}
	else {
		c = 'g';
		pr = aprintf;
		fmt = "w";
		}

	fd = openfo(".nl", fmt);
	zaplen = (m+1)*sizeof(cgrad *);
	cgt = (cgrad **)Malloc(zaplen + n*sizeof(int));
	x = (int *)(cgt + m + 1);
	memset((char *)cgt, 0, zaplen);
	for(i = k = kg = 0; i < n; i++) {
		for(cg = cg0[i]; cg; cg = cg->next)
			if (--cg->varno < m)
				k++;
			else
				kg++;
		x[i] = k;
		}
	while(--i >= 0)
		for(cg = cg0[i]; cg; cg = nextcg) {
			nextcg = cg->next;
			cg->next = cgt[j = cg->varno];
			cgt[j] = cg;
			cg->varno = i;
			}
	lue = LU_ranges + 2*m;
	for(lu = LU_ranges, nr = 0; lu < lue; lu += 2)
		if (lu[0] > negInfinity
		 && lu[1] < Infinity
		 && lu[0] < lu[1])
			nr++;
	fprintf(fd, "%c3 0 0 0\n", c);
	fprintf(fd, " %d %d 1 %d\n 0 0\n 0 0\n 0 0\n 0 0 %d %d\n 0 0\n",
		n, m, nr, binary_nl ? Arith_Kind_ASL : 0, asl->i.flags);
	fprintf(fd, " %d %d\n 0 0\n 0 0 0 0 0\n", k, kg);
	for(i = 0; i < m; i++) {
		pr("C%d\n", i);
		pr("n%g\n", 0.);
		}
	pr("O%d %d\n", 0, 1-Max);
	pr("n%g\n", objconst(objno));
	brout('r', m, LU_ranges);
	brout('b', n, LU_bounds);
	pr("k%d\n", --n);
	for(i = 0; i < n; i++)
		pr("%d\n", x[i]);
	for(i = 0; i < m; i++) {
		cg = cgt[i];
		pr("J%d %d\n", i, cglen(cg));
		for(; cg; cg = cg->next)
			pr("%d %g\n", cg->varno, cg->coef);
		}
	cg = cgt[m];
	pr("G%d %d\n", 0, cglen(cg));
	for(; cg; cg = cg->next)
		pr("%d %g\n", cg->varno, cg->coef);
	fclose(fd);
	}
示例#3
0
dfmt(int op)
#endif
{
	cgrad **cg0, **cg01, *cgi, *cgi0, *cgi00, *cgj, **cgnew,
		**cgprev, **cgx, *free_cg;
	ograd *og;
	real *LU, *LUdv, *LUdvi, *LUdrhs, *LUdvxi, *LUrhse, *LUve;
	int Max, aextra, i, m, me, n, n1, nextra;
	FILE *f;
	real t;
	char *dvtype, *dvt;
	static char *AXIN[2] = { "AX", "IN" };
	dvthead dvth;
	char buf[32];

	n = c_vars;
	if (n < o_vars)
		n = o_vars;
	n1 = n + 1;
	m = n_con;
	LUrhse = LUrhs + 2*m;
	LUve = LUv + 2*n;
	aextra = nextra = 0;;
	for (LU = LUrhs, cgx = Cgrad; LU < LUrhse; LU += 2, cgx++)
		if (LU[0] > negInfinity) {
			if (LU[0])
				aextra++;
			if (LU[0] < LU[1] && LU[1] < Infinity) {
				nextra++;
				if (LU[1])
					aextra++;
				for(cgi = *cgx; cgi; cgi = cgi->next)
					aextra++;
				}
			else if (LU[0])
				aextra++;
			}
		else if (LU[1])
			aextra++;
	for (LU = LUv; LU < LUve; LU += 2) {
		if (LU[0] > negInfinity) {
			aextra++;
			nextra++;
			if (LU[0])
				aextra++;
			}
		if (LU[1] < Infinity) {
			aextra++;
			nextra++;
			if (LU[1])
				aextra++;
			}
		}
	me = m + nextra;
	LUdvi = LUdv = (real *)Malloc((me + n)*2*sizeof(real)
				+ me*sizeof(cgrad *)
				+ aextra*sizeof(cgrad)
				+ m);
	LUdvxi = LUdv + 2*m;
	LUdrhs = LUdvxi + 2*nextra;
	free_cg = (cgrad *)(LUdrhs + 2*n);
	cg0 = cg01 = (cgrad **)(free_cg + aextra);
	cgnew = cg0 + m;
	dvt = dvtype = (char *)(cgnew + nextra);
	for (LU = LUrhs, cgx = Cgrad; LU < LUrhse; LU += 2, cgx++) {
		cgi0 = 0;
		for(cgi = cgi00 = *cgx; cgi; cgi = cgj) {
			cgj = cgi->next;
			cgi->next = cgi0;
			cgi0 = cgi;
			cgi->varno++;
			}
		*cg01++ = cgi0;
		if (LU[0] > negInfinity) {
			*LUdvi++ = LU[0] == LU[1] ? negInfinity : 0;
			*LUdvi++ = Infinity;
			if (LU[0] < LU[1] && LU[1] < Infinity) {
				*LUdvxi++ = 0;
				*LUdvxi++ = Infinity;
				cgprev = cgnew++;
				for(cgi = *cgx; cgi; cgi = cgi->next) {
					*cgprev = cgj = free_cg++;
					cgprev = &cgj->next;
					cgj->varno = cgi->varno;
					cgj->coef = -cgi->coef;
					}
				if (LU[1]) {
					cgi = *cgprev = free_cg++;
					cgi->varno = n1;
					cgi->coef = -LU[1];
					cgprev = &cgi->next;
					}
				*cgprev = 0;
				*dvt++ = 2;
				}
			else
				*dvt++ = LU[0] == LU[1] ? 3 : 0;
			if (LU[0]) {
				cgi = cgi00->next = free_cg++;
				cgi->varno = n1;
				cgi->coef = LU[0];
				cgi->next = 0;
				}
			}
		else {
			*dvt++ = 1;
			*LUdvi++ = 0;
			*LUdvi++ = Infinity;
			for(cgi = cgi0; cgi; cgi = cgi->next)
				cgi->coef = -cgi->coef;
			if (LU[1]) {
				cgi = cgi00->next = free_cg++;
				cgi->varno = n1;
				cgi->coef = -LU[1];
				cgi->next = 0;
				}
			}
		}
	for (LU = LUv, i = 1; LU < LUve; LU += 2, i++) {
		if (LU[0] > negInfinity) {
			*LUdvxi++ = 0;
			*LUdvxi++ = Infinity;
			*cgnew++ = cgi = free_cg++;
			cgi->varno = i;
			cgi->coef = 1;
			if (LU[0]) {
				cgi = cgi->next = free_cg++;
				cgi->varno = n1;
				cgi->coef = LU[0];
				}
			cgi->next = 0;
			}
		if (LU[1] < Infinity) {
			*LUdvxi++ = 0;
			*LUdvxi++ = Infinity;
			*cgnew++ = cgi = free_cg++;
			cgi->varno = i;
			cgi->coef = -1;
			if (LU[1]) {
				cgi = cgi->next = free_cg++;
				cgi->varno = n1;
				cgi->coef = -LU[1];
				}
			cgi->next = 0;
			}
		}
	memset(LUdrhs, 0, n*2*sizeof(real));
	if (objno >= 0)
		for(og = Ograd[objno]; og; og = og->next) {
			LU = LUdrhs + 2*og->varno;
			LU[0] = LU[1] = og->coef;
			}
	if (Max = objtype[objno])
		for(LU = LUdv; LU < LUdrhs; LU += 2) {
			t = LU[0];
			LU[0] = -LU[1];
			LU[1] = -t;
			}

	/* Negate columns with lower bound -Infinity, finite upper bound. */
	/* This shouldn't be necessary, but shortens the MPS file */
	/* and may avoid bugs in some solvers. */
	for(cg01 = cg0, LU = LUdv; LU < LUdrhs; LU += 2, cg01++)
		if (LU[0] <= negInfinity && LU[1] < Infinity) {
			t = LU[0];
			LU[0] = -LU[1];
			LU[1] = -t;
			for(cgi = *cg01; cgi; cgi = cgi->next)
				cgi->coef = -cgi->coef;
			}

	if (op != 'm') {
		switch(op) {
			case 'b':
				binary_nl = 1;
				break;
			case 'g':
				binary_nl = 0;
			}
		nl_write(n, me, cg0, LUdv, LUdrhs, Max);
		}
	else {
		mps(n, me, cg0, LUdv, LUdrhs);
		f = openfo(".spc", "w");
		fprintf(f, "BEGIN %s\nROWS %d\nCOLUMNS %d\n",
			Basename, n + 1, me+1);
		fprintf(f, "*true value: COLUMNS %d\n", me);
		fprintf(f, "ELEMENTS %d\nM%sIMIZE\nOBJECTIVE DUMMY\n",
			nzc + aextra, AXIN[Max]);
		fprintf(f, "END %s\n", Basename);
		fclose(f);
		f = openfo(".adj", "w");
		g_fmt(buf, objconst(objno));
		fprintf(f, "'objective' %s\n", buf);
		fclose(f);
		}
	f = openfo(".duw", "wb");
	for(i = 0; i < 10; i++)
		dvth.Options[i] = ampl_options[i];
	dvth.vbtol = ampl_vbtol;
	dvth.m = m;
	dvth.n = n;
	dvth.nextra = nextra;
	dvth.maxobj = Max;
	dvth.binary = binary_nl;
	fwrite(&dvth, sizeof(dvthead), 1, f);
	fwrite(dvtype, m, 1, f);
	fclose(f);
	}
示例#4
0
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
    //Possible Inputs
    char fpath[FLEN];
    char msg[FLEN];
    char cmd[FLEN]; //user commmand 
    int sp = 0;
    
    //Outputs
    const char *fnames[15] = {"H","f","lb","ub","A","cl","cu","Q","l","qcind","x0","v0","sense","objbias","conlin"};
    double *sizes;
    
    //Internal Vars
    int ii; size_t i,j,k;       //indexing vars
    char *what, **whatp;        //error message vars
    static FILE *nl;            //file handle
    ASL *asl = cur_ASL;         //Current ASL instance
    int icmd = ASLCMD_ERROR;    //Command Integer
    double *sense;              //Objective sense
    double *objbias;            //Objective bias
    int obj_lin;                //linearity of the objectiuve (see ASL_DEGREE_ defines)
    double *con_lin;            //linearity of the constraints (see ASL_DEGREE_ defines)  
    double *isopen;             //Is ASL open
    bool nlcon = false;         //indicates whether any constraint is nonlinear
    double *x;                  //Evaluation point
    double *f, *g, *c = NULL;   //Return pointers
    int nerror;                 //eval errors

    //Sparse Indexing
    mwIndex *Ir, *Jc;
    double *Pr;

    //QP Checking Vars
    int nqpz = 0;               //number of nzs in quadratic objective
    int nqc_con = 0;            //number of quadratic constraints
    int *QP_ir, *QP_jc;         //Pointers used when calling nqpcheck
    double *QP_pr;
    double *pqi;                //pointer to quadratic index vector
    ograd *og;                  //objective gradient structure
            
    //Jacobian Vars
    static double *J = NULL;        //Memory to store intermediate Jacobian Values when using Dense Mode
    static double *J1 = NULL;       //Memory to store Jacobian Values 
    cgrad *cg, **cgp, **cgpe;       //constraint gradient structures
    int *cs;                        //Column starts
    
    //Hessian Vars
    static double *Hsp = NULL;      //Memory to store Hessian Values
    static int nhnz;                //Number of Hessian nz
    double *s, *v;                  //Sigma, Lambda
	int *hcs, *hr;                  //Hessian column starts, row indexs
	double *H, *He,  *W;    	      
    
    //Error catching
    Jmp_buf err_jmp0;
    
    //If no inputs, just return info
    if(nrhs < 1) 
    {
        if (nlhs >= 1)
        {
            sprintf(msgbuf,"%s %s",__TIME__,__DATE__);
            plhs[0] = mxCreateString(msgbuf);
            plhs[1] = mxCreateDoubleScalar(OPTI_VER);
        }
        else
        {
            printUtilityInfo();
        }
        return;
    }
        
    //Get User Command
    icmd = getCommand(prhs[0]);
    
    //Switch Yard for Command
    switch(icmd)
    {
        case ASLCMD_ISOPEN:
            isopen = mxGetPr(plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL));
            if(asl)
                *isopen = 1;
            else
                *isopen = 0;
            break;
        
        case ASLCMD_OPEN:
            //Check for Errors
            if(nrhs < 2)
                mexErrMsgTxt("Expected two arguments to open a file! [x0,v0,lb,ub,cl,cu,sense,sizes] = asl('open','file path')\n");
            if(!mxIsChar(prhs[1]))
                mexErrMsgTxt("File path must be a char array!");
            //Get String
            CHECK(mxGetString(prhs[1], fpath, FLEN) == 0,"error reading file path!");
            //Clear any existing objects
            if (cur_ASL)
                ASL_free(&cur_ASL);
            //Set MEX exit function
            mexAtExit(mexExit);
            
            //Open file for LP/QP/QCQP checking
            asl = ASL_alloc(ASL_read_fg);               //allocate for qp read
            return_nofile = 1;                          //return 0 if stub doesn't exist
            nl = jac0dim(fpath,(ftnlen)strlen(fpath));  //read in passed file
            //Check we got the file
            if(!nl) {
                sprintf(msgbuf, "Can't open (or error opening) %s\n", fpath);
                mexErrMsgTxt(msgbuf);
			}
            //Allocate Vector Memory
            pPROB = mxCreateStructMatrix(1,1,15,fnames);
            mxSetField(pPROB,0,fnames[eX0],mxCreateDoubleMatrix(n_var,1, mxREAL));      
            mxSetField(pPROB,0,fnames[eV0],mxCreateDoubleMatrix(n_con, 1, mxREAL));
            mxSetField(pPROB,0,fnames[eLB],mxCreateDoubleMatrix(n_var, 1, mxREAL));
            mxSetField(pPROB,0,fnames[eUB],mxCreateDoubleMatrix(n_var, 1, mxREAL));            
            mxSetField(pPROB,0,fnames[eCL],mxCreateDoubleMatrix(n_con, 1, mxREAL));
            mxSetField(pPROB,0,fnames[eCU],mxCreateDoubleMatrix(n_con, 1, mxREAL));
            mxSetField(pPROB,0,fnames[eSENSE],mxCreateDoubleMatrix(1, 1, mxREAL));
            mxSetField(pPROB,0,fnames[eOBJBIAS],mxCreateDoubleMatrix(1, 1, mxREAL));
            mxSetField(pPROB,0,fnames[eCONLIN],mxCreateDoubleMatrix(n_con, 1, mxREAL));
            //Get Fields (ASL will fill)       
            X0 = mxGetPr(mxGetField(pPROB,0,fnames[eX0]));   
            pi0 = mxGetPr(mxGetField(pPROB,0,fnames[eV0]));  
            LUv = mxGetPr(mxGetField(pPROB,0,fnames[eLB]));  
            Uvx = mxGetPr(mxGetField(pPROB,0,fnames[eUB]));              
            LUrhs = mxGetPr(mxGetField(pPROB,0,fnames[eCL]));  
            Urhsx = mxGetPr(mxGetField(pPROB,0,fnames[eCU]));  
            sense = mxGetPr(mxGetField(pPROB,0,fnames[eSENSE])); 
            objbias = mxGetPr(mxGetField(pPROB,0,fnames[eOBJBIAS]));
            con_lin = mxGetPr(mxGetField(pPROB,0,fnames[eCONLIN]));  
            //Other Output Args
            sizes = mxGetPr(pSIZE = mxCreateDoubleMatrix(16, 1, mxREAL));
                     
            //Check for complementarity problems
            if(n_cc)
                mexWarnMsgTxt("Ignoring Complementarity Constraints!");
            //Assign asl problem sizes
            sizes[0] = (double)n_var; sizes[1] = (double)n_con; sizes[2] = (double)nzc;
            sizes[3] = (double)lnc; sizes[4] = (double)nbv; sizes[5] = (double)niv;
            sizes[6] = (double)nlc; sizes[7] = (double)nlnc; sizes[8] = (double)nlo;
            sizes[9] = (double)nlvb; sizes[10] = (double)nlvc; sizes[11] = (double)nlvo;
            sizes[12] = (double)nlvbi; sizes[13] = (double)nlvci; sizes[14] = (double)nlvoi;
            sizes[15] = (double)nwv; 
            //Read In For QP Checking
            qp_read(nl,0); 
            //Assign sense
            if(objtype[0] == 1)
                *sense = -1; //max
            else
                *sense = 1; //min  
                      
            //Determine Objective Linearity
            obj_lin = linCheck(asl, 0);
            //Determine Constraints Linearity
            for(ii = 0; ii < n_con; ii++) {
                con_lin[ii] = linCheck(asl, -(ii+1));
                //Check if nonlinear or quadratic
                if(con_lin[ii] >= ASL_DEGREE_NLIN)
                    nlcon = true;
                else if(con_lin[ii] == ASL_DEGREE_QUAD)
                {
                    //con_lin indicates quadratic constraint, ensure is inequality
                    if(LUrhs[ii] != Urhsx[ii])
                        nqc_con++;
                    else
                        nlcon = true; //quadratic equalities not currently handled by any explicit QCQP solver (I know of), make nl
                }                    
            }
    
            //Check to force to read as nonlinear problem
            if(nrhs > 2 && *mxGetPr(prhs[2])==1)
                nlcon = true;
            
            //If objective or any constraint is nonlinear, then we have to process as an NLP
            if(obj_lin == ASL_DEGREE_NLIN || nlcon) {
                //Free the QP read memory
                ASL_free(&asl);
                //Re-open for full NLP read
                asl = ASL_alloc(ASL_read_pfgh);                 //allocate memory for pfgh read
                nl = jac0dim(fpath,(ftnlen)strlen(fpath));      //read passed file (full nl read)
                //Allocate Jacobian Memory [note use M1alloc to let ASL clean it up if multiple instances opened]
                J = (double*)M1alloc(nzc*sizeof(double));       //Memory to store Jacobian nzs  
                //Assign memory for saving obj + con x
                objx = (double*)M1alloc(n_var*sizeof(double));
                conx = (double*)M1alloc(n_var*sizeof(double));
                //Read File (f + g + H)
                pfgh_read(nl, ASL_findgroups); 
                //Assign Hessian Memory
                nhnz = sphsetup(1, 1, n_con > 0, 0);            //one obj, use sigma, optionally use lambda, full hessian
                Hsp = (double*)M1alloc(nhnz*sizeof(double));    //memory to store hessian nzs
            }
            //Otherwise we can process as a LP, QP or QCQP
            else {                
                //Assign objective bias
                *objbias = objconst(0);
                //Check for quadratic objective
                if(obj_lin == ASL_DEGREE_QUAD) {
                    //Capture Pointers
                    nqpz = nqpcheck(0, &QP_ir, &QP_jc, &QP_pr); //check objective for qp
                    //Create QP H
                    mxSetField(pPROB,0,fnames[eH],mxCreateSparse(n_var,n_var,nqpz,mxREAL));                   
                    //Copy in Objective Quadratic Elements (copy-cast where appropriate)
                    memcpy(mxGetPr(mxGetField(pPROB,0,fnames[eH])),QP_pr,nqpz*sizeof(double));
                    Jc = mxGetJc(mxGetField(pPROB,0,fnames[eH]));
                    Ir = mxGetIr(mxGetField(pPROB,0,fnames[eH]));
                    for(i = 0; i <= n_var; i++)
                        Jc[i] = (mwIndex)QP_jc[i];
                    for(i = 0; i < nqpz; i++)
                        Ir[i] = (mwIndex)QP_ir[i];                       
                }
                else //create an empty sparse matrix
                    mxSetField(pPROB,0,fnames[eH],mxCreateSparse(n_var,n_var,0,mxREAL));
                
                //Create QP f
                mxSetField(pPROB,0,fnames[eF],mxCreateDoubleMatrix(n_var,1,mxREAL));
                Pr = mxGetPr(mxGetField(pPROB,0,fnames[eF]));
                //Copy in Objective Linear Elements
                for( og = Ograd[0]; og; og = og->next )
                    Pr[og->varno] = og->coef;
                
                //Create A (linear constraints)
                mxSetField(pPROB,0,fnames[eA],mxCreateSparse(n_con, n_var, nzc, mxREAL));
                if(n_con) {
                    Pr = mxGetPr(mxGetField(pPROB,0,fnames[eA]));
                    Ir = mxGetIr(mxGetField(pPROB,0,fnames[eA]));;                    
                    //Fill in A (will double on quadratic linear sections, but easier to remove once in MATLAB)
                    for(Jc = mxGetJc(mxGetField(pPROB,0,fnames[eA])), cs = A_colstarts, i = 0; i <= n_var; ++i)
                        Jc[i] = (mwIndex)cs[i];
                    cgp = Cgrad;
                    for(i = 0; i < n_con; i++)
                        for(cg = *cgp++; cg; cg = cg->next) {
                            Ir[cg->goff] = (mwIndex)i; 
                            Pr[cg->goff] = cg->coef;
                        }
                }
                
                //Add quadratic constraints if present
                if(nqc_con) {
                    //Allocate a Cell Array to store the quadratic constraint Qs, and vector to store indices
                    mxSetField(pPROB,0,fnames[eQ],mxCreateCellMatrix(nqc_con,1)); //Q
                    mxSetField(pPROB,0,fnames[eL],mxCreateDoubleMatrix(n_var, nqc_con,mxREAL)); //l
                    mxSetField(pPROB,0,fnames[eQCIND],mxCreateDoubleMatrix(nqc_con,1,mxREAL)); //ind                   
                    pqi = mxGetPr(mxGetField(pPROB,0,fnames[eQCIND]));
                    //Fill In Constraints
                    for(ii=0,j=0;ii<n_con;ii++) {
                        //Quadratic Constraints
                        if(con_lin[ii] == ASL_DEGREE_QUAD) {
                            //Create index
                            pqi[j] = ii+1; //increment for matlab index
                            //Capture Pointers
                            nqpz = nqpcheck(-(ii+1), &QP_ir, &QP_jc, &QP_pr); //check constraint for qp;
                            if(nqpz <= 0)
                                mexErrMsgTxt("Error reading quadratic constraints. Assumed constraint was quadratic based on prescan, now appears not?");
                            //Create QC Q
                            mxSetCell(mxGetField(pPROB,0,fnames[eQ]),j,mxCreateSparse(n_var,n_var,nqpz,mxREAL));                   
                            //Copy in Constraint Quadratic Elements (copy-cast where appropriate)
                            Pr = mxGetPr(mxGetCell(mxGetField(pPROB,0,fnames[eQ]),j));
                            Jc = mxGetJc(mxGetCell(mxGetField(pPROB,0,fnames[eQ]),j));
                            Ir = mxGetIr(mxGetCell(mxGetField(pPROB,0,fnames[eQ]),j));
                            for(k = 0; k <= n_var; k++)
                                Jc[k] = (mwIndex)QP_jc[k];
                            for(k = 0; k < nqpz; k++) {
                                Ir[k] = (mwIndex)QP_ir[k];
                                Pr[k] = 0.5*QP_pr[k];  //to QP form
                            }
                            //Create QC l (not sure why we can't extract this from Jacobian, values are wrong)
                            Pr = mxGetPr(mxGetField(pPROB,0,fnames[eL]));
                            for( cg = Cgrad[ii]; cg; cg = cg->next )
                                Pr[j*n_var + cg->varno] = cg->coef;
                            //Increment for next cell / col
                            j++;
                        }
                    } 
                }
                //Put back into function eval mode (just in case)
                qp_opify();
                
            }
            break;
            
        case ASLCMD_CLOSE:
            //Check for Errors
            CHECKASL(asl);
            //Call Exit Function
            mexExit();          
            break;                    
            
        case ASLCMD_FUN:
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,2);             
            //Get x and check dimensions
            x = sizechk(prhs[1],"x",n_var); 
            //Save x
            if(objx) memcpy(objx,x,n_var*sizeof(double));                   
            //Create objective val memory and get it from ASL       
            SETERRJMP(); what = "objective";            
			f = mxGetPr(plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL));            
			*f = objval(0, x, &nerror);        
            break;
            
        case ASLCMD_GRAD:
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,2);            
            //Get x and check dimensions
            x = sizechk(prhs[1],"x",n_var);
            //Save x
            if(objx) memcpy(objx,x,n_var*sizeof(double));            
            //Create objective grad memory and get it from ASL     
            SETERRJMP(); what = "gradient";            
			g = mxGetPr(plhs[0] = mxCreateDoubleMatrix(1, n_var, mxREAL));            
			objgrd(0, x, g, &nerror);            
            break;
            
        case ASLCMD_CON:
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,2);            
            //Get x and check dimensions
            x = sizechk(prhs[1],"x",n_var);
            //Save x
            if(conx) memcpy(conx,x,n_var*sizeof(double));                        
            //Create constraint memory and get it from ASL  
            SETERRJMP(); what = "constraints";
			c = mxGetPr(plhs[0] = mxCreateDoubleMatrix(n_con, 1, mxREAL));   
            if(n_con)
                conval(x, c, &nerror);            
            break;
            
        case ASLCMD_JAC:
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,2);   
            //Get x and check dimensions
            x = sizechk(prhs[1],"x",n_var);
            //Save x
            if(conx) memcpy(conx,x,n_var*sizeof(double));            
            //Create constraint jac memory and get it from ASL
            SETERRJMP(); what = "Jacobian";            
            //Check for sparsity
            if(nrhs > 2 && *mxGetPr(prhs[2])) {
                sp = 1;
                J1 = mxGetPr(plhs[0] = mxCreateSparse(n_con, n_var, nzc, mxREAL));
            }
            else {
                sp = 0;
                J1 = mxGetPr(plhs[0] = mxCreateDoubleMatrix(n_con, n_var, mxREAL));
            }        
            //Evaluate if we have constraints
            if (n_con) {                
                //Sparse
                if(sp) {
                    jacval(x, J1, &nerror);
                    Ir = mxGetIr(plhs[0]);
                    for(Jc = mxGetJc(plhs[0]), cs = A_colstarts, i = 0; i <= n_var; ++i)
                        Jc[i] = (mwIndex)cs[i];
                    cgp = Cgrad;
                    for(i = 0; i < n_con; i++)
                        for(cg = *cgp++; cg; cg = cg->next)
                            Ir[cg->goff] = (mwIndex)i;  
                }
                //Dense
                else {      
                    jacval(x, J, &nerror);
                    cgp = Cgrad;
                    for(cgpe = cgp + n_con; cgp < cgpe; J1++)
                        for(cg = *cgp++; cg; cg = cg->next)
                            J1[n_con*cg->varno] = J[cg->goff];
                }
            }                        
            break;
            
        case ASLCMD_JACSTR:
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,1);            
            //Create constraint jacstr memory and get it from ASL
            SETERRJMP(); what = "Jacobian Structure)";                       
            J1 = mxGetPr(plhs[0] = mxCreateSparse(n_con, n_var, nzc, mxREAL));
            //Fill In Structure
            for(i=0;i<nzc;i++)
                J1[i] = 1.0;
            for(Jc = mxGetJc(plhs[0]), cs = A_colstarts, i = 0; i <= n_var; ++i)
                Jc[i] = (mwIndex)cs[i];
            cgp = Cgrad;
            Ir = mxGetIr(plhs[0]);
            for(i = 0; i < n_con; i++)
                for(cg = *cgp++; cg; cg = cg->next)
                    Ir[cg->goff] = (mwIndex)i;                
            break;
            
        case ASLCMD_HES:
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,4); //assume hess(x,sigma,lambda) and optionally sparse            
            //Check dimensions & get args
            x = sizechk(prhs[1],"x",n_var);
            s = sizechk(prhs[2],"sigma",1);
            v = sizechk(prhs[3],"lambda",n_con);
            
            //Check for sparsity
            if(nrhs > 4 && *mxGetPr(prhs[4])) {
                sp = 1;
                W = mxGetPr(plhs[0] = mxCreateSparse(n_var, n_var, nhnz, mxREAL));
            }
            else {
                sp = 0;    
                W = mxGetPr(plhs[0] = mxCreateDoubleMatrix(n_var, n_var, mxREAL));
            }
            //Check if we need to recalculate objective / constraints
            if(!comp_x(objx,x,n_var)) {
                //Setup Error Catching
                SETERRJMP(); what = "Objective for Hessian";                
                //Re-evaluate Objective
                objval(0, x, &nerror);                
            }            
            if(!comp_x(conx,x,n_var)){
                if(!c)
                    c = mxGetPr(mxCreateDoubleMatrix(n_con, 1, mxREAL));                
                //Setup Error Catching
                SETERRJMP(); what = "Constraints for Hessian";                
                //Re-evaluate Constraints
                conval(x, c, &nerror);
            }            
            //Setup Error Catching
            SETERRJMP(); what = "Hessian";
            
            //Sparse
            if(sp) {
                //This function returns the full (symmetric) Hessian as setup above
                sphes(H = Hsp, 1, s, v);                
                Ir = mxGetIr(plhs[0]);
                Jc = mxGetJc(plhs[0]);
                hcs = sputinfo->hcolstarts;
                hr = sputinfo->hrownos;
                for(i = 0; i <= n_var; i++)
                    Jc[i] = (mwIndex)hcs[i];
                He = H + hcs[n_var];
                while(H < He) {
                    *W++ = *H++;
                    *Ir++ = (mwIndex)*hr++;
                }	
            }
            //Dense
            else
                fullhes(W, n_var, 1, s, v);            
            break;
            
        case ASLCMD_HESSTR:
            //mexPrintf("CMD: Get Hessian Structure\n");
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,1);            
            //Create hessianstr memory and get it from ASL
            SETERRJMP(); what = "Hessian Structure";
            W = mxGetPr(plhs[0] = mxCreateSparse(n_var, n_var, nhnz, mxREAL));
            Ir = mxGetIr(plhs[0]);
            Jc = mxGetJc(plhs[0]);
            //Get Sparse Info
            hcs = sputinfo->hcolstarts;
            hr = sputinfo->hrownos;
            //Assign col starts
            for(i = 0; i <= n_var; i++)
                Jc[i] = (mwIndex)hcs[i];
            //Assign rows + 1.0 for nz positions
            H = Hsp;                //Start of nz Hsp elements
            He = H + hcs[n_var];    //End of nz Hsp elements
            while(H < He) {
                *W++ = 1.0;                
                *Ir++ = (mwIndex)*hr++;
                *H++; //increment nz element position
            }	                        
            break;           
            
        case ASLCMD_WRITESOL:
            //Check for Errors
            CHECKASL(asl);
            CHECKNRHS(nrhs,2); //asl('writesol',msg,x)            
            //Get Input Args
            CHECK(mxGetString(prhs[1], msg, FLEN) == 0,"error reading message!");
            x = sizechk(prhs[2],"x",n_var);            
            //Write to solution stub file
            write_sol(msg,x,NULL,NULL);
            break;
            
        default:
            mexExit(); //clean up
            mxGetString(prhs[0], cmd, FLEN);
            sprintf(msgbuf, "ASL Command Error! Unknown Command: '%s'\n", cmd);
            mexErrMsgTxt(msgbuf);
            break;
    }
}