示例#1
0
void run_suite(odp_instance_t instance,
	run_function run_func1, run_function run_func2)
{
	odph_linux_pthread_t sock_pthread1;
	odph_linux_pthread_t sock_pthread2;
	odp_cpumask_t sock_cpumask;
	odph_linux_thr_params_t thr_params;

	odp_cpumask_zero(&sock_cpumask);
	odp_cpumask_set(&sock_cpumask, core_id);

	thr_params.start = suite_thread1;
	thr_params.arg = run_func1;
	thr_params.thr_type = ODP_THREAD_CONTROL;
	thr_params.instance = instance;
	odph_linux_pthread_create(&sock_pthread1,
			&sock_cpumask,
			&thr_params);

	thr_params.start = suite_thread2;
	thr_params.arg = run_func2;
	thr_params.thr_type = ODP_THREAD_CONTROL;
	thr_params.instance = instance;
	odph_linux_pthread_create(&sock_pthread2,
			&sock_cpumask,
			&thr_params);

	odph_linux_pthread_join(&sock_pthread1, 1);
	odph_linux_pthread_join(&sock_pthread2, 1);
}
示例#2
0
/*
 * Run a single instance of the throughput test. When attempting to determine
 * the maximum packet rate this will be invoked multiple times with the only
 * difference between runs being the target PPS rate.
 */
static int run_test_single(odp_cpumask_t *thd_mask_tx,
			   odp_cpumask_t *thd_mask_rx,
			   test_status_t *status)
{
	odph_linux_pthread_t thd_tbl[MAX_WORKERS];
	thread_args_t args_tx, args_rx;
	uint64_t expected_tx_cnt;
	int num_tx_workers, num_rx_workers;

	odp_atomic_store_u32(&shutdown, 0);

	memset(thd_tbl, 0, sizeof(thd_tbl));
	memset(&gbl_args->rx_stats, 0, sizeof(gbl_args->rx_stats));
	memset(&gbl_args->tx_stats, 0, sizeof(gbl_args->tx_stats));

	expected_tx_cnt = status->pps_curr * gbl_args->args.duration;

	/* start receiver threads first */
	args_rx.batch_len = gbl_args->args.rx_batch_len;
	odph_linux_pthread_create(&thd_tbl[0], thd_mask_rx,
				  run_thread_rx, &args_rx);
	odp_barrier_wait(&gbl_args->rx_barrier);
	num_rx_workers = odp_cpumask_count(thd_mask_rx);

	/* then start transmitters */
	num_tx_workers    = odp_cpumask_count(thd_mask_tx);
	args_tx.pps       = status->pps_curr / num_tx_workers;
	args_tx.duration  = gbl_args->args.duration;
	args_tx.batch_len = gbl_args->args.tx_batch_len;
	odph_linux_pthread_create(&thd_tbl[num_rx_workers], thd_mask_tx,
				  run_thread_tx, &args_tx);
	odp_barrier_wait(&gbl_args->tx_barrier);

	/* wait for transmitter threads to terminate */
	odph_linux_pthread_join(&thd_tbl[num_rx_workers],
				num_tx_workers);

	/* delay to allow transmitted packets to reach the receivers */
	busy_loop_ns(SHUTDOWN_DELAY_NS);

	/* indicate to the receivers to exit */
	odp_atomic_store_u32(&shutdown, 1);

	/* wait for receivers */
	odph_linux_pthread_join(&thd_tbl[0], num_rx_workers);

	return process_results(expected_tx_cnt, status);
}
示例#3
0
/** exit from test thread */
int odp_test_thread_exit(pthrd_arg *arg)
{
	/* Wait for other threads to exit */
	odph_linux_pthread_join(thread_tbl, arg->numthrds);

	return 0;
}
示例#4
0
static int end_suite(void)
{
	odp_atomic_store_u32(&still_running, 0);

	odph_linux_pthread_join(&pp_thread_handle, 1);

	return 0;
}
示例#5
0
int main(int argc, char *argv[]){
	if(argc<2)return 1;
	int i,n,cpu;
	odp_cpumask_t cpumask;
	odp_init_global(NULL, NULL);
	odp_init_local(ODP_THREAD_CONTROL);

	struct iofix fix;

	odp_pool_t pool = open_pool("pktin_pool",1024);
	//fix.pktio = open_nic("mytap",pool);
	fix.pktio = open_nic(argv[1],pool);

	n = odp_cpumask_default_worker(&cpumask, MAX_WORKERS);
	odph_linux_pthread_create(thread_tbl, &cpumask,
			iot_burst,&fix,ODP_THREAD_WORKER);

	odph_linux_pthread_join(thread_tbl, n);

	return 0;
}
示例#6
0
static void test_tls_errno(void)
{
	odp_cpumask_t cpumask;
	odph_linux_pthread_t threads;
	odp_barrier_t barrier__;
	odp_barrier_t *barrier;

	CU_ASSERT(1 == odp_cpumask_default_worker(&cpumask, 1));

	barrier = &barrier__;
	odp_barrier_init(barrier, 2);

	CU_ASSERT(1 == ofp_linux_pthread_create(
			&threads,
			&cpumask,
			other_thread,
			(void *)barrier,
			ODP_THREAD_CONTROL));

	/* Initialize this thread's ofp_errno. */
	ofp_errno = 0;

	/* Test 1 - Test that an assignment to the current thread's ofp_errno
	*           does not modify the ofp_errno of other_thread.
	*/
	odp_barrier_wait(barrier);
	ofp_errno = OFP_EIO;
	odp_barrier_wait(barrier);
	CU_ASSERT_EQUAL(ofp_errno, OFP_EIO);

	/* Test 2 - Test both threads. */
	odp_barrier_wait(barrier);
	ofp_errno = OFP_EPERM;
	odp_barrier_wait(barrier);
	CU_ASSERT_EQUAL(ofp_errno, OFP_EPERM);

	odph_linux_pthread_join(&threads, 1);
}
示例#7
0
文件: app_main.c 项目: fboudra/ofp
/**
 * main() Application entry point
 *
 * This is the main function of the FPM application, it's a minimalistic
 * example, see 'usage' function for available arguments and usage.
 *
 * Using the number of available cores as input, this example sets up
 * ODP dispatcher threads executing OFP VLAN processesing and starts
 * a CLI function on a managment core.
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers, ret_val;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];
	odph_linux_thr_params_t thr_params;
	odp_instance_t instance;

	/* Parse and store the application arguments */
	if (parse_args(argc, argv, &params) != EXIT_SUCCESS)
		return EXIT_FAILURE;

	if (ofp_sigactions_set(ofp_sig_func_stop)) {
		printf("Error: failed to set signal actions.\n");
		return EXIT_FAILURE;
	}

	/*
	 * Before any ODP API functions can be called, we must first init the ODP
	 * globals, e.g. availale accelerators or software implementations for
	 * shared memory, threads, pool, qeueus, sheduler, pktio, timer, crypto
	 * and classification.
	 */
	if (odp_init_global(&instance, NULL, NULL)) {
		printf("Error: ODP global init failed.\n");
		return EXIT_FAILURE;
	}

	/*
	 * When the gloabel ODP level init has been done, we can now issue a
	 * local init per thread. This must also be done before any other ODP API
	 * calls may be made. Local inits are made here for shared memory,
	 * threads, pktio and scheduler.
	 */
	if (odp_init_local(instance, ODP_THREAD_CONTROL) != 0) {
		printf("Error: ODP local init failed.\n");
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	/*
	 * Get the number of cores available to ODP, one run-to-completion thread
	 * will be created per core.
	 */
	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	/*
	 * This example assumes that core #0 runs Linux kernel background tasks.
	 * By default, cores #1 and beyond will be populated with a OFP
	 * processing thread each.
	 */
	memset(&app_init_params, 0, sizeof(app_init_params));

	app_init_params.linux_core_id = 0;

	if (core_count > 1)
		num_workers--;

	/*
	 * Initializes cpumask with CPUs available for worker threads.
	 * Sets up to 'num' CPUs and returns the count actually set.
	 * Use zero for all available CPUs.
	 */
	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	if (odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr)) < 0) {
		printf("Error: Too small buffer provided to "
			"odp_cpumask_to_str\n");
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;
	app_init_params.pkt_hook[OFP_HOOK_LOCAL] = fastpath_local_hook;

	/*
	 * Now that ODP has been initalized, we can initialize OFP. This will
	 * open a pktio instance for each interface supplied as argument by the
	 * user.
	 *
	 * General configuration will be to pktio and schedluer queues here in
	 * addition will fast path interface configuration.
	 */
	if (ofp_init_global(instance, &app_init_params) != 0) {
		printf("Error: OFP global init failed.\n");
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	if (ofp_init_local() != 0) {
		printf("Error: OFP local init failed.\n");
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/*
	 * Create and launch dataplane dispatcher worker threads to be placed
	 * according to the cpumask, thread_tbl will be populated with the
	 * created pthread IDs.
	 *
	 * In this case, all threads will run the default_event_dispatcher
	 * function with ofp_eth_vlan_processing as argument.
	 *
	 * If different dispatchers should run, or the same be run with differnt
	 * input arguments, the cpumask is used to control this.
	 */
	memset(thread_tbl, 0, sizeof(thread_tbl));
	thr_params.start = default_event_dispatcher;
	thr_params.arg = ofp_eth_vlan_processing;
	thr_params.thr_type = ODP_THREAD_WORKER;
	thr_params.instance = instance;
	ret_val = odph_linux_pthread_create(thread_tbl,
					    &cpumask,
					    &thr_params);
	if (ret_val != num_workers) {
		OFP_ERR("Error: Failed to create worker threads, "
			"expected %d, got %d",
			num_workers, ret_val);
		ofp_stop_processing();
		odph_linux_pthread_join(thread_tbl, num_workers);
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/*
	 * Now when the ODP dispatcher threads are running, further applications
	 * can be launched, in this case, we will start the OFP CLI thread on
	 * the management core, i.e. not competing for cpu cycles with the
	 * worker threads
	 */
	if (ofp_start_cli_thread(instance, app_init_params.linux_core_id,
		params.conf_file) < 0) {
		OFP_ERR("Error: Failed to init CLI thread");
		ofp_stop_processing();
		odph_linux_pthread_join(thread_tbl, num_workers);
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/*
	 * If we choose to check performance, a performance monitoring client
	 * will be started on the management core. Once every second it will
	 * read the statistics from the workers from a shared memory region.
	 * Using this has negligible performance impact (<<0.01%).
	 */
	if (params.perf_stat) {
		if (start_performance(instance,
			app_init_params.linux_core_id) <= 0) {
			OFP_ERR("Error: Failed to init performance monitor");
			ofp_stop_processing();
			odph_linux_pthread_join(thread_tbl, num_workers);
			ofp_term_local();
			ofp_term_global();
			odp_term_local();
			odp_term_global(instance);
			return EXIT_FAILURE;
		}
	}

	/*
	 * Wait here until all worker threads have terminated, then free up all
	 * resources allocated by odp_init_global().
	 */
	odph_linux_pthread_join(thread_tbl, num_workers);

	if (ofp_term_local() < 0)
		printf("Error: ofp_term_local failed\n");

	if (ofp_term_global() < 0)
		printf("Error: ofp_term_global failed\n");

	if (odp_term_local() < 0)
		printf("Error: odp_term_local failed\n");

	if (odp_term_global(instance) < 0)
		printf("Error: odp_term_global failed\n");

	printf("FPM End Main()\n");

	return EXIT_SUCCESS;
}
示例#8
0
/**
 * ODP packet example main function
 */
int main(int argc, char * argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	odp_pool_t pool;
	int num_workers;
	int i;
	odp_shm_t shm;
	odp_cpumask_t cpumask;
	char cpumaskstr[ODP_CPUMASK_STR_SIZE];
	odp_pool_param_t params;
	odp_timer_pool_param_t tparams;
	odp_timer_pool_t tp;
	odp_pool_t tmop;

	/* Init ODP before calling anything else */
	if (odp_init_global(NULL, NULL)) {
		EXAMPLE_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}

	if (odp_init_local(ODP_THREAD_CONTROL)) {
		EXAMPLE_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}
	my_sleep(1 + __k1_get_cluster_id() / 4);

	/* init counters */
	odp_atomic_init_u64(&counters.seq, 0);
	odp_atomic_init_u64(&counters.ip, 0);
	odp_atomic_init_u64(&counters.udp, 0);
	odp_atomic_init_u64(&counters.icmp, 0);
	odp_atomic_init_u64(&counters.cnt, 0);

	/* Reserve memory for args from shared mem */
	shm = odp_shm_reserve("shm_args", sizeof(args_t),
			      ODP_CACHE_LINE_SIZE, 0);
	args = odp_shm_addr(shm);

	if (args == NULL) {
		EXAMPLE_ERR("Error: shared mem alloc failed.\n");
		exit(EXIT_FAILURE);
	}
	memset(args, 0, sizeof(*args));

	/* Parse and store the application arguments */
	parse_args(argc, argv, &args->appl);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &args->appl);

	/* Default to system CPU count unless user specified */
	num_workers = MAX_WORKERS;
	if (args->appl.cpu_count)
		num_workers = args->appl.cpu_count;

	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	if (args->appl.mask) {
		odp_cpumask_from_str(&cpumask, args->appl.mask);
		num_workers = odp_cpumask_count(&cpumask);
	}

	(void)odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	/* ping mode need two workers */
	if (args->appl.mode == APPL_MODE_PING) {
		if (num_workers < 2) {
			EXAMPLE_ERR("Need at least two worker threads\n");
			exit(EXIT_FAILURE);
		} else {
			num_workers = 2;
		}
	}

	/* Create packet pool */
	odp_pool_param_init(&params);
	params.pkt.seg_len = SHM_PKT_POOL_BUF_SIZE;
	params.pkt.len     = SHM_PKT_POOL_BUF_SIZE;
	params.pkt.num     = SHM_PKT_POOL_SIZE/SHM_PKT_POOL_BUF_SIZE;
	params.type        = ODP_POOL_PACKET;

	pool = odp_pool_create("packet_pool", &params);

	if (pool == ODP_POOL_INVALID) {
		EXAMPLE_ERR("Error: packet pool create failed.\n");
		exit(EXIT_FAILURE);
	}
	odp_pool_print(pool);

	/* Create timer pool */
	tparams.res_ns = 1 * ODP_TIME_MSEC_IN_NS;
	tparams.min_tmo = 0;
	tparams.max_tmo = 10000 * ODP_TIME_SEC_IN_NS;
	tparams.num_timers = num_workers; /* One timer per worker */
	tparams.priv = 0; /* Shared */
	tparams.clk_src = ODP_CLOCK_CPU;
	tp = odp_timer_pool_create("timer_pool", &tparams);
	if (tp == ODP_TIMER_POOL_INVALID) {
		EXAMPLE_ERR("Timer pool create failed.\n");
		exit(EXIT_FAILURE);
	}
	odp_timer_pool_start();

	/* Create timeout pool */
	memset(&params, 0, sizeof(params));
	params.tmo.num     = tparams.num_timers; /* One timeout per timer */
	params.type	   = ODP_POOL_TIMEOUT;

	tmop = odp_pool_create("timeout_pool", &params);

	if (pool == ODP_POOL_INVALID) {
		EXAMPLE_ERR("Error: packet pool create failed.\n");
		exit(EXIT_FAILURE);
	}
	for (i = 0; i < args->appl.if_count; ++i)
		create_pktio(args->appl.if_names[i], pool);

	/* Create and init worker threads */
	memset(thread_tbl, 0, sizeof(thread_tbl));

	if (args->appl.mode == APPL_MODE_PING) {
		odp_cpumask_t cpu_mask;
		odp_queue_t tq;
		int cpu_first, cpu_next;

		odp_cpumask_zero(&cpu_mask);
		cpu_first = odp_cpumask_first(&cpumask);
		odp_cpumask_set(&cpu_mask, cpu_first);

		tq = odp_queue_create("", ODP_QUEUE_TYPE_POLL, NULL);
		if (tq == ODP_QUEUE_INVALID)
			abort();
		args->thread[1].pktio_dev = args->appl.if_names[0];
		args->thread[1].pool = pool;
		args->thread[1].tp = tp;
		args->thread[1].tq = tq;
		args->thread[1].tim = odp_timer_alloc(tp, tq, NULL);
		if (args->thread[1].tim == ODP_TIMER_INVALID)
			abort();
		args->thread[1].tmo_ev = odp_timeout_alloc(tmop);
		if (args->thread[1].tmo_ev == ODP_TIMEOUT_INVALID)
			abort();
		args->thread[1].mode = args->appl.mode;
		odph_linux_pthread_create(&thread_tbl[1], &cpu_mask,
					  gen_recv_thread, &args->thread[1],
					  ODP_THREAD_WORKER);

		tq = odp_queue_create("", ODP_QUEUE_TYPE_POLL, NULL);
		if (tq == ODP_QUEUE_INVALID)
			abort();
		args->thread[0].pktio_dev = args->appl.if_names[0];
		args->thread[0].pool = pool;
		args->thread[0].tp = tp;
		args->thread[0].tq = tq;
		args->thread[0].tim = odp_timer_alloc(tp, tq, NULL);
		if (args->thread[0].tim == ODP_TIMER_INVALID)
			abort();
		args->thread[0].tmo_ev = odp_timeout_alloc(tmop);
		if (args->thread[0].tmo_ev == ODP_TIMEOUT_INVALID)
			abort();
		args->thread[0].mode = args->appl.mode;
		cpu_next = odp_cpumask_next(&cpumask, cpu_first);
		odp_cpumask_zero(&cpu_mask);
		odp_cpumask_set(&cpu_mask, cpu_next);
		odph_linux_pthread_create(&thread_tbl[0], &cpu_mask,
					  gen_send_thread, &args->thread[0],
					  ODP_THREAD_WORKER);

	} else {
		int cpu = odp_cpumask_first(&cpumask);
		for (i = 0; i < num_workers; ++i) {
			odp_cpumask_t thd_mask;
			void *(*thr_run_func) (void *);
			int if_idx;
			odp_queue_t tq;

			if_idx = i % args->appl.if_count;

			args->thread[i].pktio_dev = args->appl.if_names[if_idx];
			tq = odp_queue_create("", ODP_QUEUE_TYPE_POLL, NULL);
			if (tq == ODP_QUEUE_INVALID)
				abort();
			args->thread[i].pool = pool;
			args->thread[i].tp = tp;
			args->thread[i].tq = tq;
			args->thread[i].tim = odp_timer_alloc(tp, tq, NULL);
			if (args->thread[i].tim == ODP_TIMER_INVALID)
				abort();
			args->thread[i].tmo_ev = odp_timeout_alloc(tmop);
			if (args->thread[i].tmo_ev == ODP_TIMEOUT_INVALID)
				abort();
			args->thread[i].mode = args->appl.mode;

			if (args->appl.mode == APPL_MODE_UDP) {
				thr_run_func = gen_send_thread;
			} else if (args->appl.mode == APPL_MODE_RCV) {
				thr_run_func = gen_recv_thread;
			} else {
				EXAMPLE_ERR("ERR MODE\n");
				exit(EXIT_FAILURE);
			}
			/*
			 * Create threads one-by-one instead of all-at-once,
			 * because each thread might get different arguments.
			 * Calls odp_thread_create(cpu) for each thread
			 */
			odp_cpumask_zero(&thd_mask);
			odp_cpumask_set(&thd_mask, cpu);
			odph_linux_pthread_create(&thread_tbl[i],
						  &thd_mask,
						  thr_run_func,
						  &args->thread[i],
						  ODP_THREAD_WORKER);
			cpu = odp_cpumask_next(&cpumask, cpu);

		}
	}

	print_global_stats(num_workers);

	/* Master thread waits for other threads to exit */
	odph_linux_pthread_join(thread_tbl, num_workers);

	free(args->appl.if_names);
	free(args->appl.if_str);
	printf("Exit\n\n");

	return 0;
}
示例#9
0
/**
 * ODP L2 forwarding main function
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	odp_pool_t pool;
	int i;
	int cpu;
	int num_workers;
	odp_shm_t shm;
	odp_cpumask_t cpumask;
	char cpumaskstr[ODP_CPUMASK_STR_SIZE];
	odph_ethaddr_t new_addr;
	odp_pktio_t pktio;
	odp_pool_param_t params;
	int ret;
	stats_t *stats;

	/* Init ODP before calling anything else */
	if (odp_init_global(NULL, NULL)) {
		LOG_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Init this thread */
	if (odp_init_local(ODP_THREAD_CONTROL)) {
		LOG_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Reserve memory for args from shared mem */
	shm = odp_shm_reserve("shm_args", sizeof(args_t),
			      ODP_CACHE_LINE_SIZE, 0);
	gbl_args = odp_shm_addr(shm);

	if (gbl_args == NULL) {
		LOG_ERR("Error: shared mem alloc failed.\n");
		exit(EXIT_FAILURE);
	}
	memset(gbl_args, 0, sizeof(*gbl_args));

	/* Parse and store the application arguments */
	parse_args(argc, argv, &gbl_args->appl);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &gbl_args->appl);

	/* Default to system CPU count unless user specified */
	num_workers = MAX_WORKERS;
	if (gbl_args->appl.cpu_count)
		num_workers = gbl_args->appl.cpu_count;

	/* Get default worker cpumask */
	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	(void)odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	if (num_workers < gbl_args->appl.if_count) {
		LOG_ERR("Error: CPU count %d less than interface count\n",
			num_workers);
		exit(EXIT_FAILURE);
	}

	/* Create packet pool */
	odp_pool_param_init(&params);
	params.pkt.seg_len = SHM_PKT_POOL_BUF_SIZE;
	params.pkt.len     = SHM_PKT_POOL_BUF_SIZE;
	params.pkt.num     = SHM_PKT_POOL_SIZE/SHM_PKT_POOL_BUF_SIZE;
	params.type        = ODP_POOL_PACKET;

	pool = odp_pool_create("packet pool", &params);

	if (pool == ODP_POOL_INVALID) {
		LOG_ERR("Error: packet pool create failed.\n");
		exit(EXIT_FAILURE);
	}
	odp_pool_print(pool);

	for (i = 0; i < gbl_args->appl.if_count; ++i) {
		pktio = create_pktio(gbl_args->appl.if_names[i], pool);
		if (pktio == ODP_PKTIO_INVALID)
			exit(EXIT_FAILURE);
		gbl_args->pktios[i] = pktio;

		/* Save interface ethernet address */
		if (odp_pktio_mac_addr(pktio, gbl_args->port_eth_addr[i].addr,
				       ODPH_ETHADDR_LEN) != ODPH_ETHADDR_LEN) {
			LOG_ERR("Error: interface ethernet address unknown\n");
			exit(EXIT_FAILURE);
		}

		/* Save destination eth address */
		if (gbl_args->appl.dst_change) {
			/* 02:00:00:00:00:XX */
			memset(&new_addr, 0, sizeof(odph_ethaddr_t));
			new_addr.addr[0] = 0x02;
			new_addr.addr[5] = i;
			gbl_args->dst_eth_addr[i] = new_addr;
		}

		/* Save interface destination port */
		gbl_args->dst_port[i] = find_dest_port(i);
	}

	gbl_args->pktios[i] = ODP_PKTIO_INVALID;

	memset(thread_tbl, 0, sizeof(thread_tbl));

	stats = gbl_args->stats;

	odp_barrier_init(&barrier, num_workers + 1);

	/* Create worker threads */
	cpu = odp_cpumask_first(&cpumask);
	for (i = 0; i < num_workers; ++i) {
		odp_cpumask_t thd_mask;
		void *(*thr_run_func) (void *);

		if (gbl_args->appl.mode == DIRECT_RECV)
			thr_run_func = pktio_direct_recv_thread;
		else /* SCHED_NONE / SCHED_ATOMIC / SCHED_ORDERED */
			thr_run_func = pktio_queue_thread;

		gbl_args->thread[i].src_idx = i % gbl_args->appl.if_count;
		gbl_args->thread[i].stats = &stats[i];

		odp_cpumask_zero(&thd_mask);
		odp_cpumask_set(&thd_mask, cpu);
		odph_linux_pthread_create(&thread_tbl[i], &thd_mask,
					  thr_run_func,
					  &gbl_args->thread[i],
					  ODP_THREAD_WORKER);
		cpu = odp_cpumask_next(&cpumask, cpu);
	}

	/* Start packet receive and transmit */
	for (i = 0; i < gbl_args->appl.if_count; ++i) {
		pktio = gbl_args->pktios[i];
		ret   = odp_pktio_start(pktio);
		if (ret) {
			LOG_ERR("Error: unable to start %s\n",
				gbl_args->appl.if_names[i]);
			exit(EXIT_FAILURE);
		}
	}

	ret = print_speed_stats(num_workers, stats, gbl_args->appl.time,
				gbl_args->appl.accuracy);
	exit_threads = 1;

	/* Master thread waits for other threads to exit */
	odph_linux_pthread_join(thread_tbl, num_workers);

	free(gbl_args->appl.if_names);
	free(gbl_args->appl.if_str);
	printf("Exit\n\n");

	return ret;
}
示例#10
0
int main(int argc, char **argv)
{
    int ret;
    ret = odp_init_global(NULL, NULL);
    if(ret < 0)
    {
        fprintf(stderr, "global init failure!\n");
        exit(EXIT_FAILURE);
    }
    ret = odp_init_local(ODP_THREAD_CONTROL);
    if(ret < 0)
    {
        fprintf(stderr, "local init failure!\n");
        exit(EXIT_FAILURE);
    }

    parse_param(argc, argv);

    packet_classifier_init(glb_param.rule_file, glb_param.fib_file);
    hash_env_init();
    sm_hdl = sm_build(glb_param.pat_file);

    hs_tbl = create_hash_table();

    odp_pool_t pkt_pool;
    pkt_pool = create_pkt_pool("PACKET_POOL",PACKET_POOL_OBJ_SZ,
            PACKET_POOL_MAX_ELT_NUM);
    if(pkt_pool == ODP_POOL_INVALID)
    {
        fprintf(stderr, "create packet pool failure!\n");
        exit(EXIT_FAILURE);
    }

    if(init_all_if(pkt_pool) == -1)
    {
        fprintf(stderr, "init nic faliure!\n");
        exit(EXIT_FAILURE);
    }
    
    odph_linux_pthread_t thr_tbl[ODP_CONFIG_PKTIO_ENTRIES];
    int thr_num;
    thr_num = odph_linux_pthread_create(thr_tbl, &glb_param.cpu_mask, thread_fwd_routine, NULL);
    if(thr_num != glb_param.nic.num)
    {
        fprintf(stderr, "some nic thread start failure!\n");
        exit(EXIT_FAILURE);
    }

    odph_linux_pthread_t thr_stat_hdl;
    odp_cpumask_t thr_stat_mask;
    
    odp_cpumask_zero(&thr_stat_mask);
    odp_cpumask_set(&thr_stat_mask, glb_param.nic.num);
    if(odph_linux_pthread_create(&thr_stat_hdl, &thr_stat_mask, thread_stat_routine, NULL) != 1)
    {
        fprintf(stderr, "stat thread start failure!\n");
        exit(EXIT_FAILURE);
    }

    odph_linux_pthread_join(thr_tbl, thr_num);
    odph_linux_pthread_join(&thr_stat_hdl, 1);
 

    int nic_id;
    for(nic_id = 0; nic_id < glb_param.nic.num; nic_id++)
    {
        odp_pktio_close(thr_data.nic_hdl[nic_id]);
    }
    sm_destroy(sm_hdl);
    odph_hash_free(hs_tbl);
    odp_pool_destroy(pkt_pool);

    odp_term_local();
    odp_term_global();

    return 0;
}
示例#11
0
/**
 * ODP L2 forwarding main function
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	odp_pool_t pool;
	int i;
	int cpu;
	int num_workers;
	odp_shm_t shm;
	odp_cpumask_t cpumask;
	char cpumaskstr[ODP_CPUMASK_STR_SIZE];
	odp_pool_param_t params;

	/* Init ODP before calling anything else */
	if (odp_init_global(NULL, NULL)) {
		LOG_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Init this thread */
	if (odp_init_local(ODP_THREAD_CONTROL)) {
		LOG_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Reserve memory for args from shared mem */
	shm = odp_shm_reserve("shm_args", sizeof(args_t),
			      ODP_CACHE_LINE_SIZE, 0);
	gbl_args = odp_shm_addr(shm);

	if (gbl_args == NULL) {
		LOG_ERR("Error: shared mem alloc failed.\n");
		exit(EXIT_FAILURE);
	}
	memset(gbl_args, 0, sizeof(*gbl_args));

	/* Parse and store the application arguments */
	parse_args(argc, argv, &gbl_args->appl);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &gbl_args->appl);

	/* Default to system CPU count unless user specified */
	num_workers = MAX_WORKERS;
	if (gbl_args->appl.cpu_count)
		num_workers = gbl_args->appl.cpu_count;

	/* Get default worker cpumask */
	num_workers = odp_cpumask_def_worker(&cpumask, num_workers);
	(void)odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	if (num_workers < gbl_args->appl.if_count) {
		LOG_ERR("Error: CPU count %d less than interface count\n",
			num_workers);
		exit(EXIT_FAILURE);
	}
	if (gbl_args->appl.if_count % 2 != 0) {
		LOG_ERR("Error: interface count %d is odd in fwd appl.\n",
			gbl_args->appl.if_count);
		exit(EXIT_FAILURE);
	}

	/* Create packet pool */
	memset(&params, 0, sizeof(params));
	params.pkt.seg_len = SHM_PKT_POOL_BUF_SIZE;
	params.pkt.len     = SHM_PKT_POOL_BUF_SIZE;
	params.pkt.num     = SHM_PKT_POOL_SIZE/SHM_PKT_POOL_BUF_SIZE;
	params.type        = ODP_POOL_PACKET;

	pool = odp_pool_create("packet pool", &params);

	if (pool == ODP_POOL_INVALID) {
		LOG_ERR("Error: packet pool create failed.\n");
		exit(EXIT_FAILURE);
	}
	odp_pool_print(pool);

	for (i = 0; i < gbl_args->appl.if_count; ++i) {
		gbl_args->pktios[i] = create_pktio(gbl_args->appl.if_names[i],
						   pool, gbl_args->appl.mode);
		if (gbl_args->pktios[i] == ODP_PKTIO_INVALID)
			exit(EXIT_FAILURE);
	}
	gbl_args->pktios[i] = ODP_PKTIO_INVALID;

	memset(thread_tbl, 0, sizeof(thread_tbl));

	stats_t **stats = calloc(1, sizeof(stats_t) * num_workers);

	odp_barrier_init(&barrier, num_workers + 1);

	/* Create worker threads */
	cpu = odp_cpumask_first(&cpumask);
	for (i = 0; i < num_workers; ++i) {
		odp_cpumask_t thd_mask;
		void *(*thr_run_func) (void *);

		if (gbl_args->appl.mode == APPL_MODE_PKT_BURST)
			thr_run_func = pktio_ifburst_thread;
		else /* APPL_MODE_PKT_QUEUE */
			thr_run_func = pktio_queue_thread;

		gbl_args->thread[i].src_idx = i % gbl_args->appl.if_count;
		gbl_args->thread[i].stats = &stats[i];

		odp_cpumask_zero(&thd_mask);
		odp_cpumask_set(&thd_mask, cpu);
		odph_linux_pthread_create(&thread_tbl[i], &thd_mask,
					  thr_run_func,
					  &gbl_args->thread[i]);
		cpu = odp_cpumask_next(&cpumask, cpu);
	}

	print_speed_stats(num_workers, stats, gbl_args->appl.time,
			  gbl_args->appl.accuracy);
	free(stats);
	exit_threads = 1;

	/* Master thread waits for other threads to exit */
	odph_linux_pthread_join(thread_tbl, num_workers);

	free(gbl_args->appl.if_names);
	free(gbl_args->appl.if_str);
	printf("Exit\n\n");

	return 0;
}
示例#12
0
文件: app_main.c 项目: chyyuu/ofp
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];
	odph_linux_thr_params_t thr_params;
	odp_instance_t instance;

	struct rlimit rlp;

	getrlimit(RLIMIT_CORE, &rlp);
	printf("RLIMIT_CORE: %ld/%ld\n", rlp.rlim_cur, rlp.rlim_max);
	rlp.rlim_cur = 200000000;
	printf("Setting to max: %d\n", setrlimit(RLIMIT_CORE, &rlp));

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	if (odp_init_global(&instance, NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(instance, ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	/*
	 * By default core #0 runs Linux kernel background tasks.
	 * Start mapping thread from core #1
	 */
	memset(&app_init_params, 0, sizeof(app_init_params));

	app_init_params.linux_core_id = 0;

	if (core_count > 1)
		num_workers--;

	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;
	app_init_params.pkt_hook[OFP_HOOK_LOCAL] = fastpath_local_hook;
	if (ofp_init_global(instance, &app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}

	memset(thread_tbl, 0, sizeof(thread_tbl));
	/* Start dataplane dispatcher worker threads */

	thr_params.start = default_event_dispatcher;
	thr_params.arg = ofp_eth_vlan_processing;
	thr_params.thr_type = ODP_THREAD_WORKER;
	thr_params.instance = instance;
	odph_linux_pthread_create(thread_tbl,
				  &cpumask,
				  &thr_params);

	/* other app code here.*/
	/* Start CLI */
	ofp_start_cli_thread(instance, app_init_params.linux_core_id,
		params.conf_file);

	sleep(2);
	/* webserver */
	if (setup_webserver(params.root_dir, params.laddr, params.lport)) {
		OFP_ERR("Error: Failed to setup webserver.\n");
		exit(EXIT_FAILURE);
	}

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");

	return 0;
}
示例#13
0
文件: app_main.c 项目: charloco/ofp
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS], dispatcher_thread;
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpu_mask;
	char cpumaskstr[64];
	int cpu, first_cpu, i;
	struct pktio_thr_arg pktio_thr_args[MAX_WORKERS];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	odp_init_local(ODP_THREAD_CONTROL);

	memset(&app_init_params, 0, sizeof(app_init_params));
	app_init_params.linux_core_id = 0;
	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;
	app_init_params.burst_recv_mode = 1;

	ofp_init_global(&app_init_params);
	ofp_init_local();

	memset(thread_tbl, 0, sizeof(thread_tbl));
	memset(pktio_thr_args, 0, sizeof(pktio_thr_args));

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count < core_count?
			params.core_count: core_count;

	first_cpu = 1;
	num_workers -= first_cpu;

	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	if (num_workers < params.if_count) {
		OFP_ERR("At least %u fastpath cores required.\n",
			  params.if_count);
		exit(EXIT_FAILURE);
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", first_cpu);

	for (i = 0; i < num_workers; ++i) {
		pktio_thr_args[i].pkt_func = ofp_eth_vlan_processing;
		pktio_thr_args[i].port = i % params.if_count;

		odp_cpumask_zero(&cpu_mask);
		cpu = first_cpu + i;
		odp_cpumask_set(&cpu_mask, cpu);
		odp_cpumask_to_str(&cpu_mask, cpumaskstr, sizeof(cpumaskstr));

		OFP_DBG("Starting pktio receive on core: %d port: %d\n",
			  cpu, pktio_thr_args[i].port);
		OFP_DBG("cpu mask: %s\n", cpumaskstr);

		ofp_linux_pthread_create(&thread_tbl[i],
					  &cpu_mask,
					  pkt_io_recv,
					  &pktio_thr_args[i],
					  ODP_THREAD_WORKER
					);
	}

	odp_cpumask_zero(&cpu_mask);
	odp_cpumask_set(&cpu_mask, app_init_params.linux_core_id + 1);
	ofp_linux_pthread_create(&dispatcher_thread,
				  &cpu_mask,
				  event_dispatcher,
				  NULL,
				  ODP_THREAD_CONTROL
				);

	/* Start CLI */
	ofp_start_cli_thread(app_init_params.linux_core_id, params.conf_file);

	sleep(1);

	udp_fwd_cfg(params.sock_count, params.laddr, params.raddr);

	odph_linux_pthread_join(thread_tbl, num_workers);

	printf("End Main()\n");
	return 0;
}
示例#14
0
文件: app_main.c 项目: chyyuu/ofp
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS], dispatcher_thread;
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpu_mask;
	int first_cpu, i;
	struct pktio_thr_arg pktio_thr_args[MAX_WORKERS];
	odp_pktio_param_t pktio_param;
	odp_pktin_queue_param_t pktin_param;
	odp_pktout_queue_param_t pktout_param;
	odp_pktio_t pktio;
	int port, queue_id;
	odph_linux_thr_params_t thr_params;
	odp_instance_t instance;

	struct pktin_table_s {
		int	num_in_queue;
		odp_pktin_queue_t in_queue[OFP_PKTIN_QUEUE_MAX];
	} pktin_table[OFP_FP_INTERFACE_MAX];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	if (params.if_count > OFP_FP_INTERFACE_MAX) {
		printf("Error: Invalid number of interfaces: maximum %d\n",
			OFP_FP_INTERFACE_MAX);
		exit(EXIT_FAILURE);
	}

	if (odp_init_global(&instance, NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(instance, ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count && params.core_count < core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;
	/*
	 * By default core #0 runs Linux kernel background tasks.
	 * Start mapping thread from core #1
	 */
	if (num_workers > 1) {
		num_workers--;
		first_cpu = 1;
	} else {
		OFP_ERR("Burst mode requires multiple cores.\n");
		exit(EXIT_FAILURE);
	}

	if (num_workers < params.if_count) {
		OFP_ERR("At least %u fastpath cores required.\n",
			  params.if_count);
		exit(EXIT_FAILURE);
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", first_cpu);

	memset(&app_init_params, 0, sizeof(app_init_params));
	app_init_params.linux_core_id = 0;

	if (ofp_init_global(instance, &app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	odp_pktio_param_init(&pktio_param);
	pktio_param.in_mode = ODP_PKTIN_MODE_DIRECT;
	pktio_param.out_mode = ODP_PKTOUT_MODE_DIRECT;

	odp_pktin_queue_param_init(&pktin_param);
	pktin_param.op_mode = ODP_PKTIO_OP_MT;
	pktin_param.hash_enable = 0;
	pktin_param.hash_proto.all_bits = 0;
	pktin_param.num_queues = 1;

	odp_pktout_queue_param_init(&pktout_param);
	pktout_param.num_queues = 1;
	pktout_param.op_mode = ODP_PKTIO_OP_MT;

	for (i = 0; i < params.if_count; i++) {
		if (ofp_ifnet_create(instance, params.if_names[i],
				&pktio_param,
				&pktin_param,
				&pktout_param) < 0) {
			OFP_ERR("Failed to init interface %s",
				params.if_names[i]);
			exit(EXIT_FAILURE);
		}

		pktio = odp_pktio_lookup(params.if_names[i]);
		if (pktio == ODP_PKTIO_INVALID) {
			OFP_ERR("Failed locate pktio %s",
				params.if_names[i]);
			exit(EXIT_FAILURE);
		}
		pktin_table[i].num_in_queue = odp_pktin_queue(pktio,
			pktin_table[i].in_queue, OFP_PKTIN_QUEUE_MAX);

		if (pktin_table[i].num_in_queue < 0) {
			OFP_ERR("Failed get input queues for %s",
				params.if_names[i]);
			exit(EXIT_FAILURE);
		}
	}

	memset(thread_tbl, 0, sizeof(thread_tbl));
	memset(pktio_thr_args, 0, sizeof(pktio_thr_args));

	for (i = 0; i < num_workers; ++i) {
		pktio_thr_args[i].pkt_func = ofp_eth_vlan_processing;

		port = i % params.if_count;
		queue_id = (i / params.if_count) %
			pktin_table[port].num_in_queue;
		pktio_thr_args[i].pktin = pktin_table[port].in_queue[queue_id];

		odp_cpumask_zero(&cpu_mask);
		odp_cpumask_set(&cpu_mask, first_cpu + i);

		thr_params.start = pkt_io_recv;
		thr_params.arg = &pktio_thr_args[i];
		thr_params.thr_type = ODP_THREAD_WORKER;
		thr_params.instance = instance;
		odph_linux_pthread_create(&thread_tbl[i],
					  &cpu_mask,
					  &thr_params);
	}

	odp_cpumask_zero(&cpu_mask);
	odp_cpumask_set(&cpu_mask, app_init_params.linux_core_id);
	thr_params.start = event_dispatcher;
	thr_params.arg = NULL;
	thr_params.thr_type = ODP_THREAD_WORKER;
	thr_params.instance = instance;
	odph_linux_pthread_create(&dispatcher_thread,
				  &cpu_mask,
				  &thr_params);

	/* Start CLI */
	ofp_start_cli_thread(instance, app_init_params.linux_core_id,
		params.conf_file);

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");

	return 0;
}
示例#15
0
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	if (core_count > 1)
		num_workers--;

#if ODP_VERSION < 104
	num_workers = odp_cpumask_def_worker(&cpumask, num_workers);
#else
	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
#endif
	odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	memset(&app_init_params, 0, sizeof(app_init_params));
	app_init_params.linux_core_id = 0;
	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;

	if (ofp_init_global(&app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	build_classifier(app_init_params.if_count, app_init_params.if_names);

	/* Start CLI */
	ofp_start_cli_thread(app_init_params.linux_core_id, params.conf_file);
	sleep(1);

	memset(thread_tbl, 0, sizeof(thread_tbl));
	/* Start dataplane dispatcher worker threads */
	odph_linux_pthread_create(thread_tbl,
				  &cpumask,
				  default_event_dispatcher,
				  ofp_udp4_processing);

	app_processing();

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");

	return 0;
}
示例#16
0
/**
 * Test main function
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	int num_workers;
	odp_queue_t queue;
	uint64_t cycles, ns;
	odp_queue_param_t param;
	odp_pool_param_t params;
	odp_timer_pool_param_t tparams;
	odp_timer_pool_info_t tpinfo;
	odp_cpumask_t cpumask;
	char cpumaskstr[ODP_CPUMASK_STR_SIZE];
	odp_shm_t shm;
	test_globals_t	*gbls;

	printf("\nODP timer example starts\n");

	if (odp_init_global(NULL, NULL)) {
		printf("ODP global init failed.\n");
		return -1;
	}

	/* Init this thread. */
	if (odp_init_local()) {
		printf("ODP local init failed.\n");
		return -1;
	}

	printf("\n");
	printf("ODP system info\n");
	printf("---------------\n");
	printf("ODP API version: %s\n",        odp_version_api_str());
	printf("CPU model:       %s\n",        odp_sys_cpu_model_str());
	printf("CPU freq (hz):   %"PRIu64"\n", odp_sys_cpu_hz());
	printf("Cache line size: %i\n",        odp_sys_cache_line_size());
	printf("Max CPU count:   %i\n",        odp_cpu_count());

	printf("\n");

	/* Reserve memory for test_globals_t from shared mem */
	shm = odp_shm_reserve("shm_test_globals", sizeof(test_globals_t),
			      ODP_CACHE_LINE_SIZE, 0);
	if (ODP_SHM_INVALID == shm) {
		EXAMPLE_ERR("Error: shared mem reserve failed.\n");
		return -1;
	}

	gbls = odp_shm_addr(shm);
	if (NULL == gbls) {
		EXAMPLE_ERR("Error: shared mem alloc failed.\n");
		return -1;
	}
	memset(gbls, 0, sizeof(test_globals_t));

	parse_args(argc, argv, &gbls->args);

	memset(thread_tbl, 0, sizeof(thread_tbl));

	/* Default to system CPU count unless user specified */
	num_workers = MAX_WORKERS;
	if (gbls->args.cpu_count)
		num_workers = gbls->args.cpu_count;

	/*
	 * By default CPU #0 runs Linux kernel background tasks.
	 * Start mapping thread from CPU #1
	 */
	num_workers = odph_linux_cpumask_default(&cpumask, num_workers);
	(void)odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	printf("resolution:         %i usec\n", gbls->args.resolution_us);
	printf("min timeout:        %i usec\n", gbls->args.min_us);
	printf("max timeout:        %i usec\n", gbls->args.max_us);
	printf("period:             %i usec\n", gbls->args.period_us);
	printf("timeouts:           %i\n", gbls->args.tmo_count);

	/*
	 * Create pool for timeouts
	 */
	params.tmo.num   = NUM_TMOS;
	params.type      = ODP_POOL_TIMEOUT;

	gbls->pool = odp_pool_create("msg_pool", ODP_SHM_NULL, &params);

	if (gbls->pool == ODP_POOL_INVALID) {
		EXAMPLE_ERR("Pool create failed.\n");
		return -1;
	}

	tparams.res_ns = gbls->args.resolution_us*ODP_TIME_USEC;
	tparams.min_tmo = gbls->args.min_us*ODP_TIME_USEC;
	tparams.max_tmo = gbls->args.max_us*ODP_TIME_USEC;
	tparams.num_timers = num_workers; /* One timer per worker */
	tparams.priv = 0; /* Shared */
	tparams.clk_src = ODP_CLOCK_CPU;
	gbls->tp = odp_timer_pool_create("timer_pool", &tparams);
	if (gbls->tp == ODP_TIMER_POOL_INVALID) {
		EXAMPLE_ERR("Timer pool create failed.\n");
		return -1;
	}
	odp_timer_pool_start();

	odp_shm_print_all();
	(void)odp_timer_pool_info(gbls->tp, &tpinfo);
	printf("Timer pool\n");
	printf("----------\n");
	printf("  name: %s\n", tpinfo.name);
	printf("  resolution: %"PRIu64" ns\n", tpinfo.param.res_ns);
	printf("  min tmo: %"PRIu64" ticks\n", tpinfo.param.min_tmo);
	printf("  max tmo: %"PRIu64" ticks\n", tpinfo.param.max_tmo);
	printf("\n");

	/*
	 * Create a queue for timer test
	 */
	memset(&param, 0, sizeof(param));
	param.sched.prio  = ODP_SCHED_PRIO_DEFAULT;
	param.sched.sync  = ODP_SCHED_SYNC_NONE;
	param.sched.group = ODP_SCHED_GROUP_DEFAULT;

	queue = odp_queue_create("timer_queue", ODP_QUEUE_TYPE_SCHED, &param);

	if (queue == ODP_QUEUE_INVALID) {
		EXAMPLE_ERR("Timer queue create failed.\n");
		return -1;
	}

	printf("CPU freq %"PRIu64" Hz\n", odp_sys_cpu_hz());
	printf("Cycles vs nanoseconds:\n");
	ns = 0;
	cycles = odp_time_ns_to_cycles(ns);

	printf("  %12"PRIu64" ns      ->  %12"PRIu64" cycles\n", ns, cycles);
	printf("  %12"PRIu64" cycles  ->  %12"PRIu64" ns\n", cycles,
	       odp_time_cycles_to_ns(cycles));

	for (ns = 1; ns <= 100*ODP_TIME_SEC; ns *= 10) {
		cycles = odp_time_ns_to_cycles(ns);

		printf("  %12"PRIu64" ns      ->  %12"PRIu64" cycles\n", ns,
		       cycles);
		printf("  %12"PRIu64" cycles  ->  %12"PRIu64" ns\n", cycles,
		       odp_time_cycles_to_ns(cycles));
	}

	printf("\n");

	/* Initialize number of timeouts to receive */
	odp_atomic_init_u32(&gbls->remain, gbls->args.tmo_count * num_workers);

	/* Barrier to sync test case execution */
	odp_barrier_init(&gbls->test_barrier, num_workers);

	/* Create and launch worker threads */
	odph_linux_pthread_create(thread_tbl, &cpumask,
				  run_thread, gbls);

	/* Wait for worker threads to exit */
	odph_linux_pthread_join(thread_tbl, num_workers);

	printf("ODP timer test complete\n\n");

	return 0;
}
示例#17
0
static int ofp_lib_start(void)
{
	ofp_init_global_t app_init_params;

	odph_linux_pthread_t thread_tbl[32];
	int ret_val, num_workers = 1;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];

	if (ofp_init_global_called)
		return EXIT_FAILURE;

	/*
	 * Before any ODP API functions can be called, we must first init the ODP
	 * globals, e.g. availale accelerators or software implementations for
	 * shared memory, threads, pool, qeueus, sheduler, pktio, timer, crypto
	 * and classification.
	 */
	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("ODP global init failed.");
		return EXIT_FAILURE;
	}

	/*
	 * When the gloabel ODP level init has been done, we can now issue a
	 * local init per thread. This must also be done before any other ODP API
	 * calls may be made. Local inits are made here for shared memory,
	 * threads, pktio and scheduler.
	 */
	if (odp_init_local(ODP_THREAD_CONTROL) != 0) {
		OFP_ERR("ODP local init failed.");
		odp_term_global();
		return EXIT_FAILURE;
	}

	/*
	 * Initializes cpumask with CPUs available for worker threads.
	 * Sets up to 'num' CPUs and returns the count actually set.
	 * Use zero for all available CPUs.
	 */
	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	if (odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr)) < 0) {
		OFP_ERR("Error: Too small buffer provided to "
			"odp_cpumask_to_str");
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU: %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:  %s\n", cpumaskstr);

	/*
	 * Now that ODP has been initalized, we can initialize OFP. This will
	 * open a pktio instance for each interface supplied as argument by the
	 * user.
	 *
	 * General configuration will be to pktio and schedluer queues here in
	 * addition will fast path interface configuration.
	 */
	memset(&app_init_params, 0, sizeof(app_init_params));
	if (ofp_init_global(&app_init_params) != 0) {
		OFP_ERR("OFP global init failed.");
		ofp_term_global();
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}

	if (ofp_init_local() != 0) {
		OFP_ERR("Error: OFP local init failed.");
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}


	/*
	 * Create and launch dataplane dispatcher worker threads to be placed
	 * according to the cpumask, thread_tbl will be populated with the
	 * created pthread IDs.
	 *
	 * In this case, all threads will run the default_event_dispatcher
	 * function with ofp_eth_vlan_processing as argument.
	 *
	 * If different dispatchers should run, or the same be run with differnt
	 * input arguments, the cpumask is used to control this.
	 */
	memset(thread_tbl, 0, sizeof(thread_tbl));
	ret_val = ofp_linux_pthread_create(thread_tbl,
			&cpumask,
			default_event_dispatcher,
			ofp_eth_vlan_processing,
			ODP_THREAD_CONTROL);

	if (ret_val != num_workers) {
		OFP_ERR("Error: Failed to create worker threads, "
			"expected %d, got %d",
			num_workers, ret_val);
		ofp_stop_processing();
		odph_linux_pthread_join(thread_tbl, num_workers);
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}

	ofp_ifconfig();

	return EXIT_SUCCESS;
}
示例#18
0
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	if (core_count > 1)
		num_workers--;

	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	memset(&app_init_params, 0, sizeof(app_init_params));
	app_init_params.linux_core_id = 0;
	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;

	if (ofp_init_global(&app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}

	memset(thread_tbl, 0, sizeof(thread_tbl));
	/* Start dataplane dispatcher worker threads */
	ofp_linux_pthread_create(thread_tbl,
				  &cpumask,
				  default_event_dispatcher,
				  ofp_eth_vlan_processing,
				  ODP_THREAD_CONTROL
				);

	/* other app code here.*/
	/* Start CLI */
	ofp_start_cli_thread(app_init_params.linux_core_id, params.conf_file);

	sleep(5);

	ofp_loglevel = OFP_LOG_INFO;

	config_suite_framework(app_init_params.linux_core_id);

	OFP_INFO("\n\nSuite: IPv4 UDP socket: create and close.\n\n");
	if (!init_suite(NULL))
		run_suite(create_close_udp, create_close_udp_noproto);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 TCP socket: create and close.\n\n");
	if (!init_suite(NULL))
		run_suite(create_close_tcp, create_close_tcp_noproto);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP socket: create and close.\n\n");
	if (!init_suite(NULL))
		run_suite(create_close_udp6, create_close_udp6_noproto);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 TCP socket: create and close.\n\n");
	if (!init_suite(NULL))
		run_suite(create_close_tcp6, create_close_tcp6_noproto);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /* INET6 */

	OFP_INFO("\n\nSuite: IPv4 UDP socket: bind.\n\n");
	if (!init_suite(init_udp_create_socket))
		run_suite(bind_ip4_local_ip, bind_ip4_any);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 TCP socket: bind.\n\n");
	if (!init_suite(init_tcp_create_socket))
		run_suite(bind_ip4_local_ip, bind_ip4_any);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP socket: bind.\n\n");
	if (!init_suite(init_udp6_create_socket))
		run_suite(bind_ip6_local_ip, bind_ip6_any);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 TCP socket: bind.\n\n");
	if (!init_suite(init_tcp6_create_socket))
		run_suite(bind_ip6_local_ip, bind_ip6_any);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /* INET6 */

	OFP_INFO("\n\nSuite: IPv4 UDP socket: shutdown.\n\n");
	if (!init_suite(init_udp_create_socket))
		run_suite(shutdown_socket, shutdown_socket);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 TCP socket: shutdown (no connection).\n\n");
	if (!init_suite(init_tcp_create_socket))
		run_suite(shutdown_socket, shutdown_socket);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP socket: shutdown.\n\n");
	if (!init_suite(init_udp6_create_socket))
		run_suite(shutdown_socket, shutdown_socket);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 TCP socket: shutdown (no connection).\n\n");
	if (!init_suite(init_tcp6_create_socket))
		run_suite(shutdown_socket, shutdown_socket);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /* INET6 */

	OFP_INFO("\n\nSuite: IPv4 UDP socket: connect.\n\n");
	if (!init_suite(init_udp_create_socket))
		run_suite(connect_udp4, connect_bind_udp4);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 UDP socket: connect + shutdown.\n\n");
	if (!init_suite(init_udp_create_socket))
		run_suite(connect_shutdown_udp4, connect_shutdown_bind_udp4);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP socket: connect.\n\n");
	if (!init_suite(init_udp6_create_socket))
		run_suite(connect_udp6, connect_bind_udp6);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 UDP socket: connect + shutdown.\n\n");
	if (!init_suite(init_udp6_create_socket))
		run_suite(connect_shutdown_udp6, connect_shutdown_bind_udp6);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 UDP socket: connect + shutdown + any.\n\n");
	if (!init_suite(init_udp6_create_socket))
		run_suite(connect_shutdown_udp6_any,
				connect_shutdown_bind_udp6_any);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /* INET6 */

	OFP_INFO("\n\nSuite: IPv4 UDP socket BIND local address: send + sendto\n\n");
	if (!init_suite(init_udp_bind_local_ip))
		run_suite(send_ip4_udp_local_ip, sendto_ip4_udp_local_ip);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 UDP socket bind any address: send + sendto\n\n");
	if (!init_suite(init_udp_bind_any))
		run_suite(send_ip4_udp_any, sendto_ip4_udp_any);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP socket BIND local address: send + sendto\n\n");
	if (!init_suite(init_udp6_bind_local_ip))
		run_suite(send_ip6_udp_local_ip, sendto_ip6_udp_local_ip);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 UDP socket bind any address: send + sendto\n\n");
	if (!init_suite(init_udp6_bind_any))
		run_suite(send_ip6_udp_any, sendto_ip6_udp_any);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /* INET6 */

	OFP_INFO("\n\nSuite: IPv4 UDP bind local IP: sendto + recv.\n\n");
	if (!init_suite(init_udp_local_ip))
		run_suite(send_udp_local_ip, recv_udp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 UDP bind local IP: sendto + recvfrom.\n\n");
	if (!init_suite(init_udp_bind_local_ip))
		run_suite(send_udp_local_ip, recvfrom_udp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 UDP bind any address: sendto + recv.\n\n");
	if (!init_suite(init_udp_any))
		run_suite(send_udp_any, recv_udp);
	end_suite();

	OFP_INFO("\n\nSuite: IPv4 UDP bind any address: sendto + recvfrom.\n\n");
	if (!init_suite(init_udp_bind_any))
		run_suite(send_udp_any, recvfrom_udp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 UDP bind any address: sendto + recvfrom(NULL addr).\n\n");
	if (!init_suite(init_udp_bind_any))
		run_suite(send_udp_any, recvfrom_udp_null_addr);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP bind local IP: sendto + recv.\n\n");
	if (!init_suite(init_udp6_bind_local_ip))
		run_suite(send_udp6_local_ip, recv_udp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 UDP bind local IP: sendto + recvfrom.\n\n");
	if (!init_suite(init_udp6_bind_local_ip))
		run_suite(send_udp6_local_ip, recvfrom_udp6);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 UDP bind any IP: sendto + recv.\n\n");
	if (!init_suite(init_udp6_bind_any))
		run_suite(send_udp6_any, recv_udp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 UDP bind any IP: sendto + recvfrom.\n\n");
	if (!init_suite(init_udp6_bind_any))
		run_suite(send_udp6_any, recvfrom_udp6);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 UDP bind any IP: sendto + recvfrom(NULL addr).\n\n");
	if (!init_suite(init_udp6_bind_any))
		run_suite(send_udp6_any, recvfrom_udp_null_addr);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	OFP_INFO("\n\nSuite: IPv4 TCP socket local IP: listen.\n\n");
	if (!init_suite(init_tcp_bind_local_ip))
		run_suite(listen_tcp, listen_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 TCP socket local IP: listen.\n\n");
	if (!init_suite(init_tcp6_bind_local_ip))
		run_suite(listen_tcp, listen_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	OFP_INFO("\n\nSuite: IPv4 TCP socket local IP: connect + accept.\n\n");
	if (!init_suite(init_tcp_bind_listen_local_ip))
		run_suite(connect_tcp4_local_ip, accept_tcp4);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 TCP socket any IP: connect + accept.\n\n");
	if (!init_suite(init_tcp_bind_listen_any))
		run_suite(connect_tcp4_any, accept_tcp4);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 TCP socket local IP: connect + accept null address.\n\n");
	if (!init_suite(init_tcp_bind_listen_local_ip))
		run_suite(connect_tcp4_local_ip, accept_tcp4_null_addr);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 TCP socket local IP: connect + accept.\n\n");
	if (!init_suite(init_tcp6_bind_listen_local_ip))
		run_suite(connect_tcp6_local_ip, accept_tcp6);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 TCP socket any IP: connect + accept.\n\n");
	if (!init_suite(init_tcp6_bind_listen_any))
		run_suite(connect_tcp6_any, accept_tcp6);
	end_suite();
	OFP_INFO("Test ended.\n");


	OFP_INFO("\n\nSuite: IPv6 TCP socket local IP: connect + accept null address.\n\n");
	if (!init_suite(init_tcp6_bind_listen_local_ip))
		run_suite(connect_tcp6_local_ip, accept_tcp6_null_addr);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	OFP_INFO("\n\nSuite: IPv4 TCP socket local IP: send + recv.\n\n");
	if (!init_suite(init_tcp_bind_listen_local_ip))
		run_suite(send_tcp4_local_ip, receive_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 TCP socket any IP: send + recv.\n\n");
	if (!init_suite(init_tcp_bind_listen_any))
		run_suite(send_tcp4_any, receive_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 TCP socket local IP: send + recv.\n\n");
	if (!init_suite(init_tcp6_bind_listen_local_ip))
		run_suite(send_tcp6_local_ip, receive_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 TCP socket any IP: send + recv.\n\n");
	if (!init_suite(init_tcp6_bind_listen_any))
		run_suite(send_tcp6_any, receive_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	OFP_INFO("\n\nSuite: IPv4 UDP bind local IP: select + recv.\n\n");
	if (!init_suite(init_udp_bind_local_ip))
		run_suite(send_udp_local_ip, select_recv_udp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 TCP bind local IP: select + accept + recv.\n\n");
	if (!init_suite(init_tcp_bind_listen_local_ip))
		run_suite(send_tcp4_local_ip, select_recv_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP bind local IP: select + recv.\n\n");
	if (!init_suite(init_udp6_bind_local_ip))
		run_suite(send_udp6_local_ip, select_recv_udp);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv6 TCP bind local IP: select + accept + recv.\n\n");
	if (!init_suite(init_tcp6_bind_listen_local_ip))
		run_suite(send_tcp6_local_ip, select_recv_tcp);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	OFP_INFO("\n\nSuite: IPv4 UDP bindlocal IP: select + recv x2.\n\n");
	if (!init_suite(init_udp_bind_local_ip))
		run_suite(send_udp_local_ip, select_recv_udp_2);
	end_suite();
	OFP_INFO("Test ended.\n");

	OFP_INFO("\n\nSuite: IPv4 UDP bind local IP: socket_sigevent rcv.\n\n");
	if (!init_suite(init_udp_bind_local_ip))
		run_suite(recv_send_udp_local_ip, socket_sigevent_udp4);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 UDP bind local IP: socket_sigevent rcv.\n\n");
	if (!init_suite(init_udp6_bind_local_ip))
		run_suite(recv_send_udp6_local_ip, socket_sigevent_udp6);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	OFP_INFO("\n\nSuite: IPv4 TCP bind local IP: socket_sigevent rcv.\n\n");
	if (!init_suite(init_tcp_bind_listen_local_ip))
		run_suite(connect_recv_send_tcp_local_ip, socket_sigevent_tcp_rcv);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 TCP bind local IP: socket_sigevent rcv.\n\n");
	if (!init_suite(init_tcp6_bind_listen_local_ip))
		run_suite(connect_recv_send_tcp6_local_ip, socket_sigevent_tcp_rcv);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	OFP_INFO("\n\nSuite: IPv4 TCP bind local IP: socket_sigevent accept.\n\n");
	if (!init_suite(init_tcp_bind_listen_local_ip))
		run_suite(connect_tcp_delayed_local_ip, socket_sigevent_tcp_accept);
	end_suite();
	OFP_INFO("Test ended.\n");

#ifdef INET6
	OFP_INFO("\n\nSuite: IPv6 TCP bind local IP: socket_sigevent accept.\n\n");
	if (!init_suite(init_tcp6_bind_listen_local_ip))
		run_suite(connect_tcp6_delayed_local_ip,
			socket_sigevent_tcp_accept);
	end_suite();
	OFP_INFO("Test ended.\n");
#endif /*INET6*/

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");
	return 0;
}
示例#19
0
文件: app_main.c 项目: charloco/ofp
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	/*
	 * By default core #0 runs Linux kernel background tasks.
	 * Start mapping thread from core #1
	 */
	memset(&app_init_params, 0, sizeof(app_init_params));

	app_init_params.linux_core_id = 0;

	if (core_count > 1)
		num_workers--;

	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;
	app_init_params.pkt_hook[OFP_HOOK_LOCAL] = fastpath_local_hook;
	if (ofp_init_global(&app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}

	memset(thread_tbl, 0, sizeof(thread_tbl));
	/* Start dataplane dispatcher worker threads */

	ofp_linux_pthread_create(thread_tbl,
				  &cpumask,
				  default_event_dispatcher,
				  ofp_eth_vlan_processing,
				  ODP_THREAD_CONTROL
				);

	/* other app code here.*/
	/* Start CLI */
	ofp_start_cli_thread(app_init_params.linux_core_id, params.conf_file);

	/* sysctl test thread */
	ofp_start_sysctl_thread(app_init_params.linux_core_id);

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");

	return 0;
}
示例#20
0
int ofp_term_global(void)
{
	int rc = 0;
	uint16_t i;
	struct ofp_ifnet *ifnet;

	ofp_stop();

	/* Terminate CLI thread*/
	CHECK_ERROR(ofp_stop_cli_thread(), rc);

#ifdef SP
	/* Terminate Netlink thread*/
	if (shm->nl_thread_is_running) {
		odph_linux_pthread_join(&shm->nl_thread, 1);
		shm->nl_thread_is_running = 0;
	}
#endif /* SP */

	/* Cleanup interfaces: queues and pktios*/
	for (i = 0; i < VXLAN_PORTS; i++) {
		ifnet = ofp_get_ifnet((uint16_t)i, 0);
		if (!ifnet) {
			OFP_ERR("Failed to locate interface for port %d", i);
			rc = -1;
			continue;
		}
		if (ifnet->if_state == OFP_IFT_STATE_FREE)
			continue;

		if (ifnet->pktio == ODP_PKTIO_INVALID)
			continue;

		OFP_INFO("Cleaning device '%s' addr %s", ifnet->if_name,
			ofp_print_mac((uint8_t *)ifnet->mac));

		CHECK_ERROR(odp_pktio_stop(ifnet->pktio), rc);
#ifdef SP
		close(ifnet->fd);
		odph_linux_pthread_join(ifnet->rx_tbl, 1);
		odph_linux_pthread_join(ifnet->tx_tbl, 1);
		ifnet->fd = -1;
#endif /*SP*/

		/* Multicasting. */
		ofp_igmp_domifdetach(ifnet);
		ifnet->ii_inet.ii_igmp = NULL;

		if (ifnet->loopq_def != ODP_QUEUE_INVALID) {
			if (odp_queue_destroy(ifnet->loopq_def) < 0) {
				OFP_ERR("Failed to destroy loop queue for %s",
					ifnet->if_name);
				rc = -1;
			}
			ifnet->loopq_def = ODP_QUEUE_INVALID;
		}
#ifdef SP
		if (ifnet->spq_def != ODP_QUEUE_INVALID) {
			cleanup_pkt_queue(ifnet->spq_def);
			if (odp_queue_destroy(ifnet->spq_def) < 0) {
				OFP_ERR("Failed to destroy slow path "
					"queue for %s", ifnet->if_name);
				rc = -1;
			}
			ifnet->spq_def = ODP_QUEUE_INVALID;
		}
#endif /*SP*/
		ifnet->outq_def = ODP_QUEUE_INVALID;

		if (ifnet->pktio != ODP_PKTIO_INVALID) {
			if (odp_pktio_close(ifnet->pktio) < 0) {
				OFP_ERR("Failed to destroy pktio for %s",
					ifnet->if_name);
				rc = -1;
			}
			ifnet->pktio = ODP_PKTIO_INVALID;
		}

		if (ifnet->inq_def != ODP_QUEUE_INVALID) {
			cleanup_pkt_queue(ifnet->inq_def);
			if (odp_queue_destroy(ifnet->inq_def) < 0) {
				OFP_ERR("Failed to destroy default input "
					"queue for %s", ifnet->if_name);
				rc = -1;
			}
			ifnet->inq_def = ODP_QUEUE_INVALID;
		}
	}

	CHECK_ERROR(ofp_clean_vxlan_interface_queue(), rc);

	if (ofp_term_post_global(SHM_PACKET_POOL_NAME)) {
		OFP_ERR("Failed to cleanup resources\n");
		rc = -1;
	}

	return rc;
}
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS], dispatcher_thread;
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpu_mask;
	char cpumaskstr[64];
	int cpu, first_cpu, i;
	struct pktio_thr_arg pktio_thr_args[MAX_WORKERS];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	memset(thread_tbl, 0, sizeof(thread_tbl));
	memset(pktio_thr_args, 0, sizeof(pktio_thr_args));

	core_count = odp_cpu_count();
	num_workers = core_count;
	first_cpu = 1;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	/*
	 * By default core #0 runs Linux kernel background tasks.
	 * Start mapping thread from core #1
	 */
	memset(&app_init_params, 0, sizeof(app_init_params));

	app_init_params.linux_core_id = 0;

	if (core_count <= 1) {
		OFP_ERR("Burst mode requires multiple cores.\n");
		exit(EXIT_FAILURE);
	}
	num_workers--;

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", first_cpu);

	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;
	app_init_params.pkt_hook[OFP_HOOK_LOCAL] = fastpath_local_hook;
	app_init_params.burst_recv_mode = 1;
	if (ofp_init_global(&app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}

	if (num_workers < params.if_count) {
		OFP_ERR("At least %u fastpath cores required.\n",
			  params.if_count);
		exit(EXIT_FAILURE);
	}

	for (i = 0; i < num_workers; ++i) {
		pktio_thr_args[i].pkt_func = ofp_eth_vlan_processing;
		pktio_thr_args[i].port = i % params.if_count;

		odp_cpumask_zero(&cpu_mask);
		cpu = first_cpu + i;
		odp_cpumask_set(&cpu_mask, cpu);
		odp_cpumask_to_str(&cpu_mask, cpumaskstr, sizeof(cpumaskstr));

		OFP_DBG("Starting pktio receive on core: %d port: %d\n",
			  cpu, pktio_thr_args[i].port);
		OFP_DBG("cpu mask: %s\n", cpumaskstr);

		ofp_linux_pthread_create(&thread_tbl[i],
					  &cpu_mask,
					  pkt_io_recv,
					  &pktio_thr_args[i],
					  ODP_THREAD_WORKER
					);
	}

	odp_cpumask_zero(&cpu_mask);
	odp_cpumask_set(&cpu_mask, app_init_params.linux_core_id);
	ofp_linux_pthread_create(&dispatcher_thread,
				  &cpu_mask,
				  event_dispatcher,
				  NULL,
				  ODP_THREAD_CONTROL
				);

	/* other app code here.*/
	/* Start CLI */
	ofp_start_cli_thread(app_init_params.linux_core_id, params.conf_file);

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");

	return 0;
}