// host stub function
void ops_par_loop_update_halo_kernel4_plus_2_a(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2) {

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c1,&t1);


  int  offs[3][2];
  ops_arg args[3] = { arg0, arg1, arg2};



  #ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args,3,range,80)) return;
  #endif

  ops_timing_realloc(80,"update_halo_kernel4_plus_2_a");
  OPS_kernels[80].count++;

  //compute locally allocated range for the sub-block

  int start[2];
  int end[2];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<2; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<2; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "update_halo_kernel4_plus_2_a");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off2D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0]*1;  //unit step in x dimension
  offs[1][1] = off2D(1, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][0];



  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = args[0].dat->elem_size;
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int dat1 = args[1].dat->elem_size;


  #ifdef _OPENMP
  int nthreads = omp_get_max_threads( );
  #else
  int nthreads = 1;
  #endif
  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  xdim1 = args[1].dat->size[0]*args[1].dat->dim;

  ops_H_D_exchanges_host(args, 3);

  //Halo Exchanges
  ops_halo_exchanges(args,3,range);


  ops_timers_core(&c2,&t2);
  OPS_kernels[80].mpi_time += t2-t1;


  #pragma omp parallel for
  for ( int thr=0; thr<nthreads; thr++ ){

    int y_size = end[1]-start[1];
    char *p_a[3];

    int start_i = start[1] + ((y_size-1)/nthreads+1)*thr;
    int finish_i = start[1] + MIN(((y_size-1)/nthreads+1)*(thr+1),y_size);

    //get address per thread
    int start0 = start[0];
    int start1 = start_i;

    //set up initial pointers 
    int d_m[OPS_MAX_DIM];
    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
    #endif //OPS_MPI
    int base0 = dat0 * 1 * 
    (start0 * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
    base0 = base0+ dat0 *
      args[0].dat->size[0] *
      (start1 * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
    p_a[0] = (char *)args[0].data + base0;

    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d];
    #endif //OPS_MPI
    int base1 = dat1 * 1 * 
    (start0 * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]);
    base1 = base1+ dat1 *
      args[1].dat->size[0] *
      (start1 * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]);
    p_a[1] = (char *)args[1].data + base1;

    p_a[2] = (char *)args[2].data;


    for ( int n_y=start_i; n_y<finish_i; n_y++ ){
      for ( int n_x=start[0]; n_x<start[0]+(end[0]-start[0])/SIMD_VEC; n_x++ ){
        //call kernel function, passing in pointers to data -vectorised
        #pragma simd
        for ( int i=0; i<SIMD_VEC; i++ ){
          update_halo_kernel4_plus_2_a(  (double * )p_a[0]+ i*1, (double * )p_a[1]+ i*1, (int * )p_a[2] );

        }

        //shift pointers to data x direction
        p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
        p_a[1]= p_a[1] + (dat1 * off1_0)*SIMD_VEC;
      }

      for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
        //call kernel function, passing in pointers to data - remainder
        update_halo_kernel4_plus_2_a(  (double * )p_a[0], (double * )p_a[1], (int * )p_a[2] );


        //shift pointers to data x direction
        p_a[0]= p_a[0] + (dat0 * off0_0);
        p_a[1]= p_a[1] + (dat1 * off1_0);
      }

      //shift pointers to data y direction
      p_a[0]= p_a[0] + (dat0 * off0_1);
      p_a[1]= p_a[1] + (dat1 * off1_1);
    }
  }

  ops_timers_core(&c1,&t1);
  OPS_kernels[80].time += t1-t2;

  ops_set_dirtybit_host(args, 3);

  ops_set_halo_dirtybit3(&args[0],range);
  ops_set_halo_dirtybit3(&args[1],range);

  //Update kernel record
  ops_timers_core(&c2,&t2);
  OPS_kernels[80].mpi_time += t2-t1;
  OPS_kernels[80].transfer += ops_compute_transfer(dim, range, &arg0);
  OPS_kernels[80].transfer += ops_compute_transfer(dim, range, &arg1);
}
// host stub function
void ops_par_loop_mblock_populate_kernel(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1) {

  char *p_a[2];
  int  offs[2][2];
  ops_arg args[2] = { arg0, arg1};



  ops_timing_realloc(0,"mblock_populate_kernel");
  OPS_kernels[0].count++;

  //compute locally allocated range for the sub-block
  int start[2];
  int end[2];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<2; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<2; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "mblock_populate_kernel");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off2D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];


  int arg_idx[2];
  #ifdef OPS_MPI
  arg_idx[0] = sb->decomp_disp[0]+start[0];
  arg_idx[1] = sb->decomp_disp[1]+start[1];
  #else //OPS_MPI
  arg_idx[0] = start[0];
  arg_idx[1] = start[1];
  #endif //OPS_MPI

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c2,&t2);

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = args[0].dat->elem_size;

  //set up initial pointers and exchange halos if necessary
  int d_m[OPS_MAX_DIM];
  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
  #endif //OPS_MPI
  int base0 = dat0 * 1 * 
    (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
  p_a[0] = (char *)args[0].data + base0;

  p_a[1] = (char *)arg_idx;



  ops_H_D_exchanges_host(args, 2);
  ops_halo_exchanges(args,2,range);

  ops_timers_core(&c1,&t1);
  OPS_kernels[0].mpi_time += t1-t2;

  xdim0 = args[0].dat->size[0]*args[0].dat->dim;

  int n_x;
  for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
    #pragma novector
    for( n_x=start[0]; n_x<start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x+=SIMD_VEC ) {
      //call kernel function, passing in pointers to data -vectorised
      for ( int i=0; i<SIMD_VEC; i++ ){
        mblock_populate_kernel(  (double *)p_a[0]+ i*1, (int *)p_a[1] );

        arg_idx[0]++;
      }

      //shift pointers to data x direction
      p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
    }

    for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
      //call kernel function, passing in pointers to data - remainder
      mblock_populate_kernel(  (double *)p_a[0], (int *)p_a[1] );


      //shift pointers to data x direction
      p_a[0]= p_a[0] + (dat0 * off0_0);
      arg_idx[0]++;
    }

    //shift pointers to data y direction
    p_a[0]= p_a[0] + (dat0 * off0_1);
    #ifdef OPS_MPI
    arg_idx[0] = sb->decomp_disp[0]+start[0];
    #else //OPS_MPI
    arg_idx[0] = start[0];
    #endif //OPS_MPI
    arg_idx[1]++;
  }
  ops_timers_core(&c2,&t2);
  OPS_kernels[0].time += t2-t1;
  ops_set_dirtybit_host(args, 2);
  ops_set_halo_dirtybit3(&args[0],range);

  //Update kernel record
  OPS_kernels[0].transfer += ops_compute_transfer(dim, range, &arg0);
}
// host stub function
void ops_par_loop_update_halo_kernel1_r2(char const *name, ops_block block,
                                         int dim, int *range, ops_arg arg0,
                                         ops_arg arg1, ops_arg arg2,
                                         ops_arg arg3, ops_arg arg4,
                                         ops_arg arg5, ops_arg arg6) {

  // Timing
  double t1, t2, c1, c2;

  int offs[7][2];
  ops_arg args[7] = {arg0, arg1, arg2, arg3, arg4, arg5, arg6};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 7, range, 55))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(55, "update_halo_kernel1_r2");
    OPS_kernels[55].count++;
    ops_timers_core(&c1, &t1);
  }

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif

  // compute locally allocated range for the sub-block

  int start[2];
  int end[2];
  int arg_idx[2];

#ifdef OPS_MPI
  if (!sb->owned)
    return;
  for (int n = 0; n < 2; n++) {
    start[n] = sb->decomp_disp[n];
    end[n] = sb->decomp_disp[n] + sb->decomp_size[n];
    if (start[n] >= range[2 * n]) {
      start[n] = 0;
    } else {
      start[n] = range[2 * n] - start[n];
    }
    if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0)
      start[n] = range[2 * n];
    if (end[n] >= range[2 * n + 1]) {
      end[n] = range[2 * n + 1] - sb->decomp_disp[n];
    } else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n] == MPI_PROC_NULL &&
        (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n]))
      end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]);
    if (end[n] < start[n])
      end[n] = start[n];
  }
#else
  for (int n = 0; n < 2; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
  }
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "update_halo_kernel1_r2");
#endif

  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off2D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];

  offs[1][0] = args[1].stencil->stride[0] * 1; // unit step in x dimension
  offs[1][1] =
      off2D(1, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][0];

  offs[2][0] = args[2].stencil->stride[0] * 1; // unit step in x dimension
  offs[2][1] =
      off2D(1, &start[0], &end[0], args[2].dat->size, args[2].stencil->stride) -
      offs[2][0];

  offs[3][0] = args[3].stencil->stride[0] * 1; // unit step in x dimension
  offs[3][1] =
      off2D(1, &start[0], &end[0], args[3].dat->size, args[3].stencil->stride) -
      offs[3][0];

  offs[4][0] = args[4].stencil->stride[0] * 1; // unit step in x dimension
  offs[4][1] =
      off2D(1, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][0];

  offs[5][0] = args[5].stencil->stride[0] * 1; // unit step in x dimension
  offs[5][1] =
      off2D(1, &start[0], &end[0], args[5].dat->size, args[5].stencil->stride) -
      offs[5][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size);
  int off2_0 = offs[2][0];
  int off2_1 = offs[2][1];
  int dat2 = (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size);
  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int dat3 = (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size);
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size);
  int off5_0 = offs[5][0];
  int off5_1 = offs[5][1];
  int dat5 = (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size);

  // Halo Exchanges
  ops_H_D_exchanges_host(args, 7);
  ops_halo_exchanges(args, 7, range);
  ops_H_D_exchanges_host(args, 7);

#ifdef _OPENMP
  int nthreads = omp_get_max_threads();
#else
  int nthreads = 1;
#endif
  xdim0 = args[0].dat->size[0];
  xdim1 = args[1].dat->size[0];
  xdim2 = args[2].dat->size[0];
  xdim3 = args[3].dat->size[0];
  xdim4 = args[4].dat->size[0];
  xdim5 = args[5].dat->size[0];

  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[55].mpi_time += t2 - t1;
  }

#pragma omp parallel for
  for (int thr = 0; thr < nthreads; thr++) {

    int y_size = end[1] - start[1];
    char *p_a[7];

    int start_i = start[1] + ((y_size - 1) / nthreads + 1) * thr;
    int finish_i =
        start[1] + MIN(((y_size - 1) / nthreads + 1) * (thr + 1), y_size);

    // get address per thread
    int start0 = start[0];
    int start1 = start_i;

    // set up initial pointers
    int d_m[OPS_MAX_DIM];
#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[0].dat->d_m[d];
#endif
    int base0 = dat0 * 1 * (start0 * args[0].stencil->stride[0] -
                            args[0].dat->base[0] - d_m[0]);
    base0 = base0 +
            dat0 * args[0].dat->size[0] * (start1 * args[0].stencil->stride[1] -
                                           args[0].dat->base[1] - d_m[1]);
    p_a[0] = (char *)args[0].data + base0;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[1].dat->d_m[d];
#endif
    int base1 = dat1 * 1 * (start0 * args[1].stencil->stride[0] -
                            args[1].dat->base[0] - d_m[0]);
    base1 = base1 +
            dat1 * args[1].dat->size[0] * (start1 * args[1].stencil->stride[1] -
                                           args[1].dat->base[1] - d_m[1]);
    p_a[1] = (char *)args[1].data + base1;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[2].dat->d_m[d] + OPS_sub_dat_list[args[2].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[2].dat->d_m[d];
#endif
    int base2 = dat2 * 1 * (start0 * args[2].stencil->stride[0] -
                            args[2].dat->base[0] - d_m[0]);
    base2 = base2 +
            dat2 * args[2].dat->size[0] * (start1 * args[2].stencil->stride[1] -
                                           args[2].dat->base[1] - d_m[1]);
    p_a[2] = (char *)args[2].data + base2;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[3].dat->d_m[d];
#endif
    int base3 = dat3 * 1 * (start0 * args[3].stencil->stride[0] -
                            args[3].dat->base[0] - d_m[0]);
    base3 = base3 +
            dat3 * args[3].dat->size[0] * (start1 * args[3].stencil->stride[1] -
                                           args[3].dat->base[1] - d_m[1]);
    p_a[3] = (char *)args[3].data + base3;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[4].dat->d_m[d];
#endif
    int base4 = dat4 * 1 * (start0 * args[4].stencil->stride[0] -
                            args[4].dat->base[0] - d_m[0]);
    base4 = base4 +
            dat4 * args[4].dat->size[0] * (start1 * args[4].stencil->stride[1] -
                                           args[4].dat->base[1] - d_m[1]);
    p_a[4] = (char *)args[4].data + base4;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[5].dat->d_m[d] + OPS_sub_dat_list[args[5].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[5].dat->d_m[d];
#endif
    int base5 = dat5 * 1 * (start0 * args[5].stencil->stride[0] -
                            args[5].dat->base[0] - d_m[0]);
    base5 = base5 +
            dat5 * args[5].dat->size[0] * (start1 * args[5].stencil->stride[1] -
                                           args[5].dat->base[1] - d_m[1]);
    p_a[5] = (char *)args[5].data + base5;

    p_a[6] = (char *)args[6].data;

    for (int n_y = start_i; n_y < finish_i; n_y++) {
      for (int n_x = start[0]; n_x < start[0] + (end[0] - start[0]) / SIMD_VEC;
           n_x++) {
// call kernel function, passing in pointers to data -vectorised
#pragma simd
        for (int i = 0; i < SIMD_VEC; i++) {
          update_halo_kernel1_r2(
              (double *)p_a[0] + i * 1 * 1, (double *)p_a[1] + i * 1 * 1,
              (double *)p_a[2] + i * 1 * 1, (double *)p_a[3] + i * 1 * 1,
              (double *)p_a[4] + i * 1 * 1, (double *)p_a[5] + i * 1 * 1,
              (int *)p_a[6]);
        }

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
        p_a[1] = p_a[1] + (dat1 * off1_0) * SIMD_VEC;
        p_a[2] = p_a[2] + (dat2 * off2_0) * SIMD_VEC;
        p_a[3] = p_a[3] + (dat3 * off3_0) * SIMD_VEC;
        p_a[4] = p_a[4] + (dat4 * off4_0) * SIMD_VEC;
        p_a[5] = p_a[5] + (dat5 * off5_0) * SIMD_VEC;
      }

      for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x < end[0]; n_x++) {
        // call kernel function, passing in pointers to data - remainder
        update_halo_kernel1_r2((double *)p_a[0], (double *)p_a[1],
                               (double *)p_a[2], (double *)p_a[3],
                               (double *)p_a[4], (double *)p_a[5],
                               (int *)p_a[6]);

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0);
        p_a[1] = p_a[1] + (dat1 * off1_0);
        p_a[2] = p_a[2] + (dat2 * off2_0);
        p_a[3] = p_a[3] + (dat3 * off3_0);
        p_a[4] = p_a[4] + (dat4 * off4_0);
        p_a[5] = p_a[5] + (dat5 * off5_0);
      }

      // shift pointers to data y direction
      p_a[0] = p_a[0] + (dat0 * off0_1);
      p_a[1] = p_a[1] + (dat1 * off1_1);
      p_a[2] = p_a[2] + (dat2 * off2_1);
      p_a[3] = p_a[3] + (dat3 * off3_1);
      p_a[4] = p_a[4] + (dat4 * off4_1);
      p_a[5] = p_a[5] + (dat5 * off5_1);
    }
  }

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[55].time += t1 - t2;
  }

  ops_set_dirtybit_host(args, 7);

  ops_set_halo_dirtybit3(&args[0], range);
  ops_set_halo_dirtybit3(&args[1], range);
  ops_set_halo_dirtybit3(&args[2], range);
  ops_set_halo_dirtybit3(&args[3], range);
  ops_set_halo_dirtybit3(&args[4], range);
  ops_set_halo_dirtybit3(&args[5], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[55].mpi_time += t2 - t1;
    OPS_kernels[55].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[55].transfer += ops_compute_transfer(dim, start, end, &arg1);
    OPS_kernels[55].transfer += ops_compute_transfer(dim, start, end, &arg2);
    OPS_kernels[55].transfer += ops_compute_transfer(dim, start, end, &arg3);
    OPS_kernels[55].transfer += ops_compute_transfer(dim, start, end, &arg4);
    OPS_kernels[55].transfer += ops_compute_transfer(dim, start, end, &arg5);
  }
}
// host stub function
void ops_par_loop_update_halo_kernel3_plus_4_a(char const *name,
                                               ops_block block, int dim,
                                               int *range, ops_arg arg0,
                                               ops_arg arg1, ops_arg arg2) {

  // Timing
  double t1, t2, c1, c2;

  char *p_a[3];
  int offs[3][2];
  ops_arg args[3] = {arg0, arg1, arg2};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 3, range, 33))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(33, "update_halo_kernel3_plus_4_a");
    OPS_kernels[33].count++;
    ops_timers_core(&c2, &t2);
  }

  // compute locally allocated range for the sub-block
  int start[2];
  int end[2];

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "update_halo_kernel3_plus_4_a");
#endif

  int arg_idx[2];
  int arg_idx_base[2];
#ifdef OPS_MPI
  if (compute_ranges(args, 3, block, range, start, end, arg_idx) < 0)
    return;
#else  // OPS_MPI
  for (int n = 0; n < 2; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
    arg_idx[n] = start[n];
  }
#endif // OPS_MPI
  for (int n = 0; n < 2; n++) {
    arg_idx_base[n] = arg_idx[n];
  }
  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off2D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];

  offs[1][0] = args[1].stencil->stride[0] * 1; // unit step in x dimension
  offs[1][1] =
      off2D(1, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size);

  // set up initial pointers and exchange halos if necessary
  int base0 = args[0].dat->base_offset +
              (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
                  start[0] * args[0].stencil->stride[0];
  base0 = base0 +
          (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
              args[0].dat->size[0] * start[1] * args[0].stencil->stride[1];
  p_a[0] = (char *)args[0].data + base0;

  int base1 = args[1].dat->base_offset +
              (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
                  start[0] * args[1].stencil->stride[0];
  base1 = base1 +
          (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
              args[1].dat->size[0] * start[1] * args[1].stencil->stride[1];
  p_a[1] = (char *)args[1].data + base1;

  p_a[2] = args[2].data;

  // initialize global variable with the dimension of dats
  xdim0 = args[0].dat->size[0];
  xdim1 = args[1].dat->size[0];

  // Halo Exchanges
  ops_H_D_exchanges_host(args, 3);
  ops_halo_exchanges(args, 3, range);
  ops_H_D_exchanges_host(args, 3);

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[33].mpi_time += t1 - t2;
  }

  int n_x;
  for (int n_y = start[1]; n_y < end[1]; n_y++) {
#pragma novector
    for (n_x = start[0];
         n_x < start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
         n_x += SIMD_VEC) {
// call kernel function, passing in pointers to data -vectorised
#pragma simd
      for (int i = 0; i < SIMD_VEC; i++) {
        update_halo_kernel3_plus_4_a((double *)p_a[0] + i * 1 * 1,
                                     (double *)p_a[1] + i * 1 * 1,
                                     (int *)p_a[2]);
      }

      // shift pointers to data x direction
      p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
      p_a[1] = p_a[1] + (dat1 * off1_0) * SIMD_VEC;
    }

    for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
         n_x < end[0]; n_x++) {
      // call kernel function, passing in pointers to data - remainder
      update_halo_kernel3_plus_4_a((double *)p_a[0], (double *)p_a[1],
                                   (int *)p_a[2]);

      // shift pointers to data x direction
      p_a[0] = p_a[0] + (dat0 * off0_0);
      p_a[1] = p_a[1] + (dat1 * off1_0);
    }

    // shift pointers to data y direction
    p_a[0] = p_a[0] + (dat0 * off0_1);
    p_a[1] = p_a[1] + (dat1 * off1_1);
  }
  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[33].time += t2 - t1;
  }
  ops_set_dirtybit_host(args, 3);
  ops_set_halo_dirtybit3(&args[0], range);
  ops_set_halo_dirtybit3(&args[1], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c1, &t1);
    OPS_kernels[33].mpi_time += t1 - t2;
    OPS_kernels[33].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[33].transfer += ops_compute_transfer(dim, start, end, &arg1);
  }
}
// host stub function
void ops_par_loop_left_bndcon(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1) {

  //Timing
  double t1,t2,c1,c2;

  char *p_a[2];
  int  offs[2][2];
  ops_arg args[2] = { arg0, arg1};



  #ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args,2,range,2)) return;
  #endif

  if (OPS_diags > 1) {
    ops_timing_realloc(2,"left_bndcon");
    OPS_kernels[2].count++;
    ops_timers_core(&c2,&t2);
  }

  //compute locally allocated range for the sub-block
  int start[2];
  int end[2];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<2; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else
  for ( int n=0; n<2; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif
  #ifdef OPS_DEBUG
  ops_register_args(args, "left_bndcon");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off2D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];


  int arg_idx[2];
  #ifdef OPS_MPI
  arg_idx[0] = sb->decomp_disp[0]+start[0];
  arg_idx[1] = sb->decomp_disp[1]+start[1];
  #else
  arg_idx[0] = start[0];
  arg_idx[1] = start[1];
  #endif

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);

  //set up initial pointers and exchange halos if necessary
  int base0 = args[0].dat->base_offset + (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) * start[0] * args[0].stencil->stride[0];
  base0 = base0+ (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
    args[0].dat->size[0] *
    start[1] * args[0].stencil->stride[1];
  p_a[0] = (char *)args[0].data + base0;

  p_a[1] = (char *)arg_idx;



  //initialize global variable with the dimension of dats
  xdim0 = args[0].dat->size[0];

  //Halo Exchanges
  ops_H_D_exchanges_host(args, 2);
  ops_halo_exchanges(args,2,range);
  ops_H_D_exchanges_host(args, 2);

  if (OPS_diags > 1) {
    ops_timers_core(&c1,&t1);
    OPS_kernels[2].mpi_time += t1-t2;
  }

  int n_x;
  for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
    #pragma novector
    for( n_x=start[0]; n_x<start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x+=SIMD_VEC ) {
      //call kernel function, passing in pointers to data -vectorised
      for ( int i=0; i<SIMD_VEC; i++ ){
        left_bndcon(  (double *)p_a[0]+ i*1*1, (int *)p_a[1] );

        arg_idx[0]++;
      }

      //shift pointers to data x direction
      p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
    }

    for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
      //call kernel function, passing in pointers to data - remainder
      left_bndcon(  (double *)p_a[0], (int *)p_a[1] );


      //shift pointers to data x direction
      p_a[0]= p_a[0] + (dat0 * off0_0);
      arg_idx[0]++;
    }

    //shift pointers to data y direction
    p_a[0]= p_a[0] + (dat0 * off0_1);
    #ifdef OPS_MPI
    arg_idx[0] = sb->decomp_disp[0]+start[0];
    #else
    arg_idx[0] = start[0];
    #endif
    arg_idx[1]++;
  }
  if (OPS_diags > 1) {
    ops_timers_core(&c2,&t2);
    OPS_kernels[2].time += t2-t1;
  }
  ops_set_dirtybit_host(args, 2);
  ops_set_halo_dirtybit3(&args[0],range);

  if (OPS_diags > 1) {
    //Update kernel record
    ops_timers_core(&c1,&t1);
    OPS_kernels[2].mpi_time += t1-t2;
    OPS_kernels[2].transfer += ops_compute_transfer(dim, start, end, &arg0);
  }
}
// host stub function
void ops_par_loop_tea_leaf_norm2_kernel(char const *name, ops_block block,
                                        int dim, int *range, ops_arg arg0,
                                        ops_arg arg1) {

  // Timing
  double t1, t2, c1, c2;

  int offs[2][2];
  ops_arg args[2] = {arg0, arg1};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 2, range, 39))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(39, "tea_leaf_norm2_kernel");
    OPS_kernels[39].count++;
    ops_timers_core(&c1, &t1);
  }

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif

  // compute locally allocated range for the sub-block

  int start[2];
  int end[2];
  int arg_idx[2];

#ifdef OPS_MPI
  if (!sb->owned)
    return;
  for (int n = 0; n < 2; n++) {
    start[n] = sb->decomp_disp[n];
    end[n] = sb->decomp_disp[n] + sb->decomp_size[n];
    if (start[n] >= range[2 * n]) {
      start[n] = 0;
    } else {
      start[n] = range[2 * n] - start[n];
    }
    if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0)
      start[n] = range[2 * n];
    if (end[n] >= range[2 * n + 1]) {
      end[n] = range[2 * n + 1] - sb->decomp_disp[n];
    } else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n] == MPI_PROC_NULL &&
        (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n]))
      end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]);
    if (end[n] < start[n])
      end[n] = start[n];
  }
#else
  for (int n = 0; n < 2; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
  }
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "tea_leaf_norm2_kernel");
#endif

  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off2D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);

#ifdef OPS_MPI
  double *arg1h =
      (double *)(((ops_reduction)args[1].data)->data +
                 ((ops_reduction)args[1].data)->size * block->index);
#else
  double *arg1h = (double *)(((ops_reduction)args[1].data)->data);
#endif
  // Halo Exchanges
  ops_H_D_exchanges_host(args, 2);
  ops_halo_exchanges(args, 2, range);
  ops_H_D_exchanges_host(args, 2);

#ifdef _OPENMP
  int nthreads = omp_get_max_threads();
#else
  int nthreads = 1;
#endif
  // allocate and initialise arrays for global reduction
  // assumes a max of MAX_REDUCT_THREADS threads with a cacche line size of 64
  // bytes
  double arg_gbl1[MAX(1, 64) * MAX_REDUCT_THREADS];
  for (int thr = 0; thr < nthreads; thr++) {
    for (int d = 0; d < 1; d++) {
      arg_gbl1[d + 64 * thr] = ZERO_double;
    }
  }
  xdim0 = args[0].dat->size[0];

  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[39].mpi_time += t2 - t1;
  }

#pragma omp parallel for
  for (int thr = 0; thr < nthreads; thr++) {

    int y_size = end[1] - start[1];
    char *p_a[2];

    int start_i = start[1] + ((y_size - 1) / nthreads + 1) * thr;
    int finish_i =
        start[1] + MIN(((y_size - 1) / nthreads + 1) * (thr + 1), y_size);

    // get address per thread
    int start0 = start[0];
    int start1 = start_i;

    // set up initial pointers
    int d_m[OPS_MAX_DIM];
#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[0].dat->d_m[d];
#endif
    int base0 = dat0 * 1 * (start0 * args[0].stencil->stride[0] -
                            args[0].dat->base[0] - d_m[0]);
    base0 = base0 +
            dat0 * args[0].dat->size[0] * (start1 * args[0].stencil->stride[1] -
                                           args[0].dat->base[1] - d_m[1]);
    p_a[0] = (char *)args[0].data + base0;

    p_a[1] = (char *)arg1h;

    for (int n_y = start_i; n_y < finish_i; n_y++) {
      for (int n_x = start[0]; n_x < start[0] + (end[0] - start[0]) / SIMD_VEC;
           n_x++) {
        // call kernel function, passing in pointers to data -vectorised
        for (int i = 0; i < SIMD_VEC; i++) {
          tea_leaf_norm2_kernel((const double *)p_a[0] + i * 1 * 1,
                                &arg_gbl1[64 * thr]);
        }

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
      }

      for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x < end[0]; n_x++) {
        // call kernel function, passing in pointers to data - remainder
        tea_leaf_norm2_kernel((const double *)p_a[0], &arg_gbl1[64 * thr]);

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0);
      }

      // shift pointers to data y direction
      p_a[0] = p_a[0] + (dat0 * off0_1);
    }
  }

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[39].time += t1 - t2;
  }

  // combine reduction data
  for (int thr = 0; thr < nthreads; thr++) {
    for (int d = 0; d < 1; d++) {
      arg1h[d] += arg_gbl1[64 * thr + d];
    }
  }
  ops_set_dirtybit_host(args, 2);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[39].mpi_time += t2 - t1;
    OPS_kernels[39].transfer += ops_compute_transfer(dim, start, end, &arg0);
  }
}
// host stub function
void ops_par_loop_advec_mom_kernel_y2(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3) {

  char *p_a[4];
  int  offs[4][2];
  ops_arg args[4] = { arg0, arg1, arg2, arg3};



  #ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args,4,range,18)) return;
  #endif

  ops_timing_realloc(18,"advec_mom_kernel_y2");
  OPS_kernels[18].count++;

  //compute locally allocated range for the sub-block
  int start[2];
  int end[2];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<2; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<2; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "advec_mom_kernel_y2");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off2D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0]*1;  //unit step in x dimension
  offs[1][1] = off2D(1, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][0];

  offs[2][0] = args[2].stencil->stride[0]*1;  //unit step in x dimension
  offs[2][1] = off2D(1, &start[0],
      &end[0],args[2].dat->size, args[2].stencil->stride) - offs[2][0];

  offs[3][0] = args[3].stencil->stride[0]*1;  //unit step in x dimension
  offs[3][1] = off2D(1, &start[0],
      &end[0],args[3].dat->size, args[3].stencil->stride) - offs[3][0];



  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c2,&t2);

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = args[0].dat->elem_size;
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int dat1 = args[1].dat->elem_size;
  int off2_0 = offs[2][0];
  int off2_1 = offs[2][1];
  int dat2 = args[2].dat->elem_size;
  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int dat3 = args[3].dat->elem_size;

  //set up initial pointers and exchange halos if necessary
  int d_m[OPS_MAX_DIM];
  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
  #endif //OPS_MPI
  int base0 = dat0 * 1 * 
    (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
  p_a[0] = (char *)args[0].data + base0;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d];
  #endif //OPS_MPI
  int base1 = dat1 * 1 * 
    (start[0] * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    (start[1] * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]);
  p_a[1] = (char *)args[1].data + base1;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[2].dat->d_m[d] + OPS_sub_dat_list[args[2].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[2].dat->d_m[d];
  #endif //OPS_MPI
  int base2 = dat2 * 1 * 
    (start[0] * args[2].stencil->stride[0] - args[2].dat->base[0] - d_m[0]);
  base2 = base2+ dat2 *
    args[2].dat->size[0] *
    (start[1] * args[2].stencil->stride[1] - args[2].dat->base[1] - d_m[1]);
  p_a[2] = (char *)args[2].data + base2;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d];
  #endif //OPS_MPI
  int base3 = dat3 * 1 * 
    (start[0] * args[3].stencil->stride[0] - args[3].dat->base[0] - d_m[0]);
  base3 = base3+ dat3 *
    args[3].dat->size[0] *
    (start[1] * args[3].stencil->stride[1] - args[3].dat->base[1] - d_m[1]);
  p_a[3] = (char *)args[3].data + base3;


  ops_H_D_exchanges_host(args, 4);
  ops_halo_exchanges(args,4,range);
  ops_H_D_exchanges_host(args, 4);

  ops_timers_core(&c1,&t1);
  OPS_kernels[18].mpi_time += t1-t2;

  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  xdim1 = args[1].dat->size[0]*args[1].dat->dim;
  xdim2 = args[2].dat->size[0]*args[2].dat->dim;
  xdim3 = args[3].dat->size[0]*args[3].dat->dim;

  int n_x;
  for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
    #pragma novector
    for( n_x=start[0]; n_x<start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x+=SIMD_VEC ) {
      //call kernel function, passing in pointers to data -vectorised
      #pragma simd
      for ( int i=0; i<SIMD_VEC; i++ ){
        advec_mom_kernel_y2(  (double *)p_a[0]+ i*1, (double *)p_a[1]+ i*1, (double *)p_a[2]+ i*1,
           (double *)p_a[3]+ i*1 );

      }

      //shift pointers to data x direction
      p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
      p_a[1]= p_a[1] + (dat1 * off1_0)*SIMD_VEC;
      p_a[2]= p_a[2] + (dat2 * off2_0)*SIMD_VEC;
      p_a[3]= p_a[3] + (dat3 * off3_0)*SIMD_VEC;
    }

    for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
      //call kernel function, passing in pointers to data - remainder
      advec_mom_kernel_y2(  (double *)p_a[0], (double *)p_a[1], (double *)p_a[2],
           (double *)p_a[3] );


      //shift pointers to data x direction
      p_a[0]= p_a[0] + (dat0 * off0_0);
      p_a[1]= p_a[1] + (dat1 * off1_0);
      p_a[2]= p_a[2] + (dat2 * off2_0);
      p_a[3]= p_a[3] + (dat3 * off3_0);
    }

    //shift pointers to data y direction
    p_a[0]= p_a[0] + (dat0 * off0_1);
    p_a[1]= p_a[1] + (dat1 * off1_1);
    p_a[2]= p_a[2] + (dat2 * off2_1);
    p_a[3]= p_a[3] + (dat3 * off3_1);
  }
  ops_timers_core(&c2,&t2);
  OPS_kernels[18].time += t2-t1;
  ops_set_dirtybit_host(args, 4);
  ops_set_halo_dirtybit3(&args[0],range);
  ops_set_halo_dirtybit3(&args[1],range);

  //Update kernel record
  OPS_kernels[18].transfer += ops_compute_transfer(dim, range, &arg0);
  OPS_kernels[18].transfer += ops_compute_transfer(dim, range, &arg1);
  OPS_kernels[18].transfer += ops_compute_transfer(dim, range, &arg2);
  OPS_kernels[18].transfer += ops_compute_transfer(dim, range, &arg3);
}
// host stub function
void ops_par_loop_poisson_kernel_populate(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3,
 ops_arg arg4, ops_arg arg5) {

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c1,&t1);


  int  offs[6][2];
  ops_arg args[6] = { arg0, arg1, arg2, arg3, arg4, arg5};



  ops_timing_realloc(0,"poisson_kernel_populate");
  OPS_kernels[0].count++;

  //compute locally allocated range for the sub-block

  int start[2];
  int end[2];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<2; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<2; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "poisson_kernel_populate");
  #endif

  offs[3][0] = args[3].stencil->stride[0]*1;  //unit step in x dimension
  offs[3][1] = off2D(1, &start[0],
      &end[0],args[3].dat->size, args[3].stencil->stride) - offs[3][0];

  offs[4][0] = args[4].stencil->stride[0]*1;  //unit step in x dimension
  offs[4][1] = off2D(1, &start[0],
      &end[0],args[4].dat->size, args[4].stencil->stride) - offs[4][0];

  offs[5][0] = args[5].stencil->stride[0]*1;  //unit step in x dimension
  offs[5][1] = off2D(1, &start[0],
      &end[0],args[5].dat->size, args[5].stencil->stride) - offs[5][0];



  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int dat3 = args[3].dat->elem_size;
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int dat4 = args[4].dat->elem_size;
  int off5_0 = offs[5][0];
  int off5_1 = offs[5][1];
  int dat5 = args[5].dat->elem_size;


  #ifdef _OPENMP
  int nthreads = omp_get_max_threads( );
  #else
  int nthreads = 1;
  #endif
  xdim3 = args[3].dat->size[0]*args[3].dat->dim;
  xdim4 = args[4].dat->size[0]*args[4].dat->dim;
  xdim5 = args[5].dat->size[0]*args[5].dat->dim;

  ops_H_D_exchanges_host(args, 6);

  //Halo Exchanges
  ops_halo_exchanges(args,6,range);


  ops_timers_core(&c2,&t2);
  OPS_kernels[0].mpi_time += t2-t1;


  #pragma omp parallel for
  for ( int thr=0; thr<nthreads; thr++ ){

    int y_size = end[1]-start[1];
    char *p_a[6];

    int start_i = start[1] + ((y_size-1)/nthreads+1)*thr;
    int finish_i = start[1] + MIN(((y_size-1)/nthreads+1)*(thr+1),y_size);

    //get address per thread
    int start0 = start[0];
    int start1 = start_i;

    int arg_idx[2];
    #ifdef OPS_MPI
    arg_idx[0] = sb->decomp_disp[0]+start0;
    arg_idx[1] = sb->decomp_disp[1]+start1;
    #else //OPS_MPI
    arg_idx[0] = start0;
    arg_idx[1] = start1;
    #endif //OPS_MPI
    //set up initial pointers 
    int d_m[OPS_MAX_DIM];
    p_a[0] = (char *)args[0].data;

    p_a[1] = (char *)args[1].data;

    p_a[2] = (char *)arg_idx;

    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d];
    #endif //OPS_MPI
    int base3 = dat3 * 1 * 
    (start0 * args[3].stencil->stride[0] - args[3].dat->base[0] - d_m[0]);
    base3 = base3+ dat3 *
      args[3].dat->size[0] *
      (start1 * args[3].stencil->stride[1] - args[3].dat->base[1] - d_m[1]);
    p_a[3] = (char *)args[3].data + base3;

    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[4].dat->d_m[d];
    #endif //OPS_MPI
    int base4 = dat4 * 1 * 
    (start0 * args[4].stencil->stride[0] - args[4].dat->base[0] - d_m[0]);
    base4 = base4+ dat4 *
      args[4].dat->size[0] *
      (start1 * args[4].stencil->stride[1] - args[4].dat->base[1] - d_m[1]);
    p_a[4] = (char *)args[4].data + base4;

    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[5].dat->d_m[d] + OPS_sub_dat_list[args[5].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[5].dat->d_m[d];
    #endif //OPS_MPI
    int base5 = dat5 * 1 * 
    (start0 * args[5].stencil->stride[0] - args[5].dat->base[0] - d_m[0]);
    base5 = base5+ dat5 *
      args[5].dat->size[0] *
      (start1 * args[5].stencil->stride[1] - args[5].dat->base[1] - d_m[1]);
    p_a[5] = (char *)args[5].data + base5;


    for ( int n_y=start_i; n_y<finish_i; n_y++ ){
      for ( int n_x=start[0]; n_x<start[0]+(end[0]-start[0])/SIMD_VEC; n_x++ ){
        //call kernel function, passing in pointers to data -vectorised
        for ( int i=0; i<SIMD_VEC; i++ ){
          poisson_kernel_populate(  (int * )p_a[0], (int * )p_a[1], arg_idx,
           (double * )p_a[3]+ i*1, (double * )p_a[4]+ i*1, (double * )p_a[5]+ i*1 );

          arg_idx[0]++;
        }

        //shift pointers to data x direction
        p_a[3]= p_a[3] + (dat3 * off3_0)*SIMD_VEC;
        p_a[4]= p_a[4] + (dat4 * off4_0)*SIMD_VEC;
        p_a[5]= p_a[5] + (dat5 * off5_0)*SIMD_VEC;
      }

      for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
        //call kernel function, passing in pointers to data - remainder
        poisson_kernel_populate(  (int * )p_a[0], (int * )p_a[1], arg_idx,
           (double * )p_a[3], (double * )p_a[4], (double * )p_a[5] );


        //shift pointers to data x direction
        p_a[3]= p_a[3] + (dat3 * off3_0);
        p_a[4]= p_a[4] + (dat4 * off4_0);
        p_a[5]= p_a[5] + (dat5 * off5_0);
        arg_idx[0]++;
      }

      //shift pointers to data y direction
      p_a[3]= p_a[3] + (dat3 * off3_1);
      p_a[4]= p_a[4] + (dat4 * off4_1);
      p_a[5]= p_a[5] + (dat5 * off5_1);
      #ifdef OPS_MPI
      arg_idx[0] = sb->decomp_disp[0]+start0;
      #else //OPS_MPI
      arg_idx[0] = start0;
      #endif //OPS_MPI
      arg_idx[1]++;
    }
  }

  ops_timers_core(&c1,&t1);
  OPS_kernels[0].time += t1-t2;

  ops_set_dirtybit_host(args, 6);

  ops_set_halo_dirtybit3(&args[3],range);
  ops_set_halo_dirtybit3(&args[4],range);
  ops_set_halo_dirtybit3(&args[5],range);

  //Update kernel record
  ops_timers_core(&c2,&t2);
  OPS_kernels[0].mpi_time += t2-t1;
  OPS_kernels[0].transfer += ops_compute_transfer(dim, range, &arg3);
  OPS_kernels[0].transfer += ops_compute_transfer(dim, range, &arg4);
  OPS_kernels[0].transfer += ops_compute_transfer(dim, range, &arg5);
}
// host stub function
void ops_par_loop_field_summary_kernel(char const *name, ops_block block,
                                       int dim, int *range, ops_arg arg0,
                                       ops_arg arg1, ops_arg arg2, ops_arg arg3,
                                       ops_arg arg4, ops_arg arg5, ops_arg arg6,
                                       ops_arg arg7, ops_arg arg8, ops_arg arg9,
                                       ops_arg arg10) {

  // Timing
  double t1, t2, c1, c2;

  int offs[11][2];
  ops_arg args[11] = {arg0, arg1, arg2, arg3, arg4, arg5,
                      arg6, arg7, arg8, arg9, arg10};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 11, range, 49))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(49, "field_summary_kernel");
    OPS_kernels[49].count++;
    ops_timers_core(&c1, &t1);
  }

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif

  // compute locally allocated range for the sub-block

  int start[2];
  int end[2];
  int arg_idx[2];

#ifdef OPS_MPI
  if (!sb->owned)
    return;
  for (int n = 0; n < 2; n++) {
    start[n] = sb->decomp_disp[n];
    end[n] = sb->decomp_disp[n] + sb->decomp_size[n];
    if (start[n] >= range[2 * n]) {
      start[n] = 0;
    } else {
      start[n] = range[2 * n] - start[n];
    }
    if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0)
      start[n] = range[2 * n];
    if (end[n] >= range[2 * n + 1]) {
      end[n] = range[2 * n + 1] - sb->decomp_disp[n];
    } else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n] == MPI_PROC_NULL &&
        (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n]))
      end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]);
    if (end[n] < start[n])
      end[n] = start[n];
  }
#else
  for (int n = 0; n < 2; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
  }
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "field_summary_kernel");
#endif

  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off2D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];

  offs[1][0] = args[1].stencil->stride[0] * 1; // unit step in x dimension
  offs[1][1] =
      off2D(1, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][0];

  offs[2][0] = args[2].stencil->stride[0] * 1; // unit step in x dimension
  offs[2][1] =
      off2D(1, &start[0], &end[0], args[2].dat->size, args[2].stencil->stride) -
      offs[2][0];

  offs[3][0] = args[3].stencil->stride[0] * 1; // unit step in x dimension
  offs[3][1] =
      off2D(1, &start[0], &end[0], args[3].dat->size, args[3].stencil->stride) -
      offs[3][0];

  offs[4][0] = args[4].stencil->stride[0] * 1; // unit step in x dimension
  offs[4][1] =
      off2D(1, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][0];

  offs[5][0] = args[5].stencil->stride[0] * 1; // unit step in x dimension
  offs[5][1] =
      off2D(1, &start[0], &end[0], args[5].dat->size, args[5].stencil->stride) -
      offs[5][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size);
  int off2_0 = offs[2][0];
  int off2_1 = offs[2][1];
  int dat2 = (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size);
  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int dat3 = (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size);
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size);
  int off5_0 = offs[5][0];
  int off5_1 = offs[5][1];
  int dat5 = (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size);

#ifdef OPS_MPI
  double *arg6h =
      (double *)(((ops_reduction)args[6].data)->data +
                 ((ops_reduction)args[6].data)->size * block->index);
#else
  double *arg6h = (double *)(((ops_reduction)args[6].data)->data);
#endif
#ifdef OPS_MPI
  double *arg7h =
      (double *)(((ops_reduction)args[7].data)->data +
                 ((ops_reduction)args[7].data)->size * block->index);
#else
  double *arg7h = (double *)(((ops_reduction)args[7].data)->data);
#endif
#ifdef OPS_MPI
  double *arg8h =
      (double *)(((ops_reduction)args[8].data)->data +
                 ((ops_reduction)args[8].data)->size * block->index);
#else
  double *arg8h = (double *)(((ops_reduction)args[8].data)->data);
#endif
#ifdef OPS_MPI
  double *arg9h =
      (double *)(((ops_reduction)args[9].data)->data +
                 ((ops_reduction)args[9].data)->size * block->index);
#else
  double *arg9h = (double *)(((ops_reduction)args[9].data)->data);
#endif
#ifdef OPS_MPI
  double *arg10h =
      (double *)(((ops_reduction)args[10].data)->data +
                 ((ops_reduction)args[10].data)->size * block->index);
#else
  double *arg10h = (double *)(((ops_reduction)args[10].data)->data);
#endif
  // Halo Exchanges
  ops_H_D_exchanges_host(args, 11);
  ops_halo_exchanges(args, 11, range);
  ops_H_D_exchanges_host(args, 11);

#ifdef _OPENMP
  int nthreads = omp_get_max_threads();
#else
  int nthreads = 1;
#endif
  // allocate and initialise arrays for global reduction
  // assumes a max of MAX_REDUCT_THREADS threads with a cacche line size of 64
  // bytes
  double arg_gbl6[MAX(1, 64) * MAX_REDUCT_THREADS];
  double arg_gbl7[MAX(1, 64) * MAX_REDUCT_THREADS];
  double arg_gbl8[MAX(1, 64) * MAX_REDUCT_THREADS];
  double arg_gbl9[MAX(1, 64) * MAX_REDUCT_THREADS];
  double arg_gbl10[MAX(1, 64) * MAX_REDUCT_THREADS];
  for (int thr = 0; thr < nthreads; thr++) {
    for (int d = 0; d < 1; d++) {
      arg_gbl6[d + 64 * thr] = ZERO_double;
    }
    for (int d = 0; d < 1; d++) {
      arg_gbl7[d + 64 * thr] = ZERO_double;
    }
    for (int d = 0; d < 1; d++) {
      arg_gbl8[d + 64 * thr] = ZERO_double;
    }
    for (int d = 0; d < 1; d++) {
      arg_gbl9[d + 64 * thr] = ZERO_double;
    }
    for (int d = 0; d < 1; d++) {
      arg_gbl10[d + 64 * thr] = ZERO_double;
    }
  }
  xdim0 = args[0].dat->size[0];
  xdim1 = args[1].dat->size[0];
  xdim2 = args[2].dat->size[0];
  xdim3 = args[3].dat->size[0];
  xdim4 = args[4].dat->size[0];
  xdim5 = args[5].dat->size[0];

  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[49].mpi_time += t2 - t1;
  }

#pragma omp parallel for
  for (int thr = 0; thr < nthreads; thr++) {

    int y_size = end[1] - start[1];
    char *p_a[11];

    int start_i = start[1] + ((y_size - 1) / nthreads + 1) * thr;
    int finish_i =
        start[1] + MIN(((y_size - 1) / nthreads + 1) * (thr + 1), y_size);

    // get address per thread
    int start0 = start[0];
    int start1 = start_i;

    // set up initial pointers
    int d_m[OPS_MAX_DIM];
#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[0].dat->d_m[d];
#endif
    int base0 = dat0 * 1 * (start0 * args[0].stencil->stride[0] -
                            args[0].dat->base[0] - d_m[0]);
    base0 = base0 +
            dat0 * args[0].dat->size[0] * (start1 * args[0].stencil->stride[1] -
                                           args[0].dat->base[1] - d_m[1]);
    p_a[0] = (char *)args[0].data + base0;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[1].dat->d_m[d];
#endif
    int base1 = dat1 * 1 * (start0 * args[1].stencil->stride[0] -
                            args[1].dat->base[0] - d_m[0]);
    base1 = base1 +
            dat1 * args[1].dat->size[0] * (start1 * args[1].stencil->stride[1] -
                                           args[1].dat->base[1] - d_m[1]);
    p_a[1] = (char *)args[1].data + base1;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[2].dat->d_m[d] + OPS_sub_dat_list[args[2].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[2].dat->d_m[d];
#endif
    int base2 = dat2 * 1 * (start0 * args[2].stencil->stride[0] -
                            args[2].dat->base[0] - d_m[0]);
    base2 = base2 +
            dat2 * args[2].dat->size[0] * (start1 * args[2].stencil->stride[1] -
                                           args[2].dat->base[1] - d_m[1]);
    p_a[2] = (char *)args[2].data + base2;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[3].dat->d_m[d];
#endif
    int base3 = dat3 * 1 * (start0 * args[3].stencil->stride[0] -
                            args[3].dat->base[0] - d_m[0]);
    base3 = base3 +
            dat3 * args[3].dat->size[0] * (start1 * args[3].stencil->stride[1] -
                                           args[3].dat->base[1] - d_m[1]);
    p_a[3] = (char *)args[3].data + base3;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[4].dat->d_m[d];
#endif
    int base4 = dat4 * 1 * (start0 * args[4].stencil->stride[0] -
                            args[4].dat->base[0] - d_m[0]);
    base4 = base4 +
            dat4 * args[4].dat->size[0] * (start1 * args[4].stencil->stride[1] -
                                           args[4].dat->base[1] - d_m[1]);
    p_a[4] = (char *)args[4].data + base4;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[5].dat->d_m[d] + OPS_sub_dat_list[args[5].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[5].dat->d_m[d];
#endif
    int base5 = dat5 * 1 * (start0 * args[5].stencil->stride[0] -
                            args[5].dat->base[0] - d_m[0]);
    base5 = base5 +
            dat5 * args[5].dat->size[0] * (start1 * args[5].stencil->stride[1] -
                                           args[5].dat->base[1] - d_m[1]);
    p_a[5] = (char *)args[5].data + base5;

    p_a[6] = (char *)arg6h;

    p_a[7] = (char *)arg7h;

    p_a[8] = (char *)arg8h;

    p_a[9] = (char *)arg9h;

    p_a[10] = (char *)arg10h;

    for (int n_y = start_i; n_y < finish_i; n_y++) {
      for (int n_x = start[0]; n_x < start[0] + (end[0] - start[0]) / SIMD_VEC;
           n_x++) {
        // call kernel function, passing in pointers to data -vectorised
        for (int i = 0; i < SIMD_VEC; i++) {
          field_summary_kernel((const double *)p_a[0] + i * 1 * 1,
                               (const double *)p_a[1] + i * 1 * 1,
                               (const double *)p_a[2] + i * 1 * 1,
                               (const double *)p_a[3] + i * 1 * 1,
                               (const double *)p_a[4] + i * 1 * 1,
                               (const double *)p_a[5] + i * 1 * 1,
                               &arg_gbl6[64 * thr], &arg_gbl7[64 * thr],
                               &arg_gbl8[64 * thr], &arg_gbl9[64 * thr],
                               &arg_gbl10[64 * thr]);
        }

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
        p_a[1] = p_a[1] + (dat1 * off1_0) * SIMD_VEC;
        p_a[2] = p_a[2] + (dat2 * off2_0) * SIMD_VEC;
        p_a[3] = p_a[3] + (dat3 * off3_0) * SIMD_VEC;
        p_a[4] = p_a[4] + (dat4 * off4_0) * SIMD_VEC;
        p_a[5] = p_a[5] + (dat5 * off5_0) * SIMD_VEC;
      }

      for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x < end[0]; n_x++) {
        // call kernel function, passing in pointers to data - remainder
        field_summary_kernel((const double *)p_a[0], (const double *)p_a[1],
                             (const double *)p_a[2], (const double *)p_a[3],
                             (const double *)p_a[4], (const double *)p_a[5],
                             &arg_gbl6[64 * thr], &arg_gbl7[64 * thr],
                             &arg_gbl8[64 * thr], &arg_gbl9[64 * thr],
                             &arg_gbl10[64 * thr]);

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0);
        p_a[1] = p_a[1] + (dat1 * off1_0);
        p_a[2] = p_a[2] + (dat2 * off2_0);
        p_a[3] = p_a[3] + (dat3 * off3_0);
        p_a[4] = p_a[4] + (dat4 * off4_0);
        p_a[5] = p_a[5] + (dat5 * off5_0);
      }

      // shift pointers to data y direction
      p_a[0] = p_a[0] + (dat0 * off0_1);
      p_a[1] = p_a[1] + (dat1 * off1_1);
      p_a[2] = p_a[2] + (dat2 * off2_1);
      p_a[3] = p_a[3] + (dat3 * off3_1);
      p_a[4] = p_a[4] + (dat4 * off4_1);
      p_a[5] = p_a[5] + (dat5 * off5_1);
    }
  }

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[49].time += t1 - t2;
  }

  // combine reduction data
  for (int thr = 0; thr < nthreads; thr++) {
    for (int d = 0; d < 1; d++) {
      arg6h[d] += arg_gbl6[64 * thr + d];
    }
    for (int d = 0; d < 1; d++) {
      arg7h[d] += arg_gbl7[64 * thr + d];
    }
    for (int d = 0; d < 1; d++) {
      arg8h[d] += arg_gbl8[64 * thr + d];
    }
    for (int d = 0; d < 1; d++) {
      arg9h[d] += arg_gbl9[64 * thr + d];
    }
    for (int d = 0; d < 1; d++) {
      arg10h[d] += arg_gbl10[64 * thr + d];
    }
  }
  ops_set_dirtybit_host(args, 11);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[49].mpi_time += t2 - t1;
    OPS_kernels[49].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[49].transfer += ops_compute_transfer(dim, start, end, &arg1);
    OPS_kernels[49].transfer += ops_compute_transfer(dim, start, end, &arg2);
    OPS_kernels[49].transfer += ops_compute_transfer(dim, start, end, &arg3);
    OPS_kernels[49].transfer += ops_compute_transfer(dim, start, end, &arg4);
    OPS_kernels[49].transfer += ops_compute_transfer(dim, start, end, &arg5);
  }
}