smfFile *
smf_construct_smfFile(smfFile * tofill, int ndfid, int isSc2store,
                      int isTstream, const char * name,
                      int * status ) {

  smfFile * file;

  file = tofill;
  if (*status != SAI__OK) return file;

  if (tofill == NULL) {
    file = smf_create_smfFile( status );
  }

  if (*status == SAI__OK) {

    file->ndfid = ndfid;
    file->isSc2store = isSc2store;
    file->isTstream = isTstream;
    if (name != NULL) {
      one_strlcpy( file->name, name, sizeof(file->name), status);
    } else {
      (file->name)[0] = '\0';
    }
  }
  return file;
}
示例#2
0
static size_t
smf__addto_sortinfo ( const smfData * indata, smfSortInfo allinfo[], size_t this_index,
                      size_t counter, const char * type, int *status ) {
  smfSortInfo * sortinfo = NULL;

  if (*status != SAI__OK) return counter;

  /* store the name and time in the struct */
  sortinfo = &(allinfo[counter]);
  one_strlcpy( sortinfo->name, indata->file->name, sizeof(sortinfo->name),
               status );
  smf_find_dateobs( indata->hdr, &(sortinfo->sortval), NULL, status );
  msgOutiff(MSG__DEBUG, " ", "%s file: %s",status,
            type, indata->file->name);
  sortinfo->index = this_index;
  counter++;
  return counter;
}
示例#3
0
void smf_stripsuffix( const char *instr, const char *suffix,
                      char *outstr, int *status) {

  /* Local Variables */
  int added;                    /* Number of names added to group */
  int flag;                     /* Flag */
  char grpex[GRP__SZNAM+1];     /* String for holding grpex */
  Grp *inname=NULL;             /* 1-element group to hold input string */
  size_t len;                   /* Length of buffer */
  size_t msize;                 /* Size of group */
  Grp *outname = NULL;          /* 1-element group to hold output string */
  char *pname=NULL;             /* Poiner to name */
  const char *p;                /* Pointer to first character after next "/" */
  const char *q;                /* Pointer to next "/" */

  /* Main routine */
  if (*status != SAI__OK) return;

  inname = grpNew( "GRP", status );
  outname = grpNew( "GRP", status );

  p = instr;
  q = strchr( p, '/' );
  while( q ) {
     p = q + 1;
     q = strchr( p, '/' );
  }

  grpPut1( inname, p, 1, status );

  len = sizeof(grpex);
  one_strlcpy( grpex, "*|", len, status );
  one_strlcat( grpex, suffix, len, status );
  one_strlcat( grpex, "||", len, status );

  grpGrpex( grpex, inname, outname, &msize, &added, &flag, status );
  pname = outstr;
  grpGet( outname, 1, 1, &pname, GRP__SZNAM, status );

  grpDelet( &inname, status );
  grpDelet( &outname, status );
}
smfHead *
smf_construct_smfHead( smfHead * tofill, inst_t instrument,
                       AstFrameSet * wcs, AstFrameSet * tswcs,
                       AstFitsChan * fitshdr,
                       JCMTState * allState, dim_t curframe,
                       const double instap[], dim_t nframes, double steptime,
                       double scanvel, smf_obsmode obsmode, smf_swmode swmode,
                       smf_obstype obstype, smf_obstype seqtype,
                       smf_inbeam_t inbeam, unsigned int ndet, double fplanex[],
                       double fplaney[], double detpos[], char *detname,
                       int dpazel, double tsys[], const char title[],
                       const char dlabel[], const char units[],
                       const double telpos[], char * ocsconfig,
                       const char obsidss[], int * status ) {

  smfHead * hdr = NULL;   /* Header components */

  hdr = tofill;
  if (*status != SAI__OK) return hdr;

  if (tofill == NULL) {
    hdr = smf_create_smfHead( status );
  }

  if (*status == SAI__OK) {
    hdr->instrument = instrument;
    hdr->wcs = wcs;
    hdr->tswcs = tswcs;
    hdr->fitshdr = fitshdr;
    hdr->curframe = curframe;
    hdr->nframes = nframes;
    hdr->allState = allState;
    hdr->state = &(allState[curframe]);
    hdr->ndet = ndet;
    hdr->fplanex = fplanex;
    hdr->fplaney = fplaney;
    hdr->detpos = detpos;
    hdr->detname = detname;
    hdr->dpazel = dpazel;
    hdr->tsys = tsys;
    hdr->isCloned = 0;
    hdr->instap[0] = instap[0];
    hdr->instap[1] = instap[1];
    hdr->telpos[0] = telpos[0];
    hdr->telpos[1] = telpos[1];
    hdr->telpos[2] = telpos[2];
    hdr->obsmode = obsmode;
    hdr->swmode = swmode;
    hdr->obstype = obstype;
    hdr->seqtype = seqtype;
    hdr->scanvel = scanvel;
    hdr->steptime= steptime;
    hdr->inbeam  = inbeam;
    hdr->ocsconfig = ocsconfig;

    /* Have to copy the string items in since the struct has a slot for them */
    if (units) one_strlcpy( hdr->units, units, sizeof(hdr->units), status );
    if (dlabel) one_strlcpy(hdr->dlabel, dlabel, sizeof(hdr->dlabel), status );
    if (title) one_strlcpy(hdr->title, title, sizeof(hdr->title), status );
    if (obsidss) one_strlcpy( hdr->obsidss, obsidss, sizeof(hdr->obsidss), status );

  }

  return hdr;
}
示例#5
0
void smf_write_itermap( ThrWorkForce *wf, const double *map, const double *mapvar,
                        const smf_qual_t *mapqua, dim_t msize,
                        const Grp *iterrootgrp, size_t contchunk, int iter,
                        const int *lbnd_out, const int *ubnd_out,
                        AstFrameSet *outfset, const smfHead *hdr,
                        const smfArray *qua, int *status ) {

  int flags;                  /* Flags indicating required NDF components */
  Grp *mgrp=NULL;             /* Temporary group to hold map name */
  smfData *imapdata=NULL;     /* smfData for this iteration map */
  char name[GRP__SZNAM+1];    /* Buffer for storing name */
  char *pname=NULL;           /* Poiner to name */
  char tmpname[GRP__SZNAM+1]; /* temp name buffer */
  char tempstr[20];

  if( *status != SAI__OK ) return;

  if( !map || !mapvar || !iterrootgrp || !lbnd_out || !ubnd_out || !outfset ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": NULL inputs supplied", status );
    return;
  }

  if( hdr && !qua ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": hdr supplied but qua is NULL", status );
    return;
  }

  /* Create a name for this iteration map, take into
     account the chunk number. Only required if we are
     using a single output container. */

  pname = tmpname;
  grpGet( iterrootgrp, 1, 1, &pname, sizeof(tmpname), status );
  one_strlcpy( name, tmpname, sizeof(name), status );
  one_strlcat( name, ".", sizeof(name), status );

  /* Continuous chunk number */
  sprintf(tempstr, "CH%02zd", contchunk);
  one_strlcat( name, tempstr, sizeof(name), status );

  /* Iteration number */
  sprintf( tempstr, "I%03i", iter+1 );
  one_strlcat( name, tempstr, sizeof(name), status );
  mgrp = grpNew( "itermap", status );
  grpPut1( mgrp, name, 0, status );

  msgOutf( "", "*** Writing map from this iteration to %s", status,
           name );

  flags = SMF__MAP_VAR;
  if( mapqua ) flags |= SMF__MAP_QUAL;

  smf_open_newfile ( wf, mgrp, 1, SMF__DOUBLE, 2, lbnd_out,
                     ubnd_out, flags, &imapdata, status);

  /* Copy over the signal and variance maps */
  if( *status == SAI__OK ) {
    memcpy( imapdata->pntr[0], map, msize*sizeof(*map) );
    memcpy( imapdata->pntr[1], mapvar, msize*sizeof(*mapvar) );
    if( mapqua ) memcpy( imapdata->qual, mapqua, msize*sizeof(*mapqua) );
  }

  /* Write out a FITS header */
  if( (*status == SAI__OK) && hdr && hdr->allState ) {
    AstFitsChan *fitschan=NULL;
    JCMTState *allState = hdr->allState;
    char *obsidss=NULL;
    char obsidssbuf[SZFITSTR];
    double iter_nboloeff;
    size_t nmap;
    size_t ngood_tslices;
    dim_t ntslice;                /* Number of time slices */

    fitschan = astFitsChan ( NULL, NULL, " " );

    obsidss = smf_getobsidss( hdr->fitshdr,
                              NULL, 0, obsidssbuf,
                              sizeof(obsidssbuf), status );
    if( obsidss ) {
      atlPtfts( fitschan, "OBSIDSS", obsidss,
                "Unique observation subsys identifier", status );
    }
    atlPtfti( fitschan, "SEQSTART", allState[0].rts_num,
              "RTS index number of first frame", status );

    ntslice = hdr->nframes;

    atlPtfti( fitschan, "SEQEND", allState[ntslice-1].rts_num,
              "RTS index number of last frame", status );

    /* calculate the effective number of bolometers for this
       iteration */
    smf_qualstats_model( wf, SMF__QFAM_TSERIES, 1, qua, NULL, NULL, &nmap,
                         NULL, NULL, &ngood_tslices, NULL, NULL, status );

    iter_nboloeff = (double)nmap / (double)ngood_tslices;
    atlPtftd( fitschan, "NBOLOEFF", iter_nboloeff,
              "Effective bolometer count", status );

    kpgPtfts( imapdata->file->ndfid, fitschan, status );

    if( fitschan ) fitschan = astAnnul( fitschan );
  }

  /* Write WCS (protecting the pointer dereference) */
  smf_set_moving(outfset,NULL,status);
  if (*status == SAI__OK && imapdata) {
    ndfPtwcs( outfset, imapdata->file->ndfid, status );
  }

  /* Clean up */
  if( mgrp ) grpDelet( &mgrp, status );
  smf_close_file( wf, &imapdata, status );
}
示例#6
0
void smf_write_bolomap( ThrWorkForce *wf, smfArray *res, smfArray *lut,
                        smfArray *qua, smfDIMMData *dat, dim_t msize,
                        const Grp *bolrootgrp, int varmapmethod,
                        const int *lbnd_out, const int *ubnd_out,
                        AstFrameSet *outfset, int *status ) {

  int addtomap=0;               /* Set if adding to existing map */
  size_t bstride;               /* Bolometer stride */
  double *curmap=NULL;          /* Pointer to current map being rebinned */
  double *curvar=NULL;          /* Pointer to variance associate with curmap */
  dim_t dsize;                  /* Size of data arrays in containers */
  size_t idx=0;                 /* index within subgroup */
  size_t k;                     /* loop counter */
  int *lut_data=NULL;           /* Pointer to DATA component of lut */
  char name[GRP__SZNAM+1];      /* Buffer for storing names */
  dim_t nbolo;                  /* Number of bolometers */
  size_t nbolomaps = 0;         /* Number of bolomaps written */
  char *pname=NULL;             /* Poiner to name */
  smf_qual_t *qua_data=NULL;    /* Pointer to DATA component of qua */
  double *res_data=NULL;        /* Pointer to DATA component of res */

  if( *status != SAI__OK ) return;

  if( !res || !lut || !qua || !dat || !bolrootgrp ||
      !lbnd_out || !ubnd_out || !outfset ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": NULL inputs supplied", status );
    return;
  }

  /* Loop over subgroup index (subarray) */
  for( idx=0; idx<res->ndat; idx++ ) {
    smf_qual_t *bolomask = NULL;
    double *bmapweight = NULL;
    double *bmapweightsq = NULL;
    int *bhitsmap = NULL;

    /* Pointers to everything we need */
    res_data = res->sdata[idx]->pntr[0];
    lut_data = lut->sdata[idx]->pntr[0];
    qua_data = qua->sdata[idx]->pntr[0];

    smf_get_dims( res->sdata[idx], NULL, NULL, &nbolo, NULL,
                  &dsize, &bstride, NULL, status );

    /* Make a copy of the quality at first time slice as a good
       bolo mask, and then set quality to SMF__Q_BADB. Later we
       will unset BADB for one bolo at a time to make individual
       maps. */

    bolomask = astMalloc( nbolo*sizeof(*bolomask) );
    bmapweight = astMalloc( msize*sizeof(*bmapweight) );
    bmapweightsq = astMalloc( msize*sizeof(*bmapweightsq) );
    bhitsmap = astMalloc( msize*sizeof(*bhitsmap) );

    if( *status == SAI__OK ) {
      for( k=0; k<nbolo; k++ ) {
        bolomask[k] = qua_data[k*bstride];
        qua_data[k*bstride] = SMF__Q_BADB;
      }

      /* Identify good bolos in the copied mask and produce a map */
      for( k=0; (k<nbolo)&&(*status==SAI__OK); k++ ) {
        if( !(bolomask[k]&SMF__Q_BADB) ) {
          Grp *mgrp=NULL;       /* Temporary group to hold map names */
          smfData *mapdata=NULL;/* smfData for new map */
          char tmpname[GRP__SZNAM+1]; /* temp name buffer */
          char thisbol[20];     /* name particular to this bolometer */
          size_t col, row;
          char subarray[10];

          nbolomaps++;

          /* Set the quality back to good for this single bolometer */
          qua_data[k*bstride] = bolomask[k];

          /* Create a name for the new map, take into account the
             chunk number and subarray. Only required if we are using a single
             output container. */
          pname = tmpname;
          grpGet( bolrootgrp, 1, 1, &pname, sizeof(tmpname), status );
          one_strlcpy( name, tmpname, sizeof(name), status );
          one_strlcat( name, ".", sizeof(name), status );

          /* Subarray, column and row. HDS does not care about case but we
             convert to upper case anyhow. */
          smf_find_subarray( res->sdata[idx]->hdr, subarray, sizeof(subarray),
                             NULL, status );
          if (*status == SAI__OK) {
            size_t len = strlen(subarray);
            size_t n = 0;
            for (n=0; n<len; n++) {
              subarray[n] = toupper(subarray[n]);
            }
          }

          col = (k % res->sdata[idx]->dims[1])+1;
          row = (k / res->sdata[idx]->dims[1])+1;

          sprintf( thisbol, "%3sC%02zuR%02zu",
                   subarray,
                   col,   /* x-coord */
                   row ); /* y-coord */

          one_strlcat( name, thisbol, sizeof(name), status );
          mgrp = grpNew( "bolomap", status );
          grpPut1( mgrp, name, 0, status );

          msgOutf( "", "*** Writing single bolo map %s", status,
                   name );

          /* Try to open an existing extention first. Create a new map
             array, and then later we'll add it to the existing
             one. If it isn't there, create it. */

          smf_open_file( mgrp, 1, "UPDATE", 0, &mapdata, status );

          if( *status == SAI__OK ) {
            /* Allocate memory for the new rebinned data */
            curmap = astCalloc( msize, sizeof(*curmap) );
            curvar = astCalloc( msize, sizeof(*curvar) );
            addtomap = 1;
          } else if( *status == DAT__NAMIN ) {
            /* Create a new extension */
            errAnnul( status );
            smf_open_newfile ( mgrp, 1, SMF__DOUBLE, 2, lbnd_out,
                               ubnd_out, SMF__MAP_VAR, &mapdata, status);

            /* Rebin directly into the newly mapped space */
            if( *status == SAI__OK ) {
              curmap = mapdata->pntr[0];
              curvar = mapdata->pntr[1];
              addtomap = 0;
            }
          }

          /* Rebin the data for this single bolometer. Don't care
             about variance weighting because all samples from
             same detector are about the same. */

          smf_rebinmap1( wf, res->sdata[idx],
                         dat->noi ? dat->noi[0]->sdata[idx] : NULL,
                         lut_data, 0, 0, 0, NULL, 0,
                         SMF__Q_GOOD, varmapmethod,
                         AST__REBININIT | AST__REBINEND,
                         curmap, bmapweight, bmapweightsq, bhitsmap,
                         curvar, msize, NULL, status );

          /* If required, add this new map to the existing one */
          if( addtomap ) {
            size_t i;
            double *oldmap=NULL;
            double *oldvar=NULL;
            double weight;

            if( *status == SAI__OK ) {

              oldmap = mapdata->pntr[0];
              oldvar = mapdata->pntr[1];

              for( i=0; i<msize; i++ ) {
                if( oldmap[i]==VAL__BADD ) {
                  /* No data in this pixel in the old map, just copy */
                  oldmap[i] = curmap[i];
                  oldvar[i] = curvar[i];
                } else if( curmap[i]!=VAL__BADD &&
                           oldvar[i]!=VAL__BADD && oldvar[i]!=0 &&
                           curvar[i]!=VAL__BADD && curvar[i]!=0 ) {
                  /* Both old and new values available */
                  weight = 1/oldvar[i] + 1/curvar[i];
                  oldmap[i] = (oldmap[i]/oldvar[i] + curmap[i]/curvar[i]) /
                    weight;
                  oldvar[i] = 1/weight;
                }
              }
            }

            /* Free up temporary arrays */
            curmap = astFree( curmap );
            curvar = astFree( curvar );
          }

          /* Write out COLNUM and ROWNUM to FITS header */
          if( *status == SAI__OK ) {
            AstFitsChan *fitschan=NULL;

            fitschan = astFitsChan ( NULL, NULL, " " );

            atlPtfti( fitschan, "COLNUM", col, "bolometer column", status);
            atlPtfti( fitschan, "ROWNUM", row, "bolometer row", status );
            atlPtfts( fitschan, "SUBARRAY", subarray, "Subarray identifier",
                      status );
            kpgPtfts( mapdata->file->ndfid, fitschan, status );

            if( fitschan ) fitschan = astAnnul( fitschan );


            /* Set the bolo to bad quality again */
            qua_data[k*bstride] = SMF__Q_BADB;

            /* Write WCS */
            smf_set_moving(outfset,NULL,status);
            ndfPtwcs( outfset, mapdata->file->ndfid, status );
          }

          /* Clean up */
          if( mgrp ) grpDelet( &mgrp, status );
          if( mapdata ) smf_close_file( &mapdata, status );

        }
      }

      /* Set quality back to its original state */
      for( k=0; k<nbolo; k++ ) {
        qua_data[k*bstride] = bolomask[k];
      }
    }

    /* Free up memory */
    bolomask = astFree( bolomask );
    bmapweight = astFree( bmapweight );
    bmapweightsq = astFree( bmapweightsq );
    bhitsmap = astFree( bhitsmap );
  }

  msgOutf( "", "*** Wrote %zu bolo maps", status, nbolomaps );

}
示例#7
0
void smf_get_projpar( AstSkyFrame *skyframe, const double skyref[2],
                      int moving, int autogrid, int nallpos,
                      const double * allpos, float telres, double map_pa,
                      double par[7], int * issparse,int *usedefs, int *status ) {

/* Local Variables */
   char reflat[ 41 ];    /* Reference latitude string */
   char reflon[ 41 ];    /* Reference longitude string */
   char usesys[ 41 ];    /* Output skyframe system */
   const char *deflat;   /* Default for REFLAT */
   const char *deflon;   /* Default for REFLON */
   const double fbpixsize = 6.0; /* Fallback pixel size if we have no other information */
   double autorot;       /* Autogrid default for CROTA parameter */
   double defsize[ 2 ];  /* Default pixel sizes in arc-seconds */
   double pixsize[ 2 ];  /* Pixel sizes in arc-seconds */
   double refpix[ 2 ];   /* New REFPIX values */
   double rdiam;         /* Diameter of bounding circle, in rads */
   int coin;             /* Are all points effectively co-incident? */
   int i;
   int nval;             /* Number of values supplied */
   int refine_crpix;     /* Should the pixel ref position be updated? */
   int sparse = 0;       /* Local definition of sparseness */
   int udefs = 0;        /* Flag for defaults used or not */

/* Check inherited status. */
   if( *status != SAI__OK ) return;

/* If the number of supplied positions is 0 or null pointer,
   disable autogrid */
   if( nallpos == 0 || !allpos ) autogrid = 0;

/* Get the output system */
   one_strlcpy( usesys, astGetC( skyframe, "SYSTEM"), sizeof(usesys),
                status );

/* Ensure the reference position in the returned SkyFrame is set to the
   first telescope base pointing position. */
   astSetD( skyframe, "SkyRef(1)", skyref[ 0 ] );
   astSetD( skyframe, "SkyRef(2)", skyref[ 1 ] );

/* If the target is moving, ensure the returned SkyFrame represents
   offsets from the first telescope base pointing position rather than
   absolute coords. */
   if( moving ) smf_set_moving( (AstFrame *) skyframe, NULL, status );

/* Set a flag indicating if all the points are co-incident. */
   coin = 0;

/* Set the sky axis values at the tangent point. If the target is moving,
   the tangent point is at (0,0) (i.e. it is at the origin of the offset
   coordinate system). If the target is not moving, the tangent point is
   at the position held in "skyref". */
   if( par ) {
      if( moving ){
         par[ 2 ] = 0.0;
         par[ 3 ] = 0.0;
      } else {
         par[ 2 ] = skyref[ 0 ];
         par[ 3 ] = skyref[ 1 ];
      }

/* If required, calculate the optimal projection parameters. If the target
   is moving, these refer to the offset coordinate system centred on the
   first time slice base pointing position, with north defined by the
   requested output coordinate system. The values found here are used as
   dynamic defaults for the environment parameter */
      if( autogrid ) {
         kpg1Opgrd( nallpos, allpos, strcmp( usesys, "AZEL" ), par, &rdiam,
                          status );

/* See if all the points are effectively co-incident (i.e. within an Airy
   disk). If so, we use default grid parameters that result in a grid of
   1x1 spatial pixels. The grid pixel sizes (par[4] and par[5]) are made
   larger than the area covered by the points in order to avoid points
   spanning two pixels. */
         if( rdiam < telres || nallpos < 3 ) {
            if( rdiam < 0.1*AST__DD2R/3600.0 ) rdiam = 0.1*AST__DD2R/3600.0;
            par[ 0 ] = 0.0;
            par[ 1 ] = 0.0;
            par[ 4 ] = -rdiam*4;
            par[ 5 ] = -par[ 4 ];
            par[ 6 ] = 0.0;

            coin = 1;

/* If the sky positions are not co-incident, and the automatic grid
   determination failed, we cannot use a grid, so warn the user. */
         } else if( par[ 0 ] == AST__BAD ) {
            msgOutif( MSG__NORM, " ", "   Automatic grid determination "
                           "failed: the detector samples do not form a "
                           "regular grid.", status );
         }
      }

/* If autogrid values were not found, use the following fixed default
   values. Do not override extenal defaults for pixel size. */
      if( !autogrid || ( autogrid && par[ 0 ] == AST__BAD ) ) {
         par[ 0 ] = 0.0;
         par[ 1 ] = 0.0;
         if (par[4] == AST__BAD || par[5] == AST__BAD ) {
           par[ 4 ] = (fbpixsize/3600.0)*AST__DD2R;
           par[ 5 ] = (fbpixsize/3600.0)*AST__DD2R;
         }
         par[ 6 ] = map_pa;
      }

/* Ensure the default pixel sizes have the correct signs. */
      if( par[ 4 ] != AST__BAD ) {
         if( !strcmp( usesys, "AZEL" ) ) {
            par[ 4 ] = fabs( par[ 4 ] );
         } else {
            par[ 4 ] = -fabs( par[ 4 ] );
         }
         par[ 5 ] = fabs( par[ 5 ] );
      }

/* See if the output cube is to include a spatial projection, or a sparse
   list of spectra. Disabled if the sparse pointer is NULL. */
      if (issparse) {
        parDef0l( "SPARSE", ( par[ 0 ] == AST__BAD ), status );
        parGet0l( "SPARSE",  &sparse, status );

      }

/* If we are producing an output cube with the XY plane being a spatial
   projection, then get the parameters describing the projection, using the
   defaults calculated above. */
      if( !sparse && *status == SAI__OK ) {
         const int ndigits = 8; /* Number of digits for deflat/deflon precision */

/* If the target is moving, display the tracking centre coordinates for
   the first time slice. */
         if( moving ) {
            astClear( skyframe, "SkyRefIs" );
            msgBlank( status );
            msgSetc( "S1", astGetC( skyframe, "Symbol(1)" ) );
            msgSetc( "S2", astGetC( skyframe, "Symbol(2)" ) );
            msgOutif( MSG__NORM, " ", "   Output sky coordinates are "
                           "(^S1,^S2) offsets from the (moving)", status );
            msgSetc( "S1", astGetC( skyframe, "Symbol(1)" ) );
            msgSetc( "S2", astGetC( skyframe, "Symbol(2)" ) );
            msgSetc( "SREF", astGetC( skyframe, "SkyRef" ) );
            msgOutif( MSG__NORM, " ", "   telescope base position, which "
                           "started at (^S1,^S2) = (^SREF).", status );
            astSet( skyframe, "SkyRefIs=Origin" );
         }

/* Set up a flag indicating that the default values calculated by autogrid
   are being used. */
         udefs = 1;

/* Ensure we have usable CRPIX1/2 values */
         if( par[ 0 ] == AST__BAD ) par[ 0 ] = 1.0;
         if( par[ 1 ] == AST__BAD ) par[ 1 ] = 1.0;

/* Get the crpix1/2 (in the interim GRID frame) to use. Note if the user
   specifies any values. These parameters have vpath=default (which is null)
   and ppath=dynamic. */
         refine_crpix = 0;
         parDef0d( "REFPIX1", par[ 0 ], status );
         parDef0d( "REFPIX2", par[ 1 ], status );
         if( *status == SAI__OK ) {
            parGet0d( "REFPIX1", refpix + 0, status );
            parGet0d( "REFPIX2", refpix + 1, status );
            if( *status == PAR__NULL ) {
               errAnnul( status );
               refine_crpix = 1;
            } else {
               par[ 0 ] = refpix[ 0 ];
               par[ 1 ] = refpix[ 1 ];
            }
         }

/* Get the sky coords reference position strings. Use the returned SkyFrame
   to format and unformat them. */
         if( par[ 2 ] != AST__BAD ) {
            int curdigits;
            curdigits = astGetI( skyframe, "digits(1)" );
            astSetI( skyframe, "digits(1)", ndigits );
            deflon = astFormat( skyframe, 1, par[ 2 ] );
            astSetI( skyframe, "digits(1)", curdigits );
            parDef0c( "REFLON", deflon, status );
         } else {
            deflon = NULL;
         }

         if( par[ 3 ] != AST__BAD ) {
            int curdigits;
            curdigits = astGetI( skyframe, "digits(2)" );
            astSetI( skyframe, "digits(2)", ndigits );
            deflat = astFormat( skyframe, 2, par[ 3 ] );
            astSetI( skyframe, "digits(2)", curdigits );
            parDef0c( "REFLAT", deflat, status );
         } else {
            deflat = NULL;
         }

         parGet0c( "REFLON", reflon, 40, status );
         parGet0c( "REFLAT", reflat, 40, status );

         if( *status == SAI__OK ) {

            if( ( deflat && strcmp( deflat, reflat ) ) ||
                  ( deflon && strcmp( deflon, reflon ) ) ) udefs = 0;

            if( astUnformat( skyframe, 1, reflon, par + 2 ) == 0 && *status == SAI__OK ) {
               msgSetc( "REFLON", reflon );
               errRep( "", "Bad value supplied for REFLON: '^REFLON'", status );
            }

            if( astUnformat( skyframe, 2, reflat, par + 3 ) == 0 && *status == SAI__OK ) {
               msgSetc( "REFLAT", reflat );
               errRep( "", "Bad value supplied for REFLAT: '^REFLAT'", status );
            }

/* Ensure the reference position in the returned SkyFrame is set to the
   supplied position (which defaults to the first telescope base pointing
   position). */
            if( !moving ){
               astSetD( skyframe, "SkyRef(1)", par[ 2 ] );
               astSetD( skyframe, "SkyRef(2)", par[ 3 ] );
            }
         }

/* Get the user defined spatial pixel size in arcsec (the calibration for
   the spectral axis is fixed by the first input data file - see
   smf_cubebounds.c). First convert the autogrid values form rads to arcsec
   and establish them as the dynamic default for "PIXSIZE". */
         nval = 0;
         if( par[ 4 ] != AST__BAD || par[ 5 ] != AST__BAD ) {
           for ( i = 4; i <= 5; i++ ) {
             if ( par[ i ] != AST__BAD ) {
               defsize[ nval ] = 0.1*NINT( fabs( par[ i ] )*AST__DR2D*36000.0 );
               nval++;
             }
           }
           /* set the dynamic default, handling case where both dimensions
              have same default. */
           if (nval == 1) {
             defsize[1] = defsize[0];
           } else if (nval == 2 && defsize[0] == defsize[1]) {
             nval = 1;
           }
           parDef1d( "PIXSIZE", nval, defsize, status );

         } else {
           /* pick a default in case something odd happens and we have
              no other values*/
           defsize[ 0 ] = fbpixsize;
           defsize[ 1 ] = defsize[ 0 ];
           nval = 2;
         }
         if (*status == SAI__OK) {
           pixsize[0] = AST__BAD;
           pixsize[1] = AST__BAD;
           parGet1d( "PIXSIZE", 2, pixsize, &nval, status );
           if (*status == PAR__NULL) {
             /* Null just defaults to what we had before */
             errAnnul( status );
             pixsize[0] = defsize[0];
             pixsize[1] = defsize[1];
             nval = 2;
           }
         }

/* If OK, duplicate the first value if only one value was supplied. */
         if( *status == SAI__OK ) {
            if( nval < 2 ) pixsize[ 1 ] = pixsize[ 0 ];

            if( defsize[ 0 ] != pixsize[ 0 ] ||
                  defsize[ 1 ] != pixsize[ 1 ] ) udefs = 0;

/* Check the values are OK. */
            if( pixsize[ 0 ] <= 0 || pixsize[ 1 ] <= 0 ) {
               msgSetd( "P1", pixsize[ 0 ] );
               msgSetd( "P2", pixsize[ 1 ] );
               *status = SAI__ERROR;
               errRep( FUNC_NAME, "Invalid pixel sizes (^P1,^P2).", status);
            }

/* Convert to rads, and set the correct signs. */
            if( par[ 4 ] == AST__BAD || par[ 4 ] < 0.0 ) {
               par[ 4 ] = -pixsize[ 0 ]*AST__DD2R/3600.0;
            } else {
               par[ 4 ] = pixsize[ 0 ]*AST__DD2R/3600.0;
            }

            if( par[ 5 ] == AST__BAD || par[ 5 ] < 0.0 ) {
               par[ 5 ] = -pixsize[ 1 ]*AST__DD2R/3600.0;
            } else {
               par[ 5 ] = pixsize[ 1 ]*AST__DD2R/3600.0;
            }

         }

/* Convert the autogrid CROTA value from rads to degs and set as the
   dynamic default for parameter CROTA (the position angle of the output
   Y axis, in degrees). The get the CROTA value and convert to rads. */
         if( par[ 6 ] != AST__BAD ) {
            autorot = par[ 6 ]*AST__DR2D;
            parDef0d( "CROTA", autorot, status );

         } else {
            parDef0d( "CROTA", map_pa*AST__DR2D, status );
            autorot = AST__BAD;
         }

         parGet0d( "CROTA", par + 6, status );
         if( par[ 6 ] != autorot ) udefs = 0;
         par[ 6 ] *= AST__DD2R;

/* If any parameter were given explicit values which differ from the
   autogrid default values, then we need to re-calculate the optimal CRPIX1/2
   values. We also do this if all the points are effectively co-incident. */
         if( ( coin || !udefs ) && autogrid && refine_crpix ) {
            par[ 0 ] = AST__BAD;
            par[ 1 ] = AST__BAD;
            kpg1Opgrd( nallpos, allpos, strcmp( usesys, "AZEL" ), par,
                       &rdiam, status );
         }

/* Display the projection parameters being used. */
         smf_display_projpars( skyframe, par, status );

/* Write out the reference grid coords to output parameter PIXREF. */
         parPut1d( "PIXREF", 2, par, status );

/* If no grid was found, indicate that no spatial projection will be used. */
      } else {
         msgBlank( status );
         msgOutif( MSG__NORM, " ", "   The output will be a sparse array "
                        "containing a list of spectra.", status );
      }

/* If we have a pre-defined spatial projection, indicate that the output
   array need not be sparse. */
   } else {
      sparse = 0;
   }

/* Return usedefs if requested */
   if( usedefs ) {
     *usedefs = udefs;
   }

/* Set sparse if requested */
   if( issparse ) *issparse = sparse;

}
示例#8
0
void smf_calc_mode ( smfHead * hdr, int * status ) {

  char sam_mode[SZFITSTR];   /* Value of SAM_MODE header */
  char obs_type[SZFITSTR];   /* value of OBS_TYPE header */
  char sw_mode[SZFITSTR];    /* value of SW_MODE header */
  char seq_type[SZFITSTR];   /* value of SEQ_TYPE header */
  char inbeamstr[SZFITSTR];  /* value of INBEAM header */

  smf_obstype type = SMF__TYP_NULL;   /* temporary type */
  smf_obstype stype = SMF__TYP_NULL;   /* temporary seq type */
  smf_obsmode mode = SMF__OBS_NULL;   /* temporary mode */
  smf_swmode  swmode = SMF__SWM_NULL; /* Switching mode */
  smf_inbeam_t inbeam = SMF__INBEAM_NOTHING; /* what is in beam? */

  if (*status != SAI__OK) return;

  if (hdr == NULL) {
    *status = SAI__ERROR;
    errRep( " ", "Null pointer supplied to " FUNC_NAME, status );
    return;
  }

  /* Proceed if we're using a valid instrument */
  if( hdr->instrument != INST__NONE ) {

    /* Read the relevant headers */
    smf_fits_getS( hdr, "SAM_MODE", sam_mode, sizeof(sam_mode), status );
    smf_fits_getS( hdr, "SW_MODE", sw_mode, sizeof(sw_mode), status );
    smf_fits_getS( hdr, "OBS_TYPE", obs_type, sizeof(obs_type), status );

    /* INBEAM can be undef */
    inbeamstr[0] = '\0';
    smf_getfitss( hdr, "INBEAM", inbeamstr, sizeof(inbeamstr), status );

    /* SEQ_TYPE is "new" */
    if ( *status == SAI__OK ) {
      smf_fits_getS( hdr, "SEQ_TYPE", seq_type, sizeof(seq_type), status );
      if (*status == SMF__NOKWRD ) {
        errAnnul( status );
        one_strlcpy( seq_type, obs_type, sizeof(seq_type), status );
      }
    }

    /* start with sample type */
    if (strcasecmp( sam_mode, "SCAN" ) == 0 ||
        strcasecmp( sam_mode, "RASTER") == 0 ) {
      mode = SMF__OBS_SCAN;
    } else if (strcasecmp( sam_mode, "STARE" ) == 0) {
      mode = SMF__OBS_STARE;
    } else if (strcasecmp( sam_mode, "DREAM" ) == 0) {
      mode = SMF__OBS_DREAM;
    } else if (strcasecmp( sam_mode, "JIGGLE" ) == 0) {
      mode = SMF__OBS_JIGGLE;
    } else if (strcasecmp( sam_mode, "GRID" ) == 0) {
      mode = SMF__OBS_GRID;
    } else {
      if (*status != SAI__OK) {
        *status = SAI__ERROR;
        msgSetc( "MOD", sam_mode );
        errRep( " ", "Unrecognized observing mode '^MOD'", status );
      }
    }

    /* switching mode: options are "none", "pssw", "chop", "freqsw", "self" */
    if (strcasecmp( sw_mode, "NONE" ) == 0 ) {
      swmode = SMF__SWM_NULL;
    } else if (strcasecmp( sw_mode, "PSSW" ) == 0) {
      swmode = SMF__SWM_PSSW;
    } else if (strcasecmp( sw_mode, "CHOP" ) == 0) {
      swmode = SMF__SWM_CHOP;
    } else if (strcasecmp( sw_mode, "SELF" ) == 0) {
      swmode = SMF__SWM_SELF;
    } else if (strcasecmp( sw_mode, "FREQSW" ) == 0) {
      swmode = SMF__SWM_FREQSW;
    } else {
      if (*status != SAI__OK) {
        *status = SAI__ERROR;
        msgSetc( "MOD", sw_mode );
        errRep( " ", "Unrecognized switching mode '^MOD'", status );
      }
    }

    /* obs type */
    type = smf__parse_obstype( obs_type, status );
    stype = smf__parse_obstype( seq_type, status );

    /* in beam (convert to upper case to make it case insensitive) */
    astChrCase( NULL, inbeamstr, 1, 0 );
    if ( smf_pattern_extract( inbeamstr, "(POL)", NULL, NULL, 0, status ) ) {
      inbeam |= SMF__INBEAM_POL;
    }
    if ( smf_pattern_extract( inbeamstr, "(FTS)", NULL, NULL, 0, status ) ) {
      inbeam |= SMF__INBEAM_FTS;
    }
    if ( smf_pattern_extract( inbeamstr, "(BODY)", NULL, NULL, 0, status ) ) {
      inbeam |= SMF__INBEAM_BLACKBODY;
      /* We could consider ensuring FTS is not set in this case */
    }
  }

  hdr->obstype = type;
  hdr->seqtype = stype;
  hdr->obsmode = mode;
  hdr->swmode = swmode;
  hdr->inbeam = inbeam;

}
示例#9
0
void smf_fits_export2DA ( AstFitsChan *fitschan, size_t *ncards,
                          char *fitsrec,
                          int *status ) {

  /* Local variables */
  char blank[SZFITSCARD+1];/* Reference blank card */
  char card[SZFITSCARD+1];/* temporary buffer for current card */
  int found;              /* Boolean to indicate if a card was found */
  size_t i;               /* Loop counter */
  size_t ncopied = 0;     /* How many cards were copied */
  size_t numcards = 0;    /* How many cards are in the FitsChan */
  char *outpos = NULL;    /* current position in output buffer */
  int prevblank = 0;      /* Was this previously blank? */
  char *tempfits = NULL;  /* intermediate buffer for FITS cards */

  *ncards = 0;
  /* Check status */
  if (*status != SAI__OK) return;

  /* Fill the blank card */
  for (i=0; i<SZFITSCARD;i++) {
    blank[i] = ' ';
  }
  blank[SZFITSCARD] = '\0';

  /* Find the number of cards in this AstFitsChan and create a
     buffer for internal use. We do not yet worry about the allocated
     size of fitsrec because we might be compressing the array to
     get rid of multiple blank lines */
  numcards = astGetI ( fitschan, "Ncard" );
  tempfits = astMalloc( ( 1 + numcards * SZFITSCARD ) * sizeof(*tempfits) );

   /* Rewind */
   astClear ( fitschan, "Card");

   if (*status == SAI__OK) {
     /* Retrieve all the FITS headers and store them in the character array.
        We compress consecutive blank cards. */
     ncopied = 0;
     outpos = tempfits;
     prevblank = 0;
     for ( i = 0; i <= numcards; i++ ) {
       found = astFindFits ( fitschan, "%f", card, 1 );
       if ( found ) {
         int isblank = 0;
         if (strncmp( card, blank, SZFITSCARD ) == 0 ) isblank = 1;

         /* skip if this is blank and before was */
         if (isblank && prevblank) continue;
         prevblank = isblank;

         /* Now copy in the card and increment the pointer */
         strncpy ( outpos, card, SZFITSCARD );
         ncopied++;
         outpos += SZFITSCARD;
       } else {
         break;
       }
     }

     /* Guarantee to terminate the buffer */
     *outpos = '\0';

     /* make sure that it is no larger than the maximum allowed */
     if ( ncopied > SC2STORE__MAXFITS ) {
       *status = SAI__ERROR;
       msgSeti("NC", (int)numcards);
       msgSeti("MC", SC2STORE__MAXFITS);
       errRep( FUNC_NAME,
               "Number of FITS cards ^NC exceeds maximum allowed (^MC)",
               status );
       tempfits = astFree( tempfits );
       return;
     }

     /* Copy into the output buffer */
     one_strlcpy( fitsrec, tempfits, SZFITSCARD * SC2STORE__MAXFITS + 1, status );
   }

   tempfits = astFree(tempfits);
   *ncards = ncopied;
}
示例#10
0
int smf_fix_metadata_scuba2 ( msglev_t msglev, smfData * data, int have_fixed, int *ncards, int * status ) {

  AstFitsChan * fits = NULL; /* FITS header (FitsChan) */
  struct FitsHeaderStruct fitsvals; /* Quick access Fits header struct */
  smfHead *hdr = NULL;       /* Data header struct */
  AstKeyMap * obsmap = NULL; /* Info from all observations */
  AstKeyMap * objmap = NULL; /* All the object names used */

  if (*status != SAI__OK) return have_fixed;

  /* Validate arguments - need smfFile and smfHead */
  smf_validate_smfData( data, 1, 1, status );
  if (*status != SAI__OK) return have_fixed;

  hdr = data->hdr;
  smf_validate_smfHead( hdr, 1, 1, status );
  if (*status != SAI__OK) return have_fixed;

  fits = hdr->fitshdr;

  if (hdr->instrument != INST__SCUBA2) {
    if (*status != SAI__OK) {
      *status = SAI__ERROR;
      errRep("", " Attempting to fix metadata using SCUBA-2 algorithms but this is not SCUBA-2 data",
             status );
    }
    return have_fixed;
  }

  /* Update units string to something that is FITS standard compliant
     - we used "DAC units" for a while but in FITS land this becomes
     "decacoulomb * units" */
  if ( strncmp( hdr->units, "DAC", 3) == 0 ) {
    one_strlcpy( hdr->units, "adu", SMF__CHARLABEL, status );
  }

  /* Clock jitter and readout efficiencies mean we need to recalculate STEPTIME from the data.
     This is possible because we know that we have a continuous sequence in each file (unlike
     ACSIS). */
  if (hdr->allState) {
    /* it will be odd if it is not there */
    size_t nframes = hdr->nframes;

    size_t istart = 0;
    double start_time = (hdr->allState)[istart].rts_end;
    while( start_time == VAL__BADD && ++istart < nframes ) {
      start_time = (hdr->allState)[istart].rts_end;
    }

    size_t iend = nframes - 1;
    double end_time = (hdr->allState)[iend].rts_end;
    while( end_time == VAL__BADD && iend-- > 0 ) {
      end_time = (hdr->allState)[iend].rts_end;
    }

    double steptime = VAL__BADD;
    double newstep;

    smf_getfitsd( hdr, "STEPTIME", &steptime, status );
    newstep = steptime;

    /* it is possible for a file to contain only one step since
       the DA just dumps every N-steps. We can not recalculate the
       step time in that case. */
    nframes = iend - istart + 1;
    if (nframes > 1) {

      /* duration of file in days */
      newstep = end_time - start_time;

      /* convert to seconds */
      newstep *= SPD;

      /* Convert to step time */
      newstep /= (nframes - 1);
    } else if( nframes > 0 ) {
      /* work it out from RTS_END and TCS_TAI */
      JCMTState * onlystate = &((hdr->allState)[istart]);
      if ( onlystate->tcs_tai != VAL__BADD &&
           onlystate->tcs_tai != onlystate->rts_end) {
        /* TCS_TAI is in the middle of the step */
        newstep = 2.0 * ( onlystate->rts_end - onlystate->tcs_tai ) * SPD;
      }
    } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      if( data->file ) {
         smf_smfFile_msg( data->file, "N", 1, "<unknown>" );
         errRep("", "No valid RTS_END values found in NDF '^N'.", status );
      } else {
         errRep("", "No valid RTS_END values found.", status );
      }
    }

    if (steptime != newstep) {
      msgOutiff( msglev, "", INDENT "Recalculated step time as %g sec from JCMTSTATE (was %g sec)",
                 status, newstep, steptime);
      smf_fits_updateD( hdr, "STEPTIME", newstep, NULL, status );
      have_fixed |= SMF__FIXED_FITSHDR;
    }
  }


  /* Read some FITS headers, intialising the struct first */
  fitsvals.utdate = VAL__BADI;
  *(fitsvals.instrume) = '\0';
  smf_getfitsi( hdr, "UTDATE", &(fitsvals.utdate), status );
  smf_getfitss( hdr, "INSTRUME", fitsvals.instrume, sizeof(fitsvals.instrume), status );

  /* Print out summary of this observation - this may get repetitive if multiple files come
     from the same observation in one invocation but it seems better to describe each fix up
     separately and in context. */
  obsmap = astKeyMap( " " );
  objmap = astKeyMap( " " );
  smf_obsmap_fill( data, obsmap, objmap, status );
  smf_obsmap_report( msglev, obsmap, objmap, status );
  obsmap = astAnnul( obsmap );
  objmap = astAnnul( objmap );

  /* First we need to look for a BACKEND header which we do not write to the raw
     data files but CADC would like to see equal to INSTRUME */
  if (!astTestFits( fits, "BACKEND", NULL ) ) {
    have_fixed |= SMF__FIXED_FITSHDR;
    smf_fits_updateS( hdr, "BACKEND", fitsvals.instrume, "Name of the backend", status );
    msgOutif( msglev, "",  INDENT "Setting backend for SCUBA-2 observation.", status);
  }

  /* BASETEMP was reading MUXTEMP for pre-20091101 data */
  if ( fitsvals.utdate < 20091101 ) {
    double muxtemp = 0.0;
    have_fixed |= SMF__FIXED_FITSHDR;
    smf_getfitsd( hdr, "BASETEMP", &muxtemp, status );
    smf_fits_updateU( hdr, "BASETEMP", "[K] Base temperature", status );
    smf_fits_updateD( hdr, "MUXTEMP", muxtemp, "[K] Mux temperature", status );
    msgOutif( msglev, "", INDENT "Mux temperature is being read from BASETEMP header.", status );
  }

  /* Sometime before 20091119 the SHUTTER keyword was written as a string
     OPEN or CLOSED. Rewrite those as numbers */
  if (fitsvals.utdate < 20091119) {
    double shutval = 0.0;
    /* Try to read as a double. */
    smf_fits_getD( hdr, "SHUTTER", &shutval, status );

    /* Old data was a string. Convert to a double */
    if (*status == AST__FTCNV) {
      char shutter[100];
      errAnnul( status );
      smf_fits_getS( hdr, "SHUTTER", shutter, sizeof(shutter), status);
      if (strcmp(shutter, "CLOSED") == 0) {
        shutval = 0.0;
      } else {
        shutval = 1.0;
      }
      /* update the value */
      have_fixed |= SMF__FIXED_FITSHDR;
      smf_fits_updateD( hdr, "SHUTTER", shutval, "shutter position 0-Closed 1-Open", status );
      msgOutif( msglev, "", INDENT "Forcing SHUTTER header to be numeric", status );
    }
  }

  /* Engineering data with just SCUBA2 and no RTS left the RTS_NUM field
     filled with zeroes. Just assume that a zero in RTS_NUM is always
     indicative of a private sequence. */
  if (fitsvals.utdate < 20110401) {
    size_t nframes = hdr->nframes;
    JCMTState * curstate = &((hdr->allState)[0]);
    JCMTState * endstate = &((hdr->allState)[nframes-1]);
    if (curstate->rts_num == 0 && endstate->rts_num == 0) {
      /* have to set the values from the SEQSTART and SEQEND headers
         since those were set correctly (although any value would
         do of course apart from the sanity check in smf_find_science. */
      size_t i;
      int seqnum = 1;
      smf_fits_getI( hdr, "SEQSTART", &seqnum, status );
      for ( i=0; i<nframes; i++) {
        curstate = &((hdr->allState)[i]);
        curstate->rts_num = seqnum;
        seqnum++;
      }
      have_fixed |= SMF__FIXED_JCMTSTATE;
      msgOutif( msglev, "", INDENT "Private RTS sequence. Fixing RTS_NUM.", status );
    }
  }

  /* work out if this is a fast flat observation taken before May 2010 */
  if (fitsvals.utdate > 20100218 && fitsvals.utdate < 20100501) {
    char buff[100];
    /* need to know whether this is a FASTFLAT */
    smf_getfitss( hdr, "SEQ_TYPE", buff, sizeof(buff), status );

    if (strcmp( buff, "FASTFLAT" ) == 0 ) {

      /* Fast flats had incorrect SHUTTER settings for one night */
      if (fitsvals.utdate == 20100223) {
        have_fixed |= SMF__FIXED_FITSHDR;
        smf_fits_updateD( hdr, "SHUTTER", 1.0, "shutter position 0-Closed 1-Open", status );
        msgOutif( msglev, "", INDENT "Shutter was open for fast flatfield ramp. Correcting.", status );
      }

      /* Need to fix up SC2_HEAT ramps */
      /* the problem is that the data were assumed to be taken with 3 measurements
         in each heater setting. What actually happened was that the first 5 were
         done at the reference setting and then the data were grouped in threes
         finishing with a single value at the reference setting again.

         For example the heater values and the actual values look something like

           Stored    1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
           Actual    0 0 0 0 0 2 2 2 3 3 3 4 4 4 5

         So we can correct for this by starting at the end and copying in the value
         two slots further down until we get to position #4. Then replacing that with
         the PIXHEAT number.
      */

      {
        size_t i;
        int pixheat = 0;
        size_t nframes = hdr->nframes;
        smf_getfitsi( hdr, "PIXHEAT", &pixheat, status );

        /* shift everything up by 2 */
        for (i=nframes-1; i > 4; i--) {
          JCMTState * curstate = &((hdr->allState)[i]);
          JCMTState * prevstate = &((hdr->allState)[i-2]);
          curstate->sc2_heat = prevstate->sc2_heat;
        }

        /* fill in the first 5 slots with the same value */
        for (i=0; i<5; i++) {
          JCMTState * curstate = &((hdr->allState)[i]);
          curstate->sc2_heat = pixheat;
        }
        have_fixed |= SMF__FIXED_JCMTSTATE;
      }
    }
  }

  /* We always recalculate the WVM start and end tau values so that the header
     reflects something approximating the value that was actually used in the
     extinction correction.

     Note that smf_calc_smoothedwvm can do a better job because it has multiple
     subarrays to get all the values from. We just have to try with what we
     have from a single subarray. We do step into the time series until we
     find something good.

     The header values should mostly agree with the recalculated values if the
     WVM code at the time matches the code in SMURF for that date. This has not
     been true in cases where we have retrospectively realised that there has been
     a calibration error in the WVM. So that we do not have to keep track of those
     times explicitly we currently recalculate every time. If this recalculation
     becomes a problem (smf_calc_wvm has a cache now to minimize this) it should
     be possible to disable this recalculation if the file is less than, say,
     30 minutes old to indicate we are running in near realtime.

     As a special case we do not recalculate the headers for FOCUS observations
     as the WVM reading is somewhat irrelevant and simply slows things down.

  */

  if( *status == SAI__OK ){

    /* Have not parsed header yet to extract type so do it explicitly here */
    char obstype[100];
    smf_getfitss( hdr, "OBS_TYPE", obstype, sizeof(obstype), status );

    if (strcasecmp( obstype, "focus") != 0) {

      size_t i;
      size_t nframes = hdr->nframes;
      double starttau = VAL__BADD;
      double starttime = VAL__BADD;
      double endtau = VAL__BADD;
      double endtime = VAL__BADD;

      /* Create a TimeFrame that can be used to format MJD values into ISO
         date-time strings, including a "T" separator between time and date. */
      AstTimeFrame *tf = astTimeFrame( "Format=iso.0T" );

      for (i=0; i < nframes && *status == SAI__OK; i++) {
        smf__calc_wvm_index( hdr, "AMSTART", i, &starttau, &starttime, status );
        if (starttau != VAL__BADD) break;
        if (*status == SAI__ERROR) errAnnul( status );
      }

      /* if we did not get a start tau we are not going to get an end tau */
      if (starttau != VAL__BADD) {
        for (i=0; i < nframes && *status == SAI__OK; i++) {
          smf__calc_wvm_index( hdr, "AMEND", nframes - 1 - i, &endtau, &endtime, status );
          if (endtau != VAL__BADD) break;
          if (*status == SAI__ERROR) errAnnul( status );
        }
      }

      /* If we could not find any WVM readings then we have a bit of a problem.
         Do we clear the FITS headers or do we leave them untouched? Leave them
         alone for now. */
      if (starttau != VAL__BADD && starttime != VAL__BADD) {
        smf_fits_updateD( hdr, "WVMTAUST", starttau, "186GHz Tau from JCMT WVM at start", status );

        /* Convert starttime MJD to ISO format and update the value in the
           FITS header. */
        smf_fits_updateS( hdr, "WVMDATST", astFormat( tf, 1, starttime ),
                          "Time of WVMTAUST", status );
        have_fixed |= SMF__FIXED_FITSHDR;
      }

      if (endtau != VAL__BADD && endtime != VAL__BADD) {
        smf_fits_updateD( hdr, "WVMTAUEN", endtau, "186GHz Tau from JCMT WVM at end", status );

        /* Convert endtime MJD to ISO format and update the value in the
           FITS header. */
        smf_fits_updateS( hdr, "WVMDATEN", astFormat( tf, 1, endtime ),
                          "Time of WVMTAUEN", status );
        have_fixed |= SMF__FIXED_FITSHDR;
      }

      /* Free the TimeFrame. */
      tf = astAnnul( tf );

    }
  }


  /* SEQ_TYPE header turned up in 20091125. Before that date the SEQ_TYPE only
     had two values. If the shutter was open then SEQ_TYPE is just OBS_TYPE. In the
     dark only a FLATFIELD sometimes finished with a noise but in that case CALCFLAT
     doesn't care so we just call it a flatfield sequence anyhow. We could look at
     the OBSEND flag but I'm not sure it makes a difference. */
  if ( fitsvals.utdate < 20091125 ) {
    char obstype[100];
    char seqtype[100];
    double shutval = 0.0;
    /* need to know what type of observation this is */
    smf_getfitss( hdr, "OBS_TYPE", obstype, sizeof(obstype), status );
    /* and the shutter status */
    smf_fits_getD( hdr, "SHUTTER", &shutval, status );

    if (shutval == 0.0 && strcasecmp( obstype, "flatfield" ) != 0 ) {
      /* flatfield was the only non-noise observation in the dark */
      one_strlcpy( seqtype, "NOISE", sizeof(seqtype), status );
      msgOutif( msglev, "", INDENT "Setting sequence type to NOISE", status );
    } else {
      /* Shutter was open so SEQ_TYPE is just OBS_TYPE */
      one_strlcpy( seqtype, obstype, sizeof(seqtype), status );
      msgOutif( msglev, "",  INDENT "Setting sequence type to obs type", status);
    }
    smf_fits_updateS( hdr, "SEQ_TYPE", seqtype, "Type of sequence", status );
    have_fixed |= SMF__FIXED_FITSHDR;
  }

  /* The telescope goes crazy at the end of observation 56 on 20110530. Null
     the telescope data for subscans 30, 31 and 32 */
  if (fitsvals.utdate == 20110530) {
    char obsid[81];
    smf_getobsidss( hdr->fitshdr, obsid, sizeof(obsid), NULL, 0, status);

    if (strcmp(obsid, "scuba2_00056_20110530T135530") == 0 ) {
      int subscan;
      smf_getfitsi( hdr, "NSUBSCAN", &subscan, status );
      if (subscan == 30 || subscan == 31 || subscan == 32) {
        size_t nframes = hdr->nframes;
        JCMTState * curstate;
        size_t i;
        for ( i=0; i<nframes; i++ ) {
          curstate = &((hdr->allState)[i]);
          curstate->jos_drcontrol |= DRCNTRL__PTCS_BIT;
        }
        msgOutif( msglev, "", INDENT "Blanking telescope data due to extreme excursion", status );
        have_fixed |= SMF__FIXED_JCMTSTATE;
      }
    }
  }

  /* The second half of observation 14 on 20111215 (scuba2_00014_20111215T061536)
     has a elevation pointing shift */
  if (fitsvals.utdate == 20111215) {
    char obsid[81];
    const char fitskey[] = "FIXPCORR";
    smf_getobsidss( hdr->fitshdr, obsid, sizeof(obsid), NULL, 0, status);

    if (strcmp(obsid, "scuba2_00014_20111215T061536") == 0 ) {
      int seqcount;
      smf_getfitsi( hdr, "SEQCOUNT", &seqcount, status );
      if (seqcount == 5) {
        int have_fixed_pntg = 0;
        smf_fits_getL( hdr, fitskey, &have_fixed_pntg, status );
        if (*status == SMF__NOKWRD) {
          have_fixed = 0;
          errAnnul( status );
        }
        if (!have_fixed_pntg) {
          size_t nframes = hdr->nframes;
          size_t i;
          const double dlon = 0.0;
          const double dlat = -16.83; /* From making maps of each half */
          /* Correct the pointing */
          msgOutif( msglev, "", INDENT "Applying pointing anomaly correction", status );
          for (i=0;i<nframes;i++) {
            JCMTState * curstate = &((hdr->allState)[i]);
            /* This is an AZEL correction */
            smf_add_smu_pcorr( curstate, 1, dlon, dlat, status );
          }
          smf_fits_updateL(hdr, fitskey, 1, "Applied internal pointing correction", status);
          have_fixed |= SMF__FIXED_JCMTSTATE;
        }
      }
    }

  }

  /* For POL-2 data prior to 18-JAN-2013, the POL_CRD header was always
     "FPLANE" in reality, even if the POL_CRD value in JCMTSTATE said
     something else. */
  if ( fitsvals.utdate < 20130118 ) {
    char polcrd[80] = "<unset>";
    smf_getfitss( hdr, "POL_CRD", polcrd, sizeof(polcrd), status );
    if (*status == SMF__NOKWRD) {
       errAnnul( status );
    } else if( !strcmp( polcrd, "TRACKING" ) || !strcmp( polcrd, "AZEL" ) ) {
      msgOutiff( msglev, "",  INDENT "Changing POL_CRD from %s to FPLANE", status, polcrd);
      smf_fits_updateS( hdr, "POL_CRD", "FPLANE",
                        "Coordinate system of polarimeter", status );
      have_fixed |= SMF__FIXED_FITSHDR;
    }
  }


  return have_fixed;
}
示例#11
0
void smf_write_shortmap( ThrWorkForce *wf, int shortmap, smfArray *res,
                         smfArray *lut, smfArray *qua, smfDIMMData *dat,
                         dim_t msize, const Grp *shortrootgrp, size_t contchunk,
                         int varmapmethod, const int *lbnd_out,
                         const int *ubnd_out, AstFrameSet *outfset,
                         int *status ) {

  dim_t dsize;                  /* Size of data arrays in containers */
  size_t i;                     /* loop counter */
  size_t idx=0;                 /* index within subgroup */
  size_t istart;                /* First useful timeslice */
  size_t iend;                  /* Last useful timeslice */
  int *lut_data=NULL;           /* Pointer to DATA component of lut */
  char name[GRP__SZNAM+1];      /* Buffer for storing names */
  size_t nshort=0;              /* Number of short maps */
  dim_t ntslice;                /* Number of time slices */
  char *pname=NULL;             /* Poiner to name */
  smf_qual_t *qua_data=NULL;    /* Pointer to DATA component of qua */
  double *res_data=NULL;        /* Pointer to DATA component of res */
  size_t sc;                    /* Short map counter */
  double *shortmapweight=NULL;  /* buffer for shotmap weights */
  double *shortmapweightsq=NULL;/* buffer for shotmap weights squared */
  int *shorthitsmap=NULL;       /* buffer for shotmap hits */
  size_t shortstart;            /* first time slice of short map */
  size_t shortend;              /* last time slice of short map */
  size_t tstride;               /* Time stride */

  if( *status != SAI__OK ) return;

  if( !res || !lut || !qua || !dat || !shortrootgrp ||
      !lbnd_out || !ubnd_out || !outfset || !shortmap ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": NULL inputs supplied", status );
    return;
  }

  if( !res || !res->sdata || !res->sdata[idx] || !res->sdata[idx]->hdr ||
      !res->sdata[idx]->hdr->allState ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": RES does not contain JCMTState", status );
    return;
  }

  /* Allocate space for the arrays */
  shortmapweight = astMalloc( msize*sizeof(*shortmapweight) );
  shortmapweightsq = astMalloc( msize*sizeof(*shortmapweightsq) );
  shorthitsmap = astMalloc( msize*sizeof(*shorthitsmap) );

  /* Use first subarray to figure out time dimension. Get the
     useful start and end points of the time series, and then
     determine "nshort" -- the number of complete blocks of
     shortmap time slices in the useful range. */

  smf_get_dims( qua->sdata[0], NULL, NULL, NULL, &ntslice,
                NULL, NULL, &tstride, status );

  qua_data = (qua->sdata[0]->pntr)[0];
  smf_get_goodrange( qua_data, ntslice, tstride, SMF__Q_BOUND,
                     &istart, &iend, status );

  shortstart = istart;

  if( *status == SAI__OK ) {
    if( shortmap == -1 ) {
      nshort = res->sdata[idx]->hdr->allState[iend].tcs_index -
        res->sdata[idx]->hdr->allState[istart].tcs_index + 1;

      msgOutf( "", FUNC_NAME
               ": writing %zu short maps, once each time TCS_INDEX increments",
               status, nshort );
    } else {
      nshort = (iend-istart+1)/shortmap;

      if( nshort ) {
        msgOutf( "", FUNC_NAME
                 ": writing %zu short maps of length %i time slices.",
                 status, nshort, shortmap );
      } else {
        /* Generate warning message if requested short maps are too long*/
        msgOutf( "", FUNC_NAME
                 ": Warning! short maps of lengths %i requested, but "
                 "data only %zu time slices.", status, shortmap,
                 iend-istart+1 );
      }
    }
  }

  /* Loop over short maps */
  for( sc=0; (sc<nshort)&&(*status==SAI__OK); sc++ ) {

    Grp *mgrp=NULL;             /* Temporary group for map names */
    smfData *mapdata=NULL;      /* smfData for new map */
    char tempstr[20];           /* Temporary string */
    char tmpname[GRP__SZNAM+1]; /* temp name buffer */
    char thisshort[20];         /* name particular to this shortmap */

    /* Create a name for the new map, take into account the
       chunk number. Only required if we are using a single
       output container. */
    pname = tmpname;
    grpGet( shortrootgrp, 1, 1, &pname, sizeof(tmpname), status );
    one_strlcpy( name, tmpname, sizeof(name), status );
    one_strlcat( name, ".", sizeof(name), status );

    /* Continuous chunk number */
    sprintf(tempstr, "CH%02zd", contchunk);
    one_strlcat( name, tempstr, sizeof(name), status );

    /* Shortmap number */
    sprintf( thisshort, "SH%06zu", sc );
    one_strlcat( name, thisshort, sizeof(name), status );
    mgrp = grpNew( "shortmap", status );
    grpPut1( mgrp, name, 0, status );

    msgOutf( "", "*** Writing short map (%zu / %zu) %s", status,
             sc+1, nshort, name );

    smf_open_newfile ( wf, mgrp, 1, SMF__DOUBLE, 2, lbnd_out,
                       ubnd_out, SMF__MAP_VAR, &mapdata,
                       status);

    /* Time slice indices for start and end of short map -- common to
       all subarrays */

    if( shortmap > 0) {
      /* Evenly-spaced shortmaps in time */
      shortstart = istart+sc*shortmap;
      shortend = istart+(sc+1)*shortmap-1;
    } else {
      /* One map each time TCS_INDEX increments -- just uses header
         for the first subarray */
      for(i=shortstart+1; (i<=iend) &&
            (res->sdata[0]->hdr->allState[i].tcs_index ==
             res->sdata[0]->hdr->allState[shortstart].tcs_index);
          i++ );
      shortend = i-1;
    }

    /* Bad status if we have invalid shortmap ranges. This might
       happen if there is ever a jump in TCS_INDEX for the shortmap=-1
       case since the total number of shortmaps is calculated simply
       as the difference between the first and final TCS indices. */

    if( !nshort || (iend<istart) || (iend>=ntslice) ) {
      *status = SAI__ERROR;
      errRepf( "", FUNC_NAME ": invalid shortmap range (%zu--%zu, ntslice=%zu)"
               "encountered", status, istart, iend, ntslice );
      break;
    }

    /* Loop over subgroup index (subarray) */
    for( idx=0; (idx<res->ndat)&&(*status==SAI__OK); idx++ ) {
      int rebinflag = 0;

      /* Pointers to everything we need */
      res_data = (res->sdata[idx]->pntr)[0];
      lut_data = (lut->sdata[idx]->pntr)[0];
      qua_data = (qua->sdata[idx]->pntr)[0];

      smf_get_dims( res->sdata[idx], NULL, NULL, NULL, &ntslice,
                    &dsize, NULL, &tstride, status );

      /* Rebin the data for this range of tslices. */
      if( idx == 0 ) {
        rebinflag |= AST__REBININIT;
      }

      if( idx == (res->ndat-1) ) {
        rebinflag |= AST__REBINEND;
      }

      smf_rebinmap1( NULL, res->sdata[idx],
                     dat->noi ? dat->noi[0]->sdata[idx] : NULL,
                     lut_data, shortstart, shortend, 1, NULL, 0,
                     SMF__Q_GOOD, varmapmethod,
                     rebinflag,
                     mapdata->pntr[0],
                     shortmapweight, shortmapweightsq, shorthitsmap,
                     mapdata->pntr[1], msize, NULL, status );

      /* Write out FITS header */
      if( (*status == SAI__OK) && res->sdata[idx]->hdr &&
          res->sdata[idx]->hdr->allState ) {
        AstFitsChan *fitschan=NULL;
        JCMTState *allState = res->sdata[idx]->hdr->allState;
        size_t midpnt = (shortstart + shortend) / 2;

        fitschan = astFitsChan ( NULL, NULL, " " );

        atlPtfti( fitschan, "SEQSTART", allState[shortstart].rts_num,
                  "RTS index number of first frame", status );
        atlPtfti( fitschan, "SEQEND", allState[shortend].rts_num,
                  "RTS index number of last frame", status);
        atlPtftd( fitschan, "MJD-AVG", allState[midpnt].rts_end,
                  "Average MJD of this map", status );
        atlPtfts( fitschan, "TIMESYS", "TAI", "Time system for MJD-AVG",
                  status );
        atlPtfti( fitschan, "TCSINDST", allState[shortstart].tcs_index,
                  "TCS index of first frame", status );
        atlPtfti( fitschan, "TCSINDEN", allState[shortend].tcs_index,
                  "TCS index of last frame", status );


        kpgPtfts( mapdata->file->ndfid, fitschan, status );

        if( fitschan ) fitschan = astAnnul( fitschan );
      }
    }

    /* Update shortstart in case we are counting steps in TCS_INDEX */
    shortstart = shortend+1;

    /* Write WCS */
    smf_set_moving( (AstFrame *) outfset, NULL, status );
    ndfPtwcs( outfset, mapdata->file->ndfid, status );

    /* Clean up */
    if( mgrp ) grpDelet( &mgrp, status );
    smf_close_file( wf, &mapdata, status );

  }

  /* Free up memory */
  shortmapweight = astFree( shortmapweight );
  shortmapweightsq = astFree( shortmapweightsq );
  shorthitsmap = astFree( shorthitsmap );

}
示例#12
0
void smf_grp_related( const Grp *igrp, const size_t grpsize,
                      const int grouping, const int checksubinst,
                      double maxlen_s, double *srate_maxlen,
                      AstKeyMap *keymap, dim_t *maxconcatlen,
                      dim_t *maxfilelen, smfGroup **group,
                      Grp **basegrp, dim_t *pad, int *status ) {

  /* Local variables */
  size_t *chunk=NULL;         /* Array of flags for continuous chunks */
  dim_t * chunklen = NULL;    /* Length of continuous chunk */
  size_t currentindex = 0;    /* Counter */
  char cwave[10];             /* String containing wavelength */
  smfData *data = NULL;       /* Current smfData */
  double downsampscale=0;     /* Angular scale downsampling size */
  double downsampfreq=0;      /* Target downsampling frequency */
  AstKeyMap * grouped = NULL; /* Primary AstKeyMap for grouping */
  size_t i;                   /* Loop counter for index into Grp */
  int isFFT=0;                /* Set if data are 4d FFT */
  size_t j;                   /* Loop counter */
  int *keepchunk=NULL;        /* Flag for chunks that will be kept */
  dim_t maxconcat=0;          /* Longest continuous chunk length */
  dim_t maxflen=0;            /* Max file length in time steps */
  dim_t maxlen=0;             /* Maximum concat length in samples */
  int maxlen_scaled=0;        /* Set once maxlen has been scaled, if needed */
  dim_t maxpad=0;             /* Maximum padding neeed for any input file */
  size_t maxrelated = 0;      /* Keep track of max number of related items */
  size_t *new_chunk=NULL;     /* keeper chunks associated with subgroups */
  dim_t *new_tlen=NULL;       /* tlens for new_subgroup */
  size_t ngroups = 0;         /* Counter for subgroups to be stored */
  size_t nkeep = 0;           /* Number of chunks to keep */
  dim_t * piecelen = NULL;    /* Length of single file */
  smf_subinst_t refsubinst;   /* Subinst of first file */
  size_t **subgroups = NULL;  /* Array containing index arrays to parent Grp */
  smf_subinst_t subinst;      /* Subinst of current file */

  if ( *status != SAI__OK ) return;

  if( maxlen_s < 0 ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": maxlen_s cannot be < 0!", status );
    return;
  }

  /* Get downsampling parameters */

  if( keymap ) {
    smf_get_cleanpar( keymap, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                      NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                      NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                      NULL, NULL, NULL, NULL, &downsampscale, &downsampfreq,
                      NULL, NULL, NULL, NULL, status );

    if( downsampscale && downsampfreq ) {
      *status = SAI__ERROR;
      errRep( "", FUNC_NAME ": both downsampscale and downsampfreq are set",
              status );
      return;
    }
  }

  /* Initialize refcwave */
  refsubinst = SMF__SUBINST_NONE;

  /* Loop over files in input Grp: remember Grps are indexed from 1 */
  grouped = astKeyMap( "SortBy=KeyUp" );
  for (i=1; i<=grpsize; i++) {
    char newkey[128];
    char dateobs[81];
    char subarray[10];
    size_t nrelated = 0;
    AstKeyMap * filemap = NULL;
    AstKeyMap * indexmap = NULL;

    /* First step: open file and harvest metadata */
    smf_open_file( NULL, igrp, i, "READ", SMF__NOCREATE_DATA, &data, status );
    if (*status != SAI__OK) break;

    if( i==1 ) {
      isFFT = smf_isfft( data, NULL, NULL, NULL, NULL, NULL, status );
    } else if( smf_isfft(data, NULL, NULL, NULL, NULL, NULL, status) != isFFT ){
      *status = SAI__ERROR;
      errRep( "", FUNC_NAME
              ": mixture of time-series and FFT data encountered!",
              status );
      break;
    }

    /* If maxlen has not been set, do it here */
    if( !maxlen && maxlen_s && data->hdr->steptime) {
      maxlen = (dim_t) (maxlen_s / data->hdr->steptime );
    }

    /* Return srate_maxlen if requested: may want to know this number
       even if maxlen_s is not set. Only calculate once, although it
       gets overwritten once later if down-sampling. */

    if( (i==1) && srate_maxlen && data->hdr->steptime ) {
      *srate_maxlen = 1. / (double) data->hdr->steptime;
    }


    /* If requested check to see if we are mixing wavelengths */
    if( checksubinst ) {
      if( refsubinst == SMF__SUBINST_NONE ) {
        refsubinst = smf_calc_subinst( data->hdr, status );
      }

      subinst = smf_calc_subinst( data->hdr, status );

      if( subinst != refsubinst ) {
        const char *refsubstr = smf_subinst_str( refsubinst, status );
        const char *substr = smf_subinst_str( subinst, status );

        *status = SAI__ERROR;
        smf_smfFile_msg( data->file, "FILE", 1, "<unknown>" );
        msgSetc( "REFSUB", refsubstr );
        msgSetc( "SUB", substr );
        errRep( "", FUNC_NAME
                ": ^FILE uses sub-instrument ^SUB which doesn't match "
                "reference ^REFSUB", status );
      }
    }

    /* Want to form a key that will be unique for a particular subscan
       We know that DATE-OBS will be set for SCUBA-2 files and be the same
       for a single set. Prefix by wavelength if we are grouping by wavelength.
     */
    newkey[0] = '\0';

    smf_find_subarray( data->hdr, subarray, sizeof(subarray), NULL, status );

    if( grouping == 1 ) {
      /* Group different wavelengths separately */
      smf_fits_getS( data->hdr, "WAVELEN", cwave, sizeof(cwave), status);
      one_strlcat( newkey, cwave, sizeof(newkey), status );
      one_strlcat( newkey, "_", sizeof(newkey), status );
    }

    if( grouping == 2 ) {
      /* Group different subarrays separately */
      one_strlcat( newkey, subarray, sizeof(newkey), status );
    }

    smf_fits_getS( data->hdr, "DATE-OBS", dateobs, sizeof(dateobs), status );
    one_strlcat( newkey, dateobs, sizeof(newkey), status );

    /* Include the dimentionality of the time series in the primary key
       so that we do not end up doing something confusing like relating
       a truncated file with a full length file */
    if (*status == SAI__OK) {
      dim_t dims[3];
      char formatted[32];
      smf_get_dims( data, &dims[0], &dims[1], NULL, &dims[2], NULL, NULL, NULL,
                    status );
      sprintf(formatted, "_%" DIM_T_FMT "_%" DIM_T_FMT "_%" DIM_T_FMT, dims[0], dims[1], dims[2]);
      one_strlcat( newkey, formatted, sizeof(newkey), status );
    }

    /* May want to read the dimensionality of the file outside of loop
       so that we can compare values when storing in the keymap */

    /* Now we want to create a keymap based on this key */
    if (!astMapGet0A( grouped, newkey, &filemap ) ) {
      int itemp = 0;
      double steptime = data->hdr->steptime;
      dim_t ntslice = 0;
      dim_t thispad;              /* Padding neeed for current input file */

      filemap = astKeyMap( " " );
      astMapPut0A( grouped, newkey, filemap, NULL );

      /* Fill up filemap with general information on this file */
      smf_find_seqcount( data->hdr, &itemp, status );
      astMapPut0I( filemap, "SEQCOUNT", itemp, NULL );

      smf_fits_getI( data->hdr, "NSUBSCAN", &itemp, status );
      astMapPut0I( filemap, "NSUBSCAN", itemp, NULL );

      /* Number of time slices */
      smf_get_dims( data, NULL, NULL, NULL, &ntslice, NULL, NULL, NULL,
                    status );

      /* Find length of down-sampled data, new steptime and maxlen */
      if( (downsampscale || downsampfreq) && data->hdr && (*status==SAI__OK) ) {
        double scalelen;

        if( downsampscale ) {
          if( data->hdr->scanvel != VAL__BADD ) {
             double oldscale = steptime * data->hdr->scanvel;
             scalelen = oldscale / downsampscale;
          } else if( *status == SAI__OK ) {
             *status = SAI__ERROR;
            scalelen = VAL__BADD;
            smf_smfFile_msg( data->file, "FILE", 1, "" );
            errRep( "", FUNC_NAME ": can't resample ^FILE because it has "
                    "unknown scan velocity", status );
          }
        } else {
          if( steptime ) {
            double oldsampfreq = 1./steptime;
            scalelen = downsampfreq / oldsampfreq;
          } else {
            *status = SAI__ERROR;
            scalelen = VAL__BADD;
            smf_smfFile_msg( data->file, "FILE", 1, "" );
            errRep( "", FUNC_NAME ": can't resample ^FILE because it has "
                    "unknown sample rate", status );
          }
        }

        /* only down-sample if it will be a reasonable factor */
        if( (*status==SAI__OK) && (scalelen <= SMF__DOWNSAMPLIMIT) ) {
          smf_smfFile_msg(data->file, "FILE", 1, "" );
          msgOutiff( MSG__VERB, "", FUNC_NAME
                     ": will down-sample file ^FILE from %5.1lf Hz to "
                     "%5.1lf Hz", status, (1./steptime), (scalelen/steptime) );

          ntslice = round(ntslice * scalelen);

          /* If maxlen has been requested, and we have not already worked
             out a scaled version (just uses the sample rates for the first
             file... should be close enough -- the alternative is a 2-pass
             system). */

          if( !maxlen_scaled ) {
            maxlen = round(maxlen*scalelen);
            maxlen_scaled = 1;
            msgOutiff( MSG__VERB, "", FUNC_NAME
                       ": requested maxlen %g seconds = %" DIM_T_FMT " down-sampled "
                       "time-slices", status, maxlen_s, maxlen );

            /* Return updated srate_maxlen for down-sampling if requested */
            if( srate_maxlen ) {
              *srate_maxlen = scalelen/steptime;
            }
          }
        }
      }

      /* Check that an individual file is too long (we assume related
         files are all the same) */
      if( maxlen && (ntslice > maxlen) && *status == SAI__OK) {
        *status = SAI__ERROR;
        msgSeti("NTSLICE",ntslice);
        msgSeti("MAXLEN",maxlen);
        smf_smfFile_msg( data->file, "FILE", 1, "" );
        errRep(FUNC_NAME,
               "Number of time steps in file ^FILE time exceeds maximum "
               "(^NTSLICE>^MAXLEN)", status);
      }

      /* Scaled values of ntslice and maximum length */
      astMapPut0I( filemap, "NTSLICE", ntslice, NULL );

      /* Work out the padding needed for this file including downsampling. */
      if( keymap ) {
        thispad = smf_get_padding( keymap, 0, data->hdr, VAL__BADD, status );
        if( thispad > maxpad ) maxpad = thispad;
      } else {
        thispad = 0;
      }
      astMapPut0I( filemap, "PADDING", thispad, NULL );

      /* Update maxflen */
      if( ntslice > maxflen ) {
        maxflen = ntslice;
      }

      /* Store OBSID or OBSIDSS depending on whether we are grouping by wavelength */
      if (grouping) {
        astMapPut0C( filemap, "OBSID", data->hdr->obsidss, NULL );
      } else {
        char obsid[81];
        smf_getobsidss( data->hdr->fitshdr, obsid, sizeof(obsid), NULL, 0, status );
        astMapPut0C( filemap, "OBSID", obsid, NULL );
      }
    }

    /* Store the file index in another keymap indexed by subarray */
    if ( !astMapGet0A( filemap, "GRPINDICES", &indexmap ) ) {
      indexmap = astKeyMap( "SortBy=KeyUp" );
      astMapPut0A( filemap, "GRPINDICES", indexmap, NULL );
    }

    astMapPut0I( indexmap, subarray, i, NULL );

    /* Need to track the largest number of related subarrays in a single slot */
    nrelated = astMapSize( indexmap );
    if (nrelated > maxrelated) maxrelated = nrelated;

    /* Free resources */
    filemap = astAnnul( filemap );
    indexmap = astAnnul( indexmap );
    smf_close_file( NULL, &data, status );
  }

  /* We now know how many groups there are */
  ngroups = astMapSize( grouped );

  /* Sort out chunking. The items are sorted by date and then by wavelength.
     We define a continuous chunk if it has the same OBSID, the same SEQCOUNT
     and NSUBSCAN increments by one from the previous entry.

     Also count number of related items in each slot.
   */
  if (*status == SAI__OK) {
    typedef struct { /* somewhere to store the values easily */
      char obsid[81];
      char related[81];  /* for concatenated subarrays */
      int nsubscan;
      int seqcount;
    } smfCompareSeq;
    smfCompareSeq current;
    smfCompareSeq previous;
    dim_t totlen = 0;
    size_t thischunk;

    /* Get the chunk flags and also store the size of the chunk */
    chunk = astCalloc( ngroups, sizeof(*chunk) );
    chunklen = astCalloc( ngroups, sizeof(*chunklen) );
    piecelen = astCalloc( ngroups, sizeof(*piecelen) );

    thischunk = 0;  /* The current chunk */
    for (i=0; i<ngroups; i++) {
      AstKeyMap * thismap = NULL;
      AstKeyMap * grpindices = NULL;
      const char * tempstr = NULL;
      int thistlen = 0;
      size_t nsubarrays = 0;

      /* Get the keymap entry for this slot */
      astMapGet0A( grouped, astMapKey(grouped, i), &thismap );

      /* Get info for length limits */
      astMapGet0I( thismap, "NTSLICE", &thistlen );
      piecelen[i] = thistlen;

      if (isFFT) {
        /* Never concatenate FFT data */
        thismap = astAnnul(thismap);
        chunk[i] = i;
        chunklen[i] = thistlen;
        continue;
      }

      /* Get indices information and retrieve the sub-instrument names
         in sort order to concatenate for comparison. We only store in
         a continuous chunk if we have the same subarrays for the whole
         chunk. */
      astMapGet0A( thismap, "GRPINDICES", &grpindices );
      nsubarrays = astMapSize( grpindices );
      (current.related)[0] = '\0';
      for (j = 0; j < nsubarrays; j++ ) {
        one_strlcat( current.related, astMapKey(grpindices, j), sizeof(current.related), status );
      }
      grpindices = astAnnul( grpindices );

      /* Fill in the current struct */
      astMapGet0I( thismap, "SEQCOUNT", &(current.seqcount) );
      astMapGet0I( thismap, "NSUBSCAN", &(current.nsubscan) );
      astMapGet0C( thismap, "OBSID", &tempstr );
      one_strlcpy( current.obsid, tempstr, sizeof(current.obsid), status );

      /* First chunk is special, else compare */
      if (i == 0) {
        totlen = thistlen;
      } else {
        if (  ( current.seqcount == previous.seqcount  ) &&
              ( current.nsubscan - previous.nsubscan == 1 ) &&
              ( strcmp( current.obsid, previous.obsid ) == 0 ) &&
              ( strcmp( current.related, previous.related ) == 0 ) ) {
          /* continuous - check length */
          totlen += thistlen;
          if ( maxlen && totlen > maxlen ) {
            thischunk++;
            totlen = thistlen; /* reset length */
          } else {
            /* Continuous */
          }
        } else {
          /* discontinuity */
          thischunk++;
          totlen = thistlen;  /* Update length of current chunk */
        }
      }

      chunklen[thischunk] = totlen;
      chunk[i] = thischunk;
      memcpy( &previous, &current, sizeof(current) );

      thismap = astAnnul( thismap );
    }
  }

  /* Decide if we are keeping a chunk by looking at the length. */
  maxconcat = 0;
  nkeep = 0;
  keepchunk = astMalloc( ngroups*sizeof(*keepchunk) );
  for (i=0; i<ngroups; i++) {
    size_t thischunk;

    thischunk = chunk[i];
    if ( chunklen[thischunk] < SMF__MINCHUNKSAMP ) {
      /* Warning message */
      msgSeti("LEN",chunklen[thischunk]);
      msgSeti("MIN",SMF__MINCHUNKSAMP);
      msgOut( " ", "SMF_GRP_RELATED: ignoring short chunk (^LEN<^MIN)",
              status);
      keepchunk[i] = 0;
    } else {
      keepchunk[i] = 1;
      if (maxconcat < chunklen[thischunk]) maxconcat = chunklen[thischunk];
      nkeep++;
    }

  }

  /* If no useful chunks generate an error */
  if( (*status==SAI__OK) && (!nkeep) ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": No useful chunks.", status );
    goto CLEANUP;
  }

  /* Allocate a subgroup array of the right size and fill it. They keymap
     is sorted by date (and wavelength) so we can always index into it by using
     indices from the subgroup. */
  subgroups = astCalloc( nkeep, sizeof(*subgroups) );
  new_chunk = astCalloc( nkeep, sizeof(*new_chunk) );
  new_tlen  = astCalloc( nkeep, sizeof(*new_tlen) );

  currentindex = 0;
  for (i=0;i<ngroups;i++) {
    AstKeyMap * thismap = NULL;
    AstKeyMap * grpindices = NULL;
    size_t nsubarrays = 0;
    size_t *indices = astCalloc( maxrelated, sizeof(*indices) );

    /* skip if we are dropping this chunk */
    if (!keepchunk[i]) continue;

    /* Get the keymap entry for this slot */
    astMapGet0A( grouped, astMapKey(grouped, i), &thismap );

    /* Get the indices keymap */
    astMapGet0A( thismap, "GRPINDICES", &grpindices );
    nsubarrays = astMapSize( grpindices );
    for (j=0; j<nsubarrays; j++) {
      int myindex;
      astMapGet0I( grpindices, astMapKey(grpindices, j), &myindex );
      indices[j] = myindex;
    }
    grpindices = astAnnul( grpindices );
    thismap = astAnnul( thismap );

    subgroups[currentindex] = indices;
    new_chunk[currentindex] = chunk[i];
    new_tlen[currentindex]  = piecelen[i];
    currentindex++;

  }

  /* Create the smfGroup */
  *group = smf_construct_smfGroup( igrp, subgroups, new_chunk, new_tlen,
                                   nkeep, maxrelated, 0, status );

  /* Return maxfilelen if requested */
  if( maxfilelen ) {
    *maxfilelen = maxflen;
  }

  /* Return maxconcatlen if requested */
  if( maxconcatlen ) {
    *maxconcatlen = maxconcat;
  }

  /* Create a base group for output files if required */
  /* Create a base group of filenames */
  if (*status == SAI__OK && basegrp ) {
    *basegrp = smf_grp_new( (*group)->grp, "Base Group", status );

    /* Loop over time chunks */
    for( i=0; (*status==SAI__OK)&&(i<(*group)->ngroups); i++ ) {
      size_t idx;
      /* Check for new continuous chunk */
      if( i==0 || ( (*group)->chunk[i] != (*group)->chunk[i-1]) ) {
        /* Loop over subarray */
        for( idx=0; idx<(*group)->nrelated; idx++ ) {
          size_t grpindex = (*group)->subgroups[i][idx];
          if ( grpindex > 0 ) {
            ndgCpsup( (*group)->grp, grpindex, *basegrp, status );
          }
        }
      }
    }
  }

 CLEANUP:
  keepchunk = astFree( keepchunk );
  chunk = astFree( chunk );
  chunklen = astFree( chunklen );
  piecelen = astFree( piecelen );
  grouped = astAnnul( grouped );

  if( *status != SAI__OK ) {
    /* free the group */
    if (basegrp && *basegrp) grpDelet( basegrp, status );
    if (group && *group) {
      smf_close_smfGroup( group, status );
    } else {
      /* have to clean up manually */
      new_chunk = astFree( new_chunk );
      new_tlen = astFree( new_tlen );
      if( subgroups ) {
        size_t isub;
        for( isub=0; isub<nkeep; isub++ ) {
          subgroups[isub] = astFree( subgroups[isub] );
        }
        subgroups = astFree( subgroups );
      }
    }
  }

  /* Return the maximum padding if required. */
  if( pad ) *pad = maxpad;
}
示例#13
0
void smurf_fts2_spectrum(int* status)
{
    if( *status != SAI__OK ) { return; }

    const char*  dataLabel    = "Spectrum";     /* Data label */
    Grp* gIn                  = NULL;           /* Input group */
    Grp* gOut                 = NULL;           /* Output group */
    Grp* gSfp                 = NULL;           /* SFP group */
    smfData* inData           = NULL;           /* Pointer to input data */
    smfData* outData          = NULL;           /* Pointer to output data */
    smfData* sfpData          = NULL;           /* Pointer to SFP data */
  /*smfData* sfp              = NULL;*/         /* Pointer to SFP index data */
    int doSFP                 = 0;              /* Only apply SFP if given */
    int zeropad               = 1;              /* Determines whether to zeropad */
    double resolution         = 0.0;            /* Spectral Resolution */
    double resolutionin       = 0.0;            /* Spectral Resolution input */
    double resolutionzp       = 0.0;            /* Spectral Resolution zero padded */
    double resolution_override= 0.0;            /* Spectral Resolution override */
    int i                     = 0;              /* Counter */
    int j                     = 0;              /* Counter */
    int k                     = 0;              /* Counter */
    int l                     = 0;              /* Counter */
    double fNyquist           = 0.0;            /* Nyquist frequency */
    double fNyquistin         = 0.0;            /* Nyquist frequency input */
    double fNyquistzp         = 0.0;            /* Nyquist frequency zero padded */
    double dSigma             = 0.0;            /* Spectral Sampling Interval */
    double dSigmain           = 0.0;            /* Spectral Sampling Interval zero padded */
    double dSigmazp           = 0.0;            /* Spectral Sampling Interval zero padded */
    double* IFG               = NULL;           /* Interferogram */
    double* SFP               = NULL;           /* Spectral Filter Profile for all pixels */
    double* SFPij             = NULL;           /* Spectral Filter Profile for a single pixel */
    double wavelen            = 0.0;            /* The central wave length of the subarray filter (m) */
    double wnSfpFirst         = 10.600;         /* Starting 850 band SFP wave number */
    double wnSfpLast          = 12.800;         /* Ending 850 band SFP wave number */
    double wnSfp850First      = 11.220;         /* Starting 850 band SFP wave number */
    double wnSfp850Last       = 12.395;         /* Ending 850 band SFP wave number */
  /*double wnSfp850First      = 10.600;*/       /* Starting 850 band SFP wave number */
  /*double wnSfp850Last       = 12.800;*/       /* Ending 850 band SFP wave number */
    double wnSfp450First      = 21.630;         /* Starting 450 band SFP wave number */
    double wnSfp450Last       = 23.105;         /* Ending 450 band SFP wave number */
    double wnSfpFirst_override= 0.0;            /* Starting SFP wave number override */
    double wnSfpLast_override = 0.0;            /* Ending SFP wave number override */
    double wnSfpResolution    = 0.025;          /* The resolution of the SFP wave numbers (1/cm) */
    double wnSfpF             = 0.0;            /* Starting SFP wave number */
    double wnSfpL             = 0.0;            /* Ending SFP wave number */
    double* WN                = NULL;           /* Wave Numbers from SFP */
    double* DS                = NULL;           /* Double Sided Interferogram */
    fftw_complex* DSIN        = NULL;           /* Double-Sided interferogram, FFT input */
    fftw_complex* SPEC        = NULL;           /* Spectrum */
    fftw_plan plan            = NULL;           /* fftw plan */
    gsl_interp_accel* ACC     = NULL;           /* SFP interpolator */
    gsl_spline* SPLINE        = NULL;           /* SFP interpolation spline */

    size_t nFiles             = 0;              /* Size of the input group */
    size_t nOutFiles          = 0;              /* Size of the output group */
    size_t nSFPFiles          = 0;              /* Size of the SFP group */
    size_t nSfp               = 89;             /* Number of SFP calibration file values */
    size_t fIndex             = 0;              /* File index */
    size_t nWidth             = 32;             /* Data cube width */
    size_t nHeight            = 40;             /* Data cube height */
    size_t nFrames            = 0;              /* Data cube depth */
    size_t nPixels            = nWidth*nHeight; /* Number of bolometers in the subarray */

    double dIntensity         = 0;
    int N                     = 0;
    int Nin                   = 0;                /* N input */
    int Nzp                   = 0;                /* N zero padded */
    int N2                    = 0;
    int N2in                  = 0;                /* N/2 input */
    int N2zp                  = 0;                /* N/2 zero padded */
    int bolIndex              = 0;
    int cubeIndex             = 0;
    int badPixel              = 0;
    int indexZPD              = 0;
    int indexZPDin            = 0;
    int indexZPDzp            = 0;
    int pad                   = 0;               /* zero padding (difference between input and zero padded interferogram length) */
    int pad2                  = 0;               /* zero padding / 2 */
    double dx                 = 0.0;             /* Delta x */
    double dxin               = 0.0;             /* Delta x input */
    double dxzp               = 0.0;             /* Delta x zero padded */
    double OPDMax             = 0.0;             /* OPD max in cm */
    double OPDMaxin           = 0.0;             /* OPD max in cm input */
    double OPDMaxzp           = 0.0;             /* OPD max in cm zero padded */
    double s                  = 0.0;             /* spectrum value */
    double f                  = 0.0;             /* filter value */

#define DEBUG 0

    /* Get Input & Output groups */
    kpg1Rgndf("IN", 0, 1, "", &gIn, &nFiles, status);
    kpg1Wgndf("OUT", gOut, nFiles, nFiles, "Equal number of input and output files expected!", &gOut, &nOutFiles, status);
    kpg1Gtgrp("SFP", &gSfp, &nSFPFiles, status);
    if(*status != SAI__OK) {
        /* TODO: Check for any other possible error conditions */
        /* Assume SFP calibration file not given, and proceed without it */
        doSFP = 0;
        *status = SAI__OK;
    } else {
	    if(nSFPFiles > 0) doSFP = 1;
    }

    /* Read in ADAM parameters */
    parGet0i("ZEROPAD", &zeropad, status);

    /* Resolution */
    parGet0d("RESOLUTION", &resolution_override, status);

    if(doSFP) {
        /* SFP WN Range overrides */
        parGet0d("WNSFPFIRST", &wnSfpFirst_override, status);
			if(*status != SAI__OK) {
				*status = SAI__OK;  /* Allow null */
				wnSfpFirst_override = 0.0;
			}
        parGet0d("WNSFPLAST", &wnSfpLast_override, status);
			if(*status != SAI__OK) {
				*status = SAI__OK;  /* Allow null */
				wnSfpLast_override = 0.0;
			}
    }

    /* BEGIN NDF */
    ndfBegin();


    /* Loop through each input file */
    for(fIndex = 1; fIndex <= nFiles; fIndex++) {
        /* Open Observation file */
        smf_open_file(NULL, gIn, fIndex, "READ", SMF__NOFIX_METADATA, &inData, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "Unable to open the source file!", status);
            goto CLEANUP;
        }

        /* Data cube dimensions */
        nWidth  = inData->dims[0];
        nHeight = inData->dims[1];
        nFrames = inData->dims[2];
        nPixels = nWidth * nHeight;

        /*printf("%s: nWidth=%d, nHeight=%d, nPixels=%d, nFrames=%d\n", TASK_NAME, nWidth, nHeight, nPixels, nFrames);*/

        /* Check if the file is initialized for FTS2 processing */
        if(!(inData->fts)) {
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "The file is NOT initialized for FTS2 data reduction!", status);
            goto CLEANUP;
        }

        /* Read in the Nyquist frequency from FITS component */
        smf_fits_getD(inData->hdr, "FNYQUIST", &fNyquist, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "Unable to find the Nyquist frequency in FITS component!", status);
            goto CLEANUP;
        }

        /* Read in the wave length (m) from the FITS header to determine the band */
        smf_fits_getD(inData->hdr, "WAVELEN", &wavelen, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "Unable to find the wavelen in the FITS header!", status);
            goto CLEANUP;
        }

        /* Set WN SFP range according to band */
        if(wavelen == 0.00085) {
            wnSfpFirst = wnSfp850First;
            wnSfpLast = wnSfp850Last;
        } else if(wavelen == 0.00045) {
            wnSfpFirst = wnSfp450First;
            wnSfpLast = wnSfp450Last;
        }

      /*printf("%s: wnSfpFirst_override=%f, wnSfpLast_override=%f\n", TASK_NAME, wnSfpFirst_override, wnSfpLast_override);*/
      /*printf("%s: wnSfpFirst=%f, wnSfpLast=%f\n", TASK_NAME, wnSfpFirst, wnSfpLast);*/
        if(wnSfpFirst_override) {
            wnSfpF = wnSfpFirst_override;
        } else {
            wnSfpF = wnSfpFirst;
        }
        if(wnSfpLast_override) {
            wnSfpL = wnSfpLast_override;
        } else {
            wnSfpL = wnSfpLast;
        }
      /*printf("%s: wnSfpF=%f, wnSfpL=%f\n", TASK_NAME, wnSfpF, wnSfpL);*/

        fNyquistin = fNyquistzp = 0.0;
        dx = dxin = dxzp = 0.0;
        N2 = N2in = N2zp = 0;
        indexZPD = indexZPDin = indexZPDzp = 0;
        N = Nin = Nzp = 0;
        dSigma = dSigmain = dSigmazp = 0.0;

        fNyquistin = fNyquist;
        dxin = (1/(2*fNyquistin));
        N2in = (nFrames / 2);
        indexZPDin = N2in - 1;
        Nin = 2 * N2in;
        OPDMaxin = N2in * dxin;
        if(resolution_override > 0.0) {
            resolution = resolution_override;
            resolutionin = resolution_override;
        } else {
            resolution = 1 / (2 * OPDMaxin);
            resolutionin = resolution;
        }
        dSigmain = fNyquistin / N2in;

        if(zeropad) {
            if(DEBUG) {
                /* Make the zero-padded array twice the size of the input */
                fNyquistzp = fNyquist;
                Nzp = N2in * 4;
                N2zp = Nzp / 2;
                dxzp = 1 / (2 * fNyquistzp);
                OPDMaxzp = N2zp * dxzp;
                dSigmazp = fNyquistzp / N2zp;
                resolutionzp = 1 / (2 * OPDMaxzp);
            } else {
                /* Round Nyquist frequency down to nearest integer, for calculation convenience
                fNyquistzp = floor(fNyquist);

                smf_fits_updateD(inData->hdr, "FNYQUIST", fNyquistzp, "Nyquist frequency (cm^-1)", status);*/

                /* Never change nyquist when zero padding */
                fNyquistzp = fNyquist;

                /* If resolution > 0.05, then round down to nearest 0.05 value, else set to 0.005 */
                /* Calculate resolution as 1 / (2*OPDMax) */
                /* Calculate OPDMax as N2 * dx */

                if(resolution_override) {
                    resolutionzp = resolution_override;
                } else {
                    if(resolution > 0.05) {
                        resolutionzp = floor(resolution/0.05) * 0.05;
                    } else {
                        resolutionzp = 0.005;
                    }
                }

                /* Calculate OPDMaxOut  as 1 / (2 * resolutionzp) */
                OPDMaxzp = 1 / (2 * resolutionzp);

                /* Calculate N2 */
                dxzp = (1/(2*fNyquistzp));
                N2zp = (OPDMaxzp / dxzp);
                indexZPDzp = N2zp - 1;
                Nzp = 2 * N2zp;
                dSigmazp = fNyquistzp / N2zp;
            }
        }

      /*printf("%s: Nin=%d, Nzp=%d, N2in=%d, N2zp=%d, indexZPDin=%d, indexZPDzp=%d, dSigmain=%f, dSigmazp=%f, fNyquistin=%f, fNyquistzp=%f, dxin=%f, dxzp=%f, OPDMaxin=%f, OPDMaxzp=%f, resolutionin=%f, resolutionzp=%f\n",
               TASK_NAME, Nin, Nzp, N2in, N2zp, indexZPDin, indexZPDzp, dSigmain, dSigmazp, fNyquistin, fNyquistzp, dxin, dxzp, OPDMaxin, OPDMaxzp, resolutionin, resolutionzp);*/

        if(zeropad) {
            N = Nzp;
            N2 = N2zp;
            indexZPD = indexZPDzp;
            dSigma = dSigmazp;
            fNyquist = fNyquistzp;
            dx = dxzp;
            OPDMax = OPDMaxzp;
            resolution = resolutionzp;
        } else {
            N = Nin;
            N2 = N2in;
            indexZPD = indexZPDin;
            dSigma = dSigmain;
            fNyquist = fNyquistin;
            dx = dxin;
            OPDMax = OPDMaxin;
            resolution = resolutionin;
        }

        /* Save wavenumber factor to FITS extension */
        smf_fits_updateD(inData->hdr, "WNFACT", dSigma, "Wavenumber factor cm^-1", status);

        /* TODO: Update mirror positions */
        smf_fits_updateI(inData->hdr, "MIRSTART", 0, "Frame index in which the mirror starts moving", status);
        smf_fits_updateI(inData->hdr, "MIRSTOP", N2, "Frame index in which the mirror stops moving", status);
      /*smf_fits_updateD(inData->hdr, "OPDMIN", OPD_EVEN[0], "Minimum OPD", status);
        smf_fits_updateD(inData->hdr, "OPDSTEP", dx, "OPD step size", status);*/


        /* Copy input data into output data */
        outData = smf_deepcopy_smfData(NULL, inData, 0, SMF__NOCREATE_DATA, 0, 0, status);
        outData->dtype   = SMF__DOUBLE;
        outData->ndims   = 3;
        outData->dims[0] = nWidth;
        outData->dims[1] = nHeight;
        outData->dims[2] = N2+1;
        outData->pntr[0] = (double*) astMalloc((nPixels * (N2+1)) * sizeof(double));
        if (dataLabel) { one_strlcpy(outData->hdr->dlabel, dataLabel, sizeof(outData->hdr->dlabel), status ); }

        /* Allocate memory for arrays */
        IFG  = astCalloc(N,  sizeof(*IFG));
        DS   = astCalloc(N, sizeof(*DS));
        DSIN = fftw_malloc(N * sizeof(*DSIN));
        SPEC = fftw_malloc(N * sizeof(*SPEC));

        /* Initialize arrays */
        for(k = 0; k < N; k++) { SPEC[k][0] = SPEC[k][1] = DSIN[k][0] = DSIN[k][1] = DS[k] = IFG[k] = 0.0; }

        /* Open the SFP calibration file, if given */
        if(doSFP) {
            smf_open_file(NULL, gSfp, 1, "READ", SMF__NOCREATE_QUALITY, &sfpData, status);
            if(*status != SAI__OK) {
                *status = SAI__ERROR;
                errRep(FUNC_NAME, "Unable to open the SFP calibration file!", status);
                goto CLEANUP;
            }

            /* Read in the number of data elements */
            nSfp = sfpData->dims[1] / nPixels;
            /* Allocate memory for arrays */
            SFP = astCalloc(nSfp*nPixels, sizeof(*SFP));
            SFPij = astCalloc(nSfp, sizeof(*SFP));
            WN  = astCalloc(nSfp, sizeof(*WN));

            /* DEBUG: Dispay SFP data */
          /*printf("smurf_fts2_spectrum ([%d,%d,%d] elements): WN, SFP\n", (int)sfpData->dims[0],(int)sfpData->dims[1],(int)sfpData->dims[2]);*/
            for(k=0;k<nSfp;k++){
                /* printf("WN:%.3f,SFP:%.10f\n", *((double*) (sfpData->pntr[0]) + i), *((double*) (sfpData->pntr[0]) + i+1)); */
                /* Adjust starting and ending wave number ranges for 450 or 850 bands */
                if(wavelen == 0.00085 || wavelen == 0.00045) {
                    WN[k] = wnSfpFirst + k * wnSfpResolution;
                } else {
                    *status = SAI__ERROR;
                    errRep(FUNC_NAME, "Unexpected WAVELEN value found in the FITS header!", status);
                    goto CLEANUP;
                }
              /*printf("SFP WN[%d]=%f\n",k,WN[k]);*/
                for(j=0;j<nHeight;j++) {
                    for(i=0;i<nWidth;i++) {
                        bolIndex = i + j * nWidth;
                        cubeIndex = bolIndex + k * nPixels;
                        SFP[cubeIndex] = *((double*) (sfpData->pntr[0]) + cubeIndex);
                      /*if(i==10 && j==20) printf("SFP i:%d,j:%d,k:%d,bolIndex:%d,cubeIndex:%d=%f\n",i,j,k,bolIndex,cubeIndex,SFP[cubeIndex]);*/
                    }
                }
            }

            /*printf("smurf_fts2_spectrum DEBUG: early exiting!\n");
              exit(0); */

            /* Create a 2D SFP index array and store it in the file, if given
            sfp = smf_create_smfData(SMF__NOCREATE_DA | SMF__NOCREATE_FTS, status);
            sfp->dtype   = SMF__INTEGER;
            sfp->ndims   = 2;
            sfp->dims[0] = nSfp;
            sfp->dims[1] = 2;
            sfp->pntr[0] = (int*) astCalloc(nSfp*2,  sizeof(double));
            // By default set ZPD indices to a bad value
            for(i = 0; i < nSfp; i++) {
                for(j = 0; j < 2; j++) {
                    bolIndex = i + j * 2;
                    *((int*) (sfp->pntr[0]) + bolIndex) = VAL__BADI;
                }
            } */

            /* Prepare GSL interpolator to convert SFP data to this spectrum's resolution */
            ACC    = gsl_interp_accel_alloc();
            SPLINE = gsl_spline_alloc(gsl_interp_cspline, nSfp);
        }

        for(i = 0; i < nWidth; i++) {
            for(j = 0; j < nHeight; j++) {
                bolIndex = i + j * nWidth;

                badPixel = 0;
                for(k = 0; k < Nin; k++) {
                    dIntensity = *((double*)(inData->pntr[0]) + (bolIndex + k * nPixels));
                    if(dIntensity == VAL__BADD) {
                        badPixel = 1;
                        break;
                    }
                }
                /* If this is a bad pixel, go to next */
                if(badPixel) {
                    for(k = 0; k <= N2in; k++) {
                        *((double*)(outData->pntr[0]) + (bolIndex + k * nPixels)) = VAL__BADD;
                    }
                    continue;
                }

                /* Double-Sided interferogram */
                if(zeropad) {
                    pad = Nzp - Nin;
                    pad2 = pad / 2;
                    /* Copy the right half of the input into the left half of this IFG, zero padded in the middle */
                    for(k=indexZPDin; k<Nin; k++) {
                        /*printf("%s: IFG: indexZPDin=%d, indexZPDzp=%d, Nin=%d, Nzp=%d, k=%d, l=%d\n", TASK_NAME, indexZPDin, indexZPDzp, Nin, Nzp, k, l);*/
                        IFG[k - indexZPDin] = *((double*)(inData->pntr[0]) + (bolIndex + k * nPixels));
                      /*if(i==16 && j==25) {
                            printf("%s: Pixel[%d,%d]: (L<-R) IFG[k(%d)-indexZPDin(%d)=%d] = inData->pntr[bolIndex(%d)+k(%d)*nPixels(%d)=%d] = %g\n",
                                   TASK_NAME, i, j, k, indexZPDin, (k - indexZPDin), bolIndex, k, nPixels, (bolIndex + k * nPixels), IFG[k - indexZPDin]);
                        }*/
                    }
                    /* Copy the left half of the input into the right half of this IFG, zero padded in the middle */
                    for(k=0,l=0; k<indexZPDin; k++) {
                        IFG[Nzp - indexZPDin + k] =  *((double*)(inData->pntr[0]) + (bolIndex + k * nPixels));
                      /*if(i==16 && j==25) {
                            printf("%s: Pixel[%d,%d]: (L->R) IFG[Nzp(%d)-indexZPDin(%d)+k(%d)=%d] = inData->pntr[bolIndex(%d)+k(%d)*nPixels(%d)=%d] = %g\n",
                                   TASK_NAME, i, j, Nzp, indexZPDin, k, (Nzp-indexZPDin+k), bolIndex, k, nPixels, (bolIndex+k*nPixels), IFG[Nzp-indexZPDin+k]);
                        }*/
                    }
                } else {
                    /* Copy the right half of the input into the left half of this IFG */
                    for(k=indexZPD; k<N; k++) {
                        IFG[k - indexZPD] = *((double*)(inData->pntr[0]) + (bolIndex + k * nPixels));
                      /*if(i==16 && j==25) {
                            printf("%s: Pixel[%d,%d]: (L<-R) IFG[k(%d)-indexZPD(%d)=%d] = inData->pntr[bolIndex(%d)+k(%d)*nPixels(%d)=%d] = %f\n",
                                     TASK_NAME, i, j, k, indexZPD, (k - indexZPD), bolIndex, k, nPixels, (bolIndex + k * nPixels), IFG[k - indexZPD]);
                        }*/
                    }
                    /* Copy the left half of the input into the right half of this IFG */
                    for(k=0; k<indexZPD; k++) {
                        IFG[N - indexZPD + k] =  *((double*)(inData->pntr[0]) + (bolIndex + k * nPixels));
                      /*if(i==16 && j==25) {
                              printf("%s: Pixel[%d,%d]: (L->R) IFG[N(%d)-indexZPD(%d)+k(%d)=%d] = inData->pntr[bolIndex(%d)+k(%d)*nPixels(%d)=%d] = %f\n",
                                     TASK_NAME, i, j, N, indexZPD, k, (N - indexZPD + k), bolIndex, k, nPixels, (bolIndex + k * nPixels), IFG[N - indexZPD + k]);
                        }*/
                    }
                }

                /* DEBUG: Write out input data
                for(k = 0; k < Nin; k++) {
                    *((double*)(outData->pntr[0]) + (bolIndex + nPixels * k)) =
                    *((double*)( inData->pntr[0]) + (bolIndex + nPixels * k));
                    if(i==16 && j==25) {
                        printf("%s: inData[%d,%d,%d]=%g\n",TASK_NAME, i, j, k, *((double*)( inData->pntr[0]) + (bolIndex + nPixels * k)));
                    }
                } */

                /* DEBUG: Write out the shifted IFG
                for(k = 0; k < N; k++) {
                    *((double*)(outData->pntr[0]) + (bolIndex + k* nPixels)) = IFG[k];
                    if(i==16 && j==25) {
                        printf("%s: IFG[%d,%d,%d]=%g\n",TASK_NAME, i, j, k, IFG[k]);
                    }
                } */

                /* Convert real-valued interferogram to complex-valued interferogram */
                for(k = 0; k < N; k++) { DSIN[k][0] = IFG[k]; DSIN[k][1] = 0.0; }

                /* DEBUG: Write out DSIN
                for(k = 0; k < N; k++) {
                    *((double*)(outData->pntr[0]) + (bolIndex + k * nPixels)) = DSIN[k][0];
                    if(i==16 && j==25) {
                        printf("%s: DSIN[%d,%d,%d]=%g\n",TASK_NAME, i, j, k, DSIN[k][0]);
                    }
                } */

                /* FFT Double-sided complex-valued interferogram */
                plan = fftw_plan_dft_1d(N, DSIN, SPEC, FFTW_FORWARD, FFTW_ESTIMATE);
                fftw_execute(plan);

                /* Normalize spectrum */
                for(k=0;k<N;k++) { SPEC[k][0] = SPEC[k][0] / (double)(N * resolution); }

                /* Apply SFP calibration, if given */
                if(doSFP){
                    /* Get the SFP for this pixel */
                    for(k=0;k<nSfp;k++) { SFPij[k] = SFP[i + j*nWidth + k*nPixels]; }
                    /* Interpolate the SFP values from its original WN scale to the current spectrum scale */
                    gsl_spline_init(SPLINE, WN, SFPij, nSfp);

                    /* Divide the spectrum in the band pass region by the interpolated SFP value at each position */
                    for(k = 0; k < N; k++) {
                      /*if(k*dSigma >= WN[0] && k*dSigma <= WN[nSfp-1]) {*/
                        if(k*dSigma >= wnSfpF && k*dSigma <= wnSfpL) {
                            f = gsl_spline_eval(SPLINE, k*dSigma, ACC);
                            /*index = bolIndex + nPixels * k;*/
                            s = SPEC[k][0];
                            SPEC[k][0] = s / f;
                          /*if(i==10 && j==20) { printf("SFP i=%d, j=%d, k=%d, dSigma=%f, k*dSigma=%f, s=%f, f=%f, s/f=%f, \n", i, j, k, dSigma, k*dSigma, s, f, s/f); }*/
                        }
                    }
                }

                /* Write out the positive real component of the spectrum */
                for(k = 0; k <= N2; k++) {
                    *((double*)(outData->pntr[0]) + (bolIndex + k * nPixels)) = SPEC[k][0];
                  /*if(i==16 && j==25) {
                        printf("%s: SPEC[%d,%d,%d]=%E\n",TASK_NAME, i, j, k, SPEC[k][0] / (double)(N * resolution));
                    }*/
                }

                /* Destroy each allocated plan */
                if(plan) { fftw_destroy_plan(plan); }
            }
        }

        /* Deallocate memory used by arrays */
        if(IFG)  { IFG = astFree(IFG); }
        if(DS)   { DS = astFree(DS); }
        if(SFP)  { SFP = astFree(SFP); }
        if(SFPij)  { SFPij = astFree(SFPij); }
        if(WN)   { WN = astFree(WN); }
        if(DSIN) { fftw_free(DSIN); DSIN = NULL; }
        if(SPEC) { fftw_free(SPEC); SPEC = NULL; }
        if(ACC)     { gsl_interp_accel_free(ACC);   ACC     = NULL; }
        if(SPLINE)  { gsl_spline_free(SPLINE);      SPLINE  = NULL; }

        /* Close the file */
        if(inData) {
            smf_close_file( NULL,&inData, status);
            if(*status != SAI__OK) {
                *status = SAI__ERROR;
                errRep(FUNC_NAME, "Unable to close the input file!", status);
                goto CLEANUP;
            }
        }

        /* Write output */
        /* outData->fts = smf_construct_smfFts(NULL, sfp, fpm, sigma, status);   // TODO: Add interpolated SFP to FITS header */
        smf_write_smfData(NULL, outData, NULL, NULL, gOut, fIndex, 0,
                          MSG__VERB, 0, NULL, NULL, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "Unable to write the output file!", status);
            goto CLEANUP;
        }
        smf_close_file( NULL,&outData, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "Unable to close the output file!", status);
            goto CLEANUP;
        }
    }

CLEANUP:
    if(IFG)  { IFG = astFree(IFG); }
    if(DS)   { DS = astFree(DS); }
    if(SFP)  { SFP = astFree(SFP); }
    if(SFPij)  { SFPij = astFree(SFPij); }
    if(WN)   { WN = astFree(WN); }
    if(DSIN) { fftw_free(DSIN); DSIN = NULL; }
    if(SPEC) { fftw_free(SPEC); SPEC = NULL; }
    if(ACC)     { gsl_interp_accel_free(ACC);   ACC     = NULL; }
    if(SPLINE)  { gsl_spline_free(SPLINE);      SPLINE  = NULL; }

    /* Close files if still open */
    if(inData) {
        smf_close_file( NULL,&inData, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "CLEANUP: Unable to close the input file!", status);
        }
    }
    if(outData) {
        smf_close_file( NULL,&outData, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "CLEANUP: Unable to close the output file!", status);
        }
    }
    if(sfpData) {
        smf_close_file( NULL,&sfpData, status);
        if(*status != SAI__OK) {
            *status = SAI__ERROR;
            errRep(FUNC_NAME, "CLEANUP: Unable to close the SFP file!", status);
        }
    }

    /* END NDF */
    ndfEnd(status);

    /* Delete Groups */
    if(gIn) grpDelet(&gIn, status);
    if(gOut) grpDelet(&gOut, status);
    if(gSfp) grpDelet(&gSfp, status);
}
示例#14
0
/*
 * Process an NDF history element and construct a KeyMay.
 *
 * This is intended as a handler routine for use with ndfHout,
 * it reads the supplied text and sets the global historyConfig
 * variable.
 */
void HistoryKeyMap(int n, char* const text[], int* status) {
   char patt_group[] = "Group:";
   char patt_cont[] = "   ";
   char patt_name[] = "CONFIG";
   char* buff = NULL;
   int nc = 0;
   char line[NDF__SZHIS + 1];
   char* p;
   char* q;
   int i;
   int groupstarting = 0;
   int groupcontinuing = 0;
   Grp* grp;
   size_t grpsize;
   int grpadded, grpflag;

/* Check the inherited status */

   if (*status != SAI__OK) return;

/* Loop over history text lines, copying each into line for editing
   and setting p to point at the start of line. */

   for (i = 0; i < n; i ++) {
      one_strlcpy(line, text[i], NDF__SZHIS + 1, status);
      p = line;

/* If a group is in progess, check that it continues, and if so
   add the line to the buffer, otherwise end the group. Since we
   only extract one group, we can leave processing buff to the end. */

      if (groupcontinuing) {
         if (! strncmp(patt_cont, p, strlen(patt_cont))) {
            p += strlen(patt_cont);
            while (*p == ' ') p++;
            while (p[strlen(p) - 1] == ' ') p[strlen(p) - 1] = '\0';
            buff = astAppendString(buff, &nc, p);
            continue;
         }
         else {
            groupcontinuing = 0;
         }
      }

/* If we didn't already detect a group to be starting, see whether
   one is starting now. */

      if (! groupstarting) {
         if (strncmp(patt_group, p, strlen(patt_group))) {
            continue;
         }
         else {
            groupstarting = 1;
            p += strlen(patt_group);
         }
      }

      while (*p == ' ') p ++;

      if (! *p) continue;

/* Group is starting, so check whether the group name is the one
   for which we are looking, and if so, start collecting the
   text in buff. */

      if (! strncmp(patt_name, p, strlen(patt_name))) {
         p += strlen(patt_name);
         while (*p == ' ') p ++;
         if (*p == '=') {
            p++;
            if (*p == '"') p++;
            while (*p == ' ') p++;
            while (p[strlen(p) - 1] == ' ') p[strlen(p) - 1] = '\0';
            buff = astAppendString(astFree(buff), &nc, p);
            groupcontinuing = 1;
         }
      }

      groupstarting = 0;
   }

/* Convert buff to a KeyMap and set the global variable historyConfig. */

   if (buff && *buff) {
      if (buff[strlen(buff) - 1] == '"') buff[strlen(buff) - 1] = '\0';
      grp = grpNew("CONFIG", status);

      p = buff;
      while (*p) {
         q = p;
         i = 0;
         groupcontinuing = 0;
         for (q = p; *q; q ++) {
            if (*q == '(' || *q == '[' || (*q == '\'' && i == 0)) i ++;
            else if (*q == ')' || *q == ']' || (*q == '\'' && i > 0)) i --;
            else if (*q == ',' && i == 0) {
               *q = '\0';
               groupcontinuing = 1;
               break;
            }
         }
         grpGrpex(p, GRP__NOID, grp, &grpsize, &grpadded, &grpflag, status);
         if (!groupcontinuing) break;
         p = q + 1;
      }

      kpg1Kymap(grp, &historyConfig, status);
      grpDelet(&grp, status);
      buff = astFree(buff);
   }
}
示例#15
0
void smf_write_flagmap( ThrWorkForce *wf, smf_qual_t mask, smfArray *lut, smfArray *qua,
                        smfDIMMData *dat, const Grp *flagrootgrp,
                        size_t contchunk, const int *lbnd_out,
                        const int *ubnd_out, AstFrameSet *outfset,
                        int *status ) {

  AstFrameSet *tfset;          /* Temporary FrameSet pointer */
  Grp *mgrp=NULL;               /* Temporary group for map names */
  char *pname=NULL;             /* Poiner to name */
  char name[GRP__SZNAM+1];      /* Buffer for storing names */
  char tempstr[20];             /* Temporary string */
  char tmpname[GRP__SZNAM+1];   /* temp name buffer */
  dim_t nbolo;                  /* Number of bolometers */
  dim_t ntslice;                /* Number of time slices */
  double shift[ 1 ];            /* Shift from GRID to bit number */
  int *flagmap=NULL;            /* pointer to flagmap data */
  int *lut_data=NULL;           /* Pointer to DATA component of lut */
  int ibit;                     /* Quality bit number */
  int lbnd3d[3];                /* Lower bounds for 3D output */
  int npix;                     /* Number of pixels per plane */
  int target;                   /* Target value for incrementing pixel count */
  int ubnd3d[3];                /* Upper bounds for 3D output */
  size_t bstride;               /* Bolometer stride */
  size_t i;                     /* loop counter */
  size_t idx=0;                 /* index within subgroup */
  size_t ii;                    /* array offset index */
  size_t j;                     /* loop counter */
  size_t tstride;               /* Time stride */
  smfData *mapdata=NULL;        /* smfData for new map */
  smf_qual_t *qua_data=NULL;    /* Pointer to DATA component of qua */

  if( *status != SAI__OK ) return;

  if( !lut || !qua || !dat || !flagrootgrp || !lbnd_out || !ubnd_out ||
      !outfset ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": NULL inputs supplied", status );
    return;
  }

  /* Create a name for the flagmap, taking into account the chunk
     number. Only required if we are using a single output
     container. */
  pname = tmpname;
  grpGet( flagrootgrp, 1, 1, &pname, sizeof(tmpname), status );
  one_strlcpy( name, tmpname, sizeof(name), status );
  one_strlcat( name, ".", sizeof(name), status );

  sprintf(tempstr, "CH%02zd", contchunk);
  one_strlcat( name, tempstr, sizeof(name), status );
  mgrp = grpNew( "flagmap", status );
  grpPut1( mgrp, name, 0, status );

  msgOutf( "", "*** Writing flagmap %s", status, name );

  /* If a non-zero mask value wassupplied, the flagmap is 2-dimensional
     and each pixel value counts the number of samples flagged by any of
     the qualities included in the mask. */
  if( mask ) {

     smf_open_newfile( wf, mgrp, 1, SMF__INTEGER, 2, lbnd_out, ubnd_out, 0, &mapdata,
                       status);
     flagmap = mapdata->pntr[0];

     /* Loop over subgroup index (subarray) */
     for( idx=0; (idx<qua->ndat)&&(*status==SAI__OK); idx++ ) {

          smf_get_dims( qua->sdata[idx], NULL, NULL, &nbolo, &ntslice,
                        NULL, &bstride, &tstride, status );
          qua_data = (qua->sdata[idx]->pntr)[0];
          lut_data = (lut->sdata[idx]->pntr)[0];

          /* Loop over bolometer and time slice and create map */
          for( i=0; i<nbolo; i++ ) {
            /* Skip bolometers only if SMF__Q_BADB is set both in the
               data and the mask */
            if( !(qua_data[i*bstride] & mask & SMF__Q_BADB) ) {
              for( j=0; j<ntslice; j++ ) {
                ii = i*bstride + j*tstride;
                if( (qua_data[ii] & mask) && (lut_data[ii] != VAL__BADI) ) {
                  flagmap[lut_data[ii]]++;
                }
              }
            }
          }
        }

     /* Write WCS */
     smf_set_moving( (AstFrame *) outfset, NULL, status );
     ndfPtwcs( outfset, mapdata->file->ndfid, status );

  /* If the mask is zero, the flagmap is 3-dimensional and contains a
     plane for each quality bit, plus an additional plane (plane 1)
     containing the number of unflagged samples in each pixel. */
  } else {
     lbnd3d[ 0 ] = lbnd_out[ 0 ];
     lbnd3d[ 1 ] = lbnd_out[ 1 ];
     lbnd3d[ 2 ] = -1;
     ubnd3d[ 0 ] = ubnd_out[ 0 ];
     ubnd3d[ 1 ] = ubnd_out[ 1 ];
     ubnd3d[ 2 ] = SMF__NQBITS_TSERIES - 1;

     smf_open_newfile( wf, mgrp, 1, SMF__INTEGER, 3, lbnd3d, ubnd3d, 0,
                       &mapdata, status);
     flagmap = mapdata->pntr[0];

     /* No. of pixels in one plane */
     npix = ( ubnd3d[ 1 ] - lbnd3d[ 1 ] + 1 )*( ubnd3d[ 0 ] - lbnd3d[ 0 ] + 1 );

     /* Loop over each quality bit (-1 == "no flags"). */
     for( ibit = -1; ibit < SMF__NQBITS_TSERIES; ibit++ ) {

        /* The test of each sample is performed by checking if the
           sample's quality value ANDed with "mask" is equal to "target".
           This is requires since ibit==-1 (i.e. "count all samples that
           have no flags set") requires a different logic to the other
           ibit values. */
        if( ibit == -1 ) {
           mask = SMF__Q_GOOD;
           target = 0;
        } else {
           mask = BIT_TO_VAL(ibit);
           target = mask;
        }

        /* Loop over subgroup index (subarray) */
        for( idx=0; (idx<qua->ndat)&&(*status==SAI__OK); idx++ ) {

           smf_get_dims( qua->sdata[idx], NULL, NULL, &nbolo, &ntslice,
                           NULL, &bstride, &tstride, status );
           qua_data = (qua->sdata[idx]->pntr)[0];
           lut_data = (lut->sdata[idx]->pntr)[0];

           /* Loop over bolometer and time slice and create map */
           for( i=0; i<nbolo; i++ ) {

              /* Skip bolometers only if SMF__Q_BADB is set both in the
                 data and the mask */
              for( j=0; j<ntslice; j++ ) {
                 ii = i*bstride + j*tstride;
                 if( ( (qua_data[ii] & mask) == target ) &&
                     (lut_data[ii] != VAL__BADI) ) {
                   flagmap[lut_data[ii]]++;
                 }
              }
           }
        }

        /* Move the pointer on to th enext plane. */
        flagmap += npix;

     /* Next quality bit. */
     }

     /* Take a copy of the supplied FrameSet so we do not modify it. */
     tfset = astCopy( outfset );

     /* Set atributes for moving target if necessary. */
     smf_set_moving( (AstFrame *) tfset, NULL, status );

     /* Modify the WCS FrameSet so that the base and current Frames are
        3-dimensional. The current Frame is expanded by adding in a simple
        1D Frame representing quality bit, and the base Frame is expanded
        by adding in a 3rd GRID axis. Other Frames are left unchanged.
        The quality bit Frame and the new GRID axis are connected using
        a ShiftMap that gives the right zero-based bit numbers (which
        also correspond to PIXEL indices). */
     shift[ 0 ] = -2.0;
     atlAddWcsAxis( tfset, (AstMapping *) astShiftMap( 1, shift, " " ),
                    astFrame( 1, "Label(1)=Quality bit,Domain=QUALITY" ),
                    NULL, NULL, status );

     /* Store the FrameSet in the 3D NDF. */
     ndfPtwcs( tfset, mapdata->file->ndfid, status );

     tfset = astAnnul( tfset );
  }

  /* Clean up */
  if( mgrp ) grpDelet( &mgrp, status );
  smf_close_file( wf, &mapdata, status );

}
示例#16
0
void smf_flat_write( smf_flatmeth flatmeth, const char * flatname,
                     double refres, const smfData * bolval,
                     const smfData * powref, const smfData * bolref,
                     const smfData * polyfit, const Grp * prvgrp, int * status ) {

  size_t colsize;              /* number of columns */
  double *dbuf = NULL;         /* input double buffer for mean data */
  double *dvar = NULL;         /* input double buffer for variance of data */
  char fitsrec[SC2STORE__MAXFITS*SZFITSCARD+1]; /* Store for FITS records */
  int *ibuf = NULL;            /* int buffer for mean data */
  int indf = NDF__NOID;        /* NDF identifier for output file */
  size_t ncards;               /* number of fits cards */
  size_t numbols;              /* number of bolometers */
  double *outvar = NULL;       /* buffer for variance of data */
  int place = NDF__NOPL;       /* Dummy placeholder for NDF */
  size_t rowsize;              /* number of rows */
  JCMTState *state = NULL;     /* State for this flatfield */
  sc2ast_subarray_t subnum;    /* subarray number */

  AstFrameSet *result, *spacefset;
  AstLutMap *heatmap;
  AstFrame *heatfrm;


  int *dksquid;           /* pointer to dummy dark SQUID data */
  size_t j;               /* loop counter */
  int jig_vert[1][2];     /* dummy jiggle vertices */
  double jig_path[1][2];  /* dummy jiggle path */
  size_t nframes = 0;     /* Number of frames in bolval */
  int npath = 0;          /* size of jiggle path */
  int nvert = 0;          /* number of jiggle vertices */
  char *xmlfile = NULL;   /* dummy xmlfile name */

  if (*status != SAI__OK) return;

  if (!bolval->da) {
    *status = SAI__ERROR;
    errRep( "", "No flatfield solution provided for writing",
            status );
    return;
  }

  if (!bolval->da->heatval) {
    *status = SAI__ERROR;
    errRep( "", "Must provide heater values in DA struct to smf_flat_write"
            " (possible programming error)", status );
    return;
  }

  /* note that colsize is the number of rows and rowsize is the number of
     columns */
  colsize = (bolval->dims)[SC2STORE__ROW_INDEX];
  rowsize = (bolval->dims)[SC2STORE__COL_INDEX];
  numbols = colsize * rowsize;
  nframes = (bolval->dims)[2];

  /* Make sure we have a FLAT header that reflects this file
     as the flatfield solution */
  smf_fits_updateS( bolval->hdr, "FLAT", flatname, "Name of flat-field file",
                    status );

  /* Create a FITS header for DA */
  smf_fits_export2DA( bolval->hdr->fitshdr, &ncards, fitsrec, status );

  /* Copy the data as integers so it can be written to data file. To
     prevent overflow in the variance we store that as doubles */

  ibuf = astMalloc( (numbols * nframes)*sizeof(*ibuf) );
  outvar = astMalloc( (numbols * nframes)*sizeof(*outvar) );

  dbuf = (bolval->pntr)[0];
  dvar = (bolval->pntr)[1];

  if (*status == SAI__OK) {
    for (j = 0; j < (nframes * numbols); j++) {
      /* These started off as integers so the mean value must fit in
         an integer */
      if ( dbuf[j] == VAL__BADD) {
        ibuf[j] = VAL__BADI;
      } else {
        ibuf[j] = (int)dbuf[j];
      }
      /* Same data type so no need to convert bad values */
      if (dvar) {
        outvar[j] = dvar[j];
      } else {
        outvar[j] = VAL__BADD;
      }
    }
  }

  /* get subarray number */
  smf_find_subarray( bolval->hdr, NULL, 0, &subnum, status );

  /* Create dummy components for output file */
  dksquid = astCalloc ( rowsize* nframes, sizeof(*dksquid) );
  jig_vert[0][0] = 0;
  jig_vert[0][1] = 0;
  jig_path[0][0] = 0.0;
  jig_path[0][1] = 0.0;

  sc2store_setcompflag ( SC2STORE__NONE, status );
  sc2store_wrtstream ( flatname, subnum, ncards,
                       fitsrec, colsize, rowsize, nframes,
                       (bolref->dims)[2], refres, 0, smf_flat_methstring( flatmeth, status ),
                       bolval->hdr->allState, NULL,
                       ibuf, dksquid, (bolref->pntr)[0], (powref->pntr)[0],
                       "FLATCAL", NULL, NULL, jig_vert,
                       nvert, jig_path, npath, xmlfile, status );

  sc2store_free ( status );

  /* To copy in the variance and modify fix up the WCS we need to reopen
     the file */

  ndfOpen( NULL, flatname, "UPDATE", "OLD", &indf, &place, status );

  /* make sure that history is not written twice */
  ndfHsmod( "SKIP", indf, status );

  if (outvar) {
    void *pntr[3];
    int el;
    ndfStype( "_DOUBLE", indf, "VARIANCE", status );
    ndfMap( indf, "VARIANCE", "_DOUBLE", "WRITE", pntr, &el, status );
    if (*status == SAI__OK) {
      memcpy( pntr[0], outvar, sizeof(*outvar)*el );
    }
  }

  /* For the WCS a time frame is less relevant than heater settings */
  astBegin;

  /* Create frame for focal plane coordinates */
  sc2ast_createwcs( subnum, NULL, NULL, NULL, NO_FTS, &spacefset, status );

  /* Copy it to make sure we do not mess with the cache */
  result = astCopy( spacefset );

  /* and switch to BOLO frame which is best for bolometer analysis */
  {
    int frnum = AST__NOFRAME;
    kpg1Asffr( result, "BOLO", &frnum, status );
    if (frnum != AST__NOFRAME) astSetI( result, "CURRENT", frnum );
  }

  /* Create a simple frame for heater settings */
  heatfrm = astFrame( 1, "Domain=HEATER,Label(1)=Heater Setting" );
  heatmap = astLutMap( nframes, bolval->da->heatval, 1.0, 1.0, " " );

  /* Append the heater axis to the spatial frameset */
  atlAddWcsAxis( result, (AstMapping *)heatmap, (AstFrame *) heatfrm,
                 NULL, NULL, status );

  /* write it to the NDF */
  ndfPtwcs( result, indf, status );


  /* Write provenance information */
  if (prvgrp) {
    size_t size = grpGrpsz( prvgrp, status );
    char prvname[ 2 * PAR__SZNAM + 1];

    smf_get_taskname( NULL, prvname, status );
    for (j=1; j<=size; j++) {
      smf_accumulate_prov( NULL, prvgrp, j, indf, prvname, NULL, status );
    }

  }

  /* Write the polynomial expansion into an extension */
  if (polyfit) {
    char fitfile[GRP__SZNAM+1];
    int fndf = NDF__NOID;
    place = NDF__NOPL;
    one_strlcpy( fitfile, flatname, sizeof(fitfile), status );
    one_strlcat( fitfile, ".MORE.SMURF.FLATFIT", sizeof(fitfile), status );

    /* create the file */
    smf_write_smfData( polyfit, NULL, fitfile, NULL, 0, NDF__NOID,
                       MSG__VERB, 0, status );

    /* Same WCS as the main file */
    ndfOpen( NULL, fitfile, "UPDATE", "OLD", &fndf, &place, status );
    ndfPtwcs( result, fndf, status );
    ndfAnnul( &fndf, status );

  }

  astEnd;

  ndfAnnul( &indf, status);

  if (ibuf) ibuf = astFree( ibuf );
  if (outvar) outvar = astFree( outvar );
  if (dksquid) dksquid = astFree( dksquid );
  if (state) state = astFree( state );
}
示例#17
0
void cupid_mon( int *status ) {
/*
*+
*  Name:
*     cupid_mon

*  Purpose:
*     Top-level CUPID function for A-task monolith on UNIX.

*  Language:
*     Starlink C

*  Type of Module:
*     ADAM A-task

*  Description:
*     This is the top-level A-task monolith function for the CUPID
*     suite of A-tasks.  Each CUPID command is an alias to a softlink
*     that points to this monolith.  The chosen command is obtained
*     from the ADAM routine TASK_GET_NAME.  The command may be specified
*     from the shell or ICL.  Given the command, the requested A-task
*     is called after a successful matching of the input string with a
*     valid task name.  If there is no match, an error report is made.

*  Parameters:
*     status
*        Pointer to the global status variable used by the ADAM fixed part.

*  Synopsis:
*     void cupid_mon( int *status );

*  Copyright:
*     Copyright (C) 2009 Science & Technology Facilities Council.
*     Copyright (C) 2005 Particle Physics & Astronomy Research Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software; you can redistribute it and/or
*     modify it under the terms of the GNU General Public License as
*     published by the Free Software Foundation; either version 2 of
*     the License, or (at your option) any later version.
*
*     This program is distributed in the hope that it will be
*     useful, but WITHOUT ANY WARRANTY; without even the implied
*     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
*     PURPOSE. See the GNU General Public License for more details.
*
*     You should have received a copy of the GNU General Public License
*     along with this program; if not, write to the Free Software
*     Foundation, Inc., 51 Franklin Street,Fifth Floor, Boston, MA
*     02110-1301, USA

*  Authors:
*     DSB: David S. Berry (STARLINK)
*     TIMJ: Tim Jenness (JAC, Hawaii)
*     {enter_new_authors_here}

*  History:
*     28-SEP-2005 (DSB):
*        Original version.
*     29-JUL-2009 (TIMJ):
*        Call taskGetName rather than Fortran.
*        Add CUPID and version number to NDF history.
*     31-JUL-2009 (DSB):
*        Use ndgBegpv/Endpv to provide automatic provenance propagation.
*     16-OCT-2009 (DSB):
*        Use ndgBeggh/ndgEndgh to record contents of group parameters in
*        the history component of output NDFs.
*     2011-01-19 (TIMJ):
*        Add leak checking to CUPID monolith
*     {enter_further_changes_here}

*  Bugs:
*     {note_any_bugs_here}

*-
*/

/* Local variables: */
   char appname[NDF__SZAPP+1];    /* Application name for NDF History */
   char buff[PAR__SZNAM+7];       /* Application name for provenance handling */
   char filter[PAR__SZNAM+PAR__SZNAM+1];
   char name[PAR__SZNAM+1];       /* C character variable to hold name */
   int ast_caching;               /* Initial value of AST MemoryCaching tuning parameter */
   int emslev1;                   /* EMS level on entry */
   int emslev2;                   /* EMS level on exit */
   int ngrp0;                     /* Number of grp ids at start */
   int ngrp1;                     /* Number of grp ids at end */
   int nloc0;                     /* Number of active HDS Locators at start */
   int nloc1;                     /* Number of active HDS Locators at end */

/* Check the inherited status. */
   if( *status != SAI__OK ) return;

/* For debugging, watch one of the leaked GRP identifiers listed by the
   call to grpWatch at the end of this routine (if any). */
   /* grpWatch( 3129345, status ); */

/* Read the input error message stack level */
   emsLevel( &emslev1 );

/* Obtain the command from the environment.  This returns uppercase names. */
   taskGetName( name, sizeof(name), status );

/* Update the application name in the NDF history recording
   to include the version number of the application */
   snprintf( appname, NDF__SZAPP, "%-*s (%s V%s)", PAR__SZNAM,
             name, PACKAGE_UPCASE, PACKAGE_VERSION);
   ndfHappn( appname, status );

/* Make AST use the same variable for its inherited status. */
   astWatch( status );

/* Tell AST to re-cycle memory when possible. */
   ast_caching = astTune( "MemoryCaching", 1 );

/* Get the GRP and HDS status for leak checking - need the task name
   to mask out parameter names. Also need to mask out the monlith name */
   one_strlcpy( filter, "!CUPID_MON,!", sizeof(filter), status);
   one_strlcat( filter, name, sizeof(filter), status );
   grpInfoi( NULL, 0, "NGRP", &ngrp0, status );
   hdsInfoI( NULL, "LOCATORS", filter, &nloc0, status );

/* Begin a provenance block. This causes event handlers to be registered
   with the NDF library so that a handler routine in NDG is called every
   time an NDF is opened. This handler routine keeps a record of all
   NDFs that are opened for input or output, until the block is closed
   by calling ndgEndpv. */
   ndgBegpv( status );

/* Begin a GRP NDF history block. This causes the contents of GRP groups
   to be appended to default history text added to any NDFs during the
   block. */
   ndgBeggh( status );

/* Check the string against valid A-task names---if matched then call
   the relevant A-task. */

/* Finds a low frequency background surface. */
   if( !strcmp( name, "FINDBACK" ) ) {
      findback( status );

/* Identifies emission clumps within a 2- or 3D NDF. */
   } else if( !strcmp( name, "FINDCLUMPS" ) ) {
      findclumps( status );

/* Give help on CUPID commands. */
   } else if( !strcmp( name, "CUPIDHELP" ) ) {
      cupidhelp( status );

/* Create simulated data containing clumps and noise. */
   } else if( !strcmp( name, "MAKECLUMPS" ) ) {
      makeclumps( status );

/* Extract clump parameters from another image */
   } else if( !strcmp( name, "EXTRACTCLUMPS" ) ) {
      extractclumps( status );

/* Obtain information about one or more clumps. */
   } else if( !strcmp( name, "CLUMPINFO" ) ) {
      clumpinfo( status );

/* Report an error if the command name is not recognised. */
   } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRep( "CUPID_MON_NOCOM", "CUPID: No such command ^CMD.", status );
   }

/* End the GRP NDF history block. */
   ndgEndgh( status );

/* End the provenance block. This will result in every output NDF being
   given a provenance extension containing a record of the input NDFs
   that the application accessed in order to create the output NDF. Any
   output NDF that already contains a provenance extension is left
   unchanged (so individual application can override this automatic
   provenance handling by adding a provenance extension to the output
   NDF itself). */
   sprintf( buff, "CUPID:%s", name );
   ndgEndpv( buff, status );

/* Re-instate the original value of the AST ObjectCaching tuning
   parameter. */
   astTune( "MemoryCaching", ast_caching );

/* Check for GRP leaks Do this in a new error reporting context so
   that we get the correct value even if an error has occurred. */
   errBegin( status );
   grpInfoi( NULL, 0, "NGRP", &ngrp1, status );

/* If there are more active groups now than there were on entry,
   there must be a problem (GRP identifiers are not being freed
   somewhere). So report it. */
   if (*status == SAI__OK && ngrp1 > ngrp0) {
     msgBlank( status );
     msgSetc( "NAME", name );
     msgSeti( "NGRP0", ngrp0 );
     msgSeti( "NGRP1", ngrp1 );
     msgOut( " ", "WARNING: The number of active "
             "GRP identifiers increased from ^NGRP0 to ^NGRP1 "
             "during execution of ^NAME (" PACKAGE_UPCASE " programming "
             " error).", status);
     msgBlank(status);
     grpWatch( 0, status );
   }
   errEnd( status );

/* Check for HDS leaks Do this in a new error reporting context so
   that we get the correct value even if an error has occurred. */
   errBegin( status );
   hdsInfoI( NULL, "LOCATORS", filter, &nloc1, status );

/* If there are more active locators now than there were on entry,
   there must be a problem (HDS locators are not being freed
   somewhere). So report it. */
   if (*status == SAI__OK && nloc1 > nloc0) {
     msgBlank( status );
     msgSetc( "NAME", name );
     msgSeti( "NLOC0", nloc0 );
     msgSeti( "NLOC1", nloc1 );
     msgOut( " ", "WARNING: The number of active "
             "HDS Locators increased from ^NLOC0 to ^NLOC1 "
             "during execution of ^NAME (" PACKAGE_UPCASE " programming "
             " error).", status);
     msgBlank(status);
     hdsShow("LOCATORS", status);
     hdsShow("FILES", status);
   }
   errEnd( status );

/* Read the exitt error message stack level */
   emsLevel( &emslev2 );

   if (*status == SAI__OK && emslev1 != emslev2 ) {
     errMark();
     msgBlank( status );
     msgSetc( "NAME", name );
     msgSeti( "LV1", emslev1);
     msgSeti( "LV2", emslev2);
     msgOut( " ", "WARNING: EMS Stack level went from ^LV1 to ^LV2"
             " during execution of ^NAME (" PACKAGE_UPCASE " programming"
             " error).", status );
     msgBlank(status);
     errRlse();
   }

/* Make AST use its own internal variable for its inherited status. */
   astWatch( NULL );

/* Clear out any remaining memory allocated by AST and report
   unintentional leaks. */
   astFlushMemory( 1 );

}
示例#18
0
void smf_clean_smfArray( ThrWorkForce *wf, smfArray *array,
                         smfArray **noisemaps, smfArray **com, smfArray **gai,
                         AstKeyMap *keymap, int *status ) {

  /* Local Variables */
  double badfrac;           /* Fraction of bad samples to flag bad bolo */
  smfData *data=NULL;       /* Pointer to individual smfData */
  int compreprocess;        /* COMmon-mode cleaning as pre-processing step */
  dim_t dcfitbox;           /* width of box for measuring DC steps */
  int dclimcorr;            /* Min number of correlated steps */
  int dcmaxsteps;           /* number of DC steps/min. to flag bolo bad */
  dim_t dcsmooth;           /* median filter width before finding DC steps */
  double dcthresh;          /* n-sigma threshold for primary DC steps */
  int dofft;                /* are we doing a freq.-domain filter? */
  int dkclean;              /* Flag for dark squid cleaning */
  smfFilter *filt=NULL;     /* Frequency domain filter */
  double flagfast;          /* Threshold for flagging slow slews */
  double flagslow;          /* Threshold for flagging slow slews */
  dim_t idx;                /* Index within subgroup */
  size_t nflag;             /* Number of elements flagged */
  double noisecliphigh = 0; /* Sigma clip high-noise outlier bolos */
  double noisecliplow = 0;  /* Sigma clip low-noise outlier bolos */
  int noiseclipprecom = 0;  /* Noise clipping before common-mode cleaning? */
  const char *opteff=NULL;  /* Pointer to optical efficiency NDF file name*/
  int opteffdiv;            /* Divide data by the optical efficiencies? */
  int order;                /* Order of polynomial for baseline fitting */
  char param[ 20 ];         /* Buffer for config parameter name */
  dim_t pcalen;             /* Chunk length for PCA cleaning */
  double pcathresh;         /* n-sigma threshold for PCA cleaning */
  double spikethresh;       /* Threshold for finding spikes */
  dim_t spikebox=0;         /* Box size for spike finder */
  struct timeval tv1, tv2;  /* Timers */
  int whiten;               /* Apply whitening filter? */
  int zeropad;              /* Pad with zeros? */

  /* Main routine */
  if (*status != SAI__OK) return;

  /*** TIMER ***/
  smf_timerinit( &tv1, &tv2, status );

  /* Check for valid inputs */

  if( !array || (array->ndat < 1) ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": No data supplied", status );
  }

  if( array->sdata[0]->ndims != 3 ) {
    *status = SMF__WDIM;
    errRepf( "", FUNC_NAME ": Supplied smfData has %zu dims, needs 3", status,
             data->ndims );
    return;
  }

  if( !keymap ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": NULL AstKeyMap supplied", status );
    return;
  }

  /* Get cleaning parameters */
  smf_get_cleanpar( keymap, array->sdata[0], &badfrac, &dcfitbox, &dcmaxsteps,
                    &dcthresh, &dcsmooth, &dclimcorr, &dkclean,
                    NULL, &zeropad, NULL, NULL, NULL, NULL, NULL,
                    NULL, NULL, NULL, &flagslow, &flagfast, &order,
                    &spikethresh, &spikebox, &noisecliphigh, &noisecliplow,
                    NULL, &compreprocess, &pcalen, &pcathresh, NULL, NULL, NULL,
                    &noiseclipprecom, status );

  /* Loop over subarray */
  for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
    data = array->sdata[idx];

    /* Update quality by synchronizing to the data array VAL__BADD values */
    msgOutif(MSG__VERB,"", FUNC_NAME ": update quality", status);
    smf_update_quality( data, 1, NULL, 0, badfrac, status );

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s updating quality",
               status, smf_timerupdate(&tv1,&tv2,status) );

    /* Fix DC steps */
    if( dcthresh && dcfitbox ) {
      msgOutiff(MSG__VERB, "", FUNC_NAME
                ": Flagging bolos with %lf-sigma DC steps in %" DIM_T_FMT " "
                "samples as bad, using %" DIM_T_FMT
                "-sample median filter and max %d "
                "DC steps per min before flagging entire bolo bad...", status,
                dcthresh, dcfitbox, dcsmooth, dcmaxsteps);

      smf_fix_steps( wf, data, dcthresh, dcsmooth, dcfitbox, dcmaxsteps,
                     dclimcorr, 0, &nflag, NULL, NULL, status );

      msgOutiff(MSG__VERB, "", FUNC_NAME": ...%zd flagged\n", status, nflag);

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s fixing DC steps",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /* Flag Spikes */
    if( spikethresh ) {
      msgOutif(MSG__VERB," ", FUNC_NAME ": flag spikes...", status);
      smf_flag_spikes( wf, data, SMF__Q_FIT, spikethresh, spikebox,
                       &nflag, status );
      msgOutiff(MSG__VERB,"", FUNC_NAME ": ...found %zd", status, nflag );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s flagging spikes",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /*  Flag periods of stationary pointing, and update scanspeed to more
        accurate value */
    if( flagslow || flagfast ) {
      if( data->hdr && data->hdr->allState ) {
        double scanvel=0;

        if( flagslow ) {
          msgOutiff( MSG__VERB, "", FUNC_NAME
                     ": Flagging regions with slew speeds < %.2lf arcsec/sec",
                     status, flagslow );
        }

        if( flagfast ) {
          msgOutiff( MSG__VERB, "", FUNC_NAME
                     ": Flagging regions with slew speeds > %.2lf arcsec/sec",
                     status, flagfast );


          /* Check to see if this was a sequence type that involved
             motion.  If not, skip this section */
          if( data && data->hdr && (
                                    (data->hdr->seqtype==SMF__TYP_SCIENCE) ||
                                    (data->hdr->seqtype==SMF__TYP_POINTING) ||
                                    (data->hdr->seqtype==SMF__TYP_FOCUS) ||
                                    (data->hdr->seqtype==SMF__TYP_SKYDIP))
                                 && (data->hdr->obsmode!=SMF__OBS_STARE) ) {

            smf_flag_slewspeed( data, flagslow, flagfast, &nflag, &scanvel,
                              status );
            msgOutiff( MSG__VERB,"", "%zu new time slices flagged", status,
                       nflag);

            if( msgIflev( NULL, status ) >= MSG__VERB ) {
              msgOutf( "", FUNC_NAME ": mean SCANVEL=%.2lf arcsec/sec"
                       " (was %.2lf)", status, scanvel, data->hdr->scanvel );
            }

            data->hdr->scanvel = scanvel;

            /*** TIMER ***/
            msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
                       ":   ** %f s flagging outlier slew speeds",
                       status, smf_timerupdate(&tv1,&tv2,status) );
          } else {
            msgOutif( MSG__VERB, "", FUNC_NAME
                      ": not a moving sequence or missing header, "
                      "skipping slew speed flagging", status );
          }
        }
      } else {
        msgOutif( MSG__DEBUG, "", FUNC_NAME
                  ": Skipping flagslow/flagfast because no header present",
                  status );
      }
    }

    /* Clean out the dark squid signal */
    if( dkclean ) {
      msgOutif(MSG__VERB, "", FUNC_NAME
               ": Cleaning dark squid signals from data.", status);
      smf_clean_dksquid( data, 0, 100, NULL, 0, 0, 0, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s DKSquid cleaning",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /* Apply optical efficiency corrections. */
    one_strlcpy( param, "OPTEFF", sizeof(param), status );
    smf_find_subarray( data->hdr, param + strlen(param),
                       sizeof(param) - strlen(param), NULL, status );
    astChrCase( NULL, param, 1, 0 );
    if( astMapHasKey( keymap, param ) ) {
      astMapGet0I( keymap, "OPTEFFDIV", &opteffdiv );
      if ( astMapGet0C( keymap, param, &opteff ) ) {
        msgOutiff( MSG__VERB,"", FUNC_NAME ": %s bolometer values "
                   "by factors read from NDF %s", status,
                   opteffdiv ? "Dividing" : "Multiplying", opteff );
        smf_scale_bols( wf, data, NULL, opteff, param, opteffdiv, status );
      }
    }

    /* Remove baselines */
    if( order >= 0 ) {
      msgOutiff( MSG__VERB,"", FUNC_NAME
                 ": Fitting and removing %i-order polynomial baselines",
                 status, order );

      smf_fit_poly( wf, data, order, 1, NULL, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
                 ":   ** %f s removing poly baseline",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }
  }

  /* Mask noisy bolos here if happening before common-mode cleaning */
  if( (*status == SAI__OK) && ((noisecliphigh>0.0) || (noisecliplow>0.0)) &&
      noiseclipprecom ) {

    smf__noisymask( wf, data, noisemaps, noisecliphigh, noisecliplow,
                    zeropad, &tv1, &tv2, status );
  }


  /* Optionally call smf_calcmodel_com to perform a subset of the following
     tasks as a pre-processing step:

       - remove the common-mode
       - flag outlier data using common-mode rejection
       - determine relative flatfields using amplitude of common-mode

     In order to do this we need to set up some temporary model container
     files so that the routine can be called properly. All of the same
     COMmon-mode and GAIn model parameters (e.g. com.* and gai.*) will be
     used here. However, in addition the "compreprocess" flag must be set
     for this operation to be performed. */

  if( compreprocess ) {
    smfArray *comdata = NULL;
    smfGroup *comgroup = NULL;
    smfDIMMData dat;
    smfArray *gaidata = NULL;
    smfGroup *gaigroup = NULL;
    smfArray *quadata = NULL;
    smfData *thisqua=NULL;

    msgOutif(MSG__VERB," ", FUNC_NAME ": Remove common-mode", status);

    /* Create model containers for COM, GAI */
    smf_model_create( wf, NULL, &array, NULL, NULL, NULL, NULL, NULL, 1, SMF__COM,
                      0, NULL, 0, NULL, NULL, &comgroup, &comdata, keymap,
                      status );

    smf_model_create( wf, NULL, &array, NULL, NULL, NULL, NULL, NULL, 1, SMF__GAI,
                      0, NULL, 0, NULL, NULL, &gaigroup, &gaidata, keymap,
                      status );

    /* Manually create quadata to share memory with the quality already
       stored in array */

    quadata = smf_create_smfArray( status );
    for( idx=0; (*status==SAI__OK) && (idx<array->ndat); idx++ ) {
      /* Create several new smfDatas, but they will all be freed
         properly when we close quadata */
      thisqua = smf_create_smfData( SMF__NOCREATE_DA | SMF__NOCREATE_HEAD |
                                    SMF__NOCREATE_FILE, status );

      /* Probably only need pntr->[0], but fill in the dimensionality
         information to be on the safe side */
      thisqua->dtype = SMF__QUALTYPE;
      thisqua->ndims = array->sdata[idx]->ndims;
      thisqua->isTordered = array->sdata[idx]->isTordered;
      memcpy( thisqua->dims, array->sdata[idx]->dims, sizeof(thisqua->dims) );
      memcpy( thisqua->lbnd, array->sdata[idx]->lbnd, sizeof(thisqua->lbnd) );
      thisqua->pntr[0] = smf_select_qualpntr( array->sdata[idx], NULL, status );

      smf_addto_smfArray( quadata, thisqua, status );
    }

    /* Set up the smfDIMMData and call smf_calcmodel_com */
    memset( &dat, 0, sizeof(dat) );
    dat.res = &array;
    dat.gai = &gaidata;
    dat.qua = &quadata;
    dat.noi = NULL;

    smf_calcmodel_com( wf, &dat, 0, keymap, &comdata, SMF__DIMM_FIRSTITER,
                       status );

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
               ":   ** %f s removing common-mode",
               status, smf_timerupdate(&tv1,&tv2,status) );

    /* Clean up and/or return values */
    if( com ) {
      *com = comdata;
    } else {
      if( comdata ) smf_close_related( &comdata, status );
    }

    if( gai ) {
      *gai = gaidata;
    } else {
      if( gaidata ) smf_close_related( &gaidata, status );
    }

    if( comgroup ) smf_close_smfGroup( &comgroup, status );
    if( gaigroup ) smf_close_smfGroup( &gaigroup, status );

    /* Before closing quadata unset all the pntr[0] since this is shared
       memory with the quality associated with array */
    if( quadata ) {
      for( idx=0; idx<quadata->ndat; idx++ ) {
        quadata->sdata[idx]->pntr[0] = NULL;
      }
      if( quadata ) smf_close_related( &quadata, status );
    }
  }

  /* PCA cleaning */
  if( pcathresh ) {
    /* Loop over subarray */
    for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
      data = array->sdata[idx];

      smf_clean_pca_chunks( wf, data, pcalen, pcathresh, keymap, status );
    }

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s PCA cleaning",
               status, smf_timerupdate(&tv1,&tv2,status) );
  }

  /* Allocate space for noisemaps if required */

  if( noisemaps ) {
    *noisemaps = smf_create_smfArray( status );
  }

  /* Loop over subarray */

  for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
    data = array->sdata[idx];

    /* Filter the data. Note that we call smf_filter_execute to apply
       a per-bolometer whitening filter even if there is no
       explicitly requested smfFilter (in which case the
       smf_filter_fromkeymap call will leave the real/imaginary parts
       of the filter as NULL pointers and they will get ignored inside
       smf_filter_execute). */

    filt = smf_create_smfFilter( data, status );
    smf_filter_fromkeymap( filt, keymap, data->hdr, &dofft, &whiten, status );

    if( (*status == SAI__OK) && dofft ) {
      msgOutif( MSG__VERB, "", FUNC_NAME ": frequency domain filter", status );
      smf_filter_execute( wf, data, filt, 0, whiten, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s filtering data",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }
    filt = smf_free_smfFilter( filt, status );

    /* Mask noisy bolos here if happening after common-mode cleaning */
    if( (*status == SAI__OK) && ((noisecliphigh>0.0) || (noisecliplow>0.0)) &&
        !noiseclipprecom ) {

      smf__noisymask( wf, data, noisemaps, noisecliphigh, noisecliplow,
                      zeropad, &tv1, &tv2, status );
    }

  }
}
示例#19
0
void smurf_fts2_split(int* status)
{
  if( *status != SAI__OK ) { return; }

  const double STAGE_LENGTH = 450.0;    /* mm */
  int LR                    = 0;        /* Treat as Low Resolution scan */
  Grp* gIn                  = NULL;     /* Input group */
  Grp* gOut                 = NULL;     /* Output group */
  Grp* gTmp                 = NULL;     /* Temporary group */
  smfData* inData           = NULL;     /* Pointer to input data */
  smfData* outData          = NULL;     /* Pointer to output data */
  double* outData_pntr      = NULL;     /* Pointer to output data values array */
  int nMirPos               = 0;        /* Number of frames where the mirror actually moves */
  int nStart                = 0;        /* Frame index where the mirror starts moving */
  int nStartNext            = 0;        /* Frame index where the mirror starts moving in the next scan */
  int nStop                 = 0;        /* Frame index where the mirror stops */
  int lrStart               = 0;        /* Frame index where low resolution mirror limit starts */
  int hrStop                = 0;        /* Frame index where high resolution mirror limit stops */
  int hrStart               = 0;        /* Frame index where high resolution mirror limit starts */
  int lrStop                = 0;        /* Frame index where low resolution mirror limit stops */
  int lrCentre              = 0;        /* Frame index at centre of low resolution mirror positions */
  int i                     = 0;        /* Counter */
  int j                     = 0;        /* Counter */
  int k                     = 0;        /* Counter */
  int n                     = 0;        /* Counter */
  double fNyquist           = 0.0;      /* Nyquist frequency */
  double dz                 = 0.0;      /* Step size in evenly spaced OPD grid */
  double* MIRPOS            = NULL;     /* Mirror positions */

  size_t nFiles             = 0;        /* Size of the input group */
  size_t nOutFiles          = 0;        /* Size of the output group */
  size_t fIndex             = 0;        /* File index */
  size_t nWidth             = 0;        /* Data cube width */
  size_t nHeight            = 0;        /* Data cube height */
  size_t nFrames            = 0;        /* Data cube depth in input file */
  size_t nFramesOut         = 0;        /* Data cube depth in output file */
  size_t nFramesOutPrev     = 0;        /* Data cube depth in previous output file */
  size_t hrFramesOut        = 0;        /* Data cube depth in high res output file */
  size_t hrFramesOutPrev    = 0;        /* Data cube depth in previous high res output file */
  size_t lrFramesOut        = 0;        /* Data cube depth in low res output file */
  size_t lrFramesOutPrev    = 0;        /* Data cube depth in previous low res output file */
  size_t nPixels            = 0;        /* Number of bolometers in the subarray */

  char object[SZFITSTR];
  char subarray[SZFITSTR];
  char obsID[SZFITSTR];
  char scanMode[SZFITSTR];

  double scanVel            = 0.0;      /* Mirror speed in mm/sec */
  double stepTime           = 0.0;      /* RTS step time, average sample rate */
  double minOPD             = 0;        /* OPD minimum */
  double maxOPD             = 0;        /* OPD maximum */
  double ZPD                = 0;
  double lrmmBandPass       = 0.0;      /* low res mm +/- offset from centre */
  int lrBandPassFrames      = 0;        /* Number of low res band pass frames from centre +/- length of lrmmBandPass */
  int nTmp                  = 0;
  int nMax                  = 0;
  int nOPD                  = 0;
  int bolIndex              = 0;
  int index                 = 0;
  int indexIn               = 0;
  int indexOut              = 0;
  int badPixel              = 0;
  int k0                    = 0;
  int indexZPD              = 0;
  int done                  = 0;        /* Track completion of extracting multiple scans */
  int outDataCount          = 0;        /* The number of output data files being written */

  double lenLeft,
         lenRight,
         minLenLeft,
         minLenRight,
         minLen,
         minZPD,
         maxZPD,
         midZPD             = 0.0;      /* Mirror position half side measures */
  int midZPDPos             = 0;        /* Middle ZPD position in mirror position array */

  double EPSILON            = 0.0;
  char fileName[SMF_PATH_MAX+1];
  char scanNumStr[5+1];                 /* String form of scan number of the input file */
  int scanNum               = 0;        /* Scan number of the input file */
  int conNum                = 0;        /* Concatenation number of the input file (left shifted scanNum) */
  int scanDir               = 0;        /* Scan direction: 1 -> back to front (positive), -1 -> front to back (negative) */
  JCMTState *allState       = NULL;     /* Temporary buffer for reduced header allState array data */


  /* Get Input, Output groups */
  kpg1Rgndf("IN", 0, 1, "", &gIn, &nFiles, status);
  kpg1Wgndf("OUT", gOut, nFiles, nFiles, "More output files expected!", &gOut, &nOutFiles, status);

  /* Read in ADAM parameters */
  parGet0d("BANDPASS", &lrmmBandPass, status);          /* Low res mm band +/- offset from centre */

  /* Treat as Low Resolution scan? */
  if(lrmmBandPass > 0) {
      LR = 1;
  }

  /* Eliminate the first record in the output group, since it will be replaced later */
  gTmp = grpCopy(gOut, 1, 1, 1, status);
  grpDelet(&gOut, status);
  gOut = gTmp;

  /* BEGIN NDF */
  ndfBegin();

  /* Loop through each input file */
  for(fIndex = 1; fIndex <= nFiles; fIndex++) {
    /* Open Observation file */
    smf_open_file(gIn, fIndex, "READ", 0, &inData, status);
    if(*status != SAI__OK) {
      *status = SAI__ERROR;
      errRep(FUNC_NAME, "Unable to open the source file!", status);
      goto CLEANUP;
    }

    smf_fits_getS(inData->hdr, "OBJECT", object, sizeof(object), status);
    smf_fits_getS(inData->hdr, "SUBARRAY", subarray, sizeof(subarray), status);
    smf_fits_getS(inData->hdr, "OBSID", obsID, sizeof(obsID), status);
    smf_fits_getS(inData->hdr, "FTS_MODE", scanMode, sizeof(scanMode), status);
    smf_fits_getD(inData->hdr, "SCANVEL", &scanVel, status);
    smf_fits_getD(inData->hdr, "STEPTIME", &stepTime, status);

    /* Nyquist frequency */
    fNyquist = 10.0 / (8.0 * scanVel * stepTime);
    dz = 1.0 / (2.0 * fNyquist);
    EPSILON = scanVel * stepTime / 2;

    /* Extract the scan number from the input file to be incremented in the output files */
    one_strlcpy(scanNumStr, &(inData->file->name[strlen(inData->file->name) - 8]),
               astMIN(SMF_PATH_MAX + 1, 5), status);
    if (*status == ONE__TRUNC) {
        errRep(FUNC_NAME, "Error extracting scanNumStr!", status);
        errAnnul(status);
    }

    /* Create a temporary base file name from input file name */
    one_strlcpy(fileName, inData->file->name,
                astMIN(SMF_PATH_MAX + 1, strlen(inData->file->name) - 7), status);
    if (*status == ONE__TRUNC) {
        errRep(FUNC_NAME, "Error extracting base fileName!", status);
        errAnnul(status);
    }
    scanNum = (int) one_strtod(scanNumStr, status);
    if (*status != SAI__OK) {
        errRep(FUNC_NAME, "Error extracting scanNum!", status);
        errAnnul(status);
    }

    /* Left shift scanNum to conNum as a prefix to make output scan number unique */
    if(scanNum < 100) {
      conNum = scanNum * 100;
    } else if(scanNum < 1000) {
      conNum = scanNum * 10;
    }

    /*printf("%s: Processing file: %s, having basename: %s and scanNumStr: %s, scanNum: %04d\n",
           TASK_NAME, inData->file->name, fileName, scanNumStr, scanNum);*/

    /* Data cube dimensions */
    nWidth  = inData->dims[0];
    nHeight = inData->dims[1];
    nFrames = inData->dims[2];
    nPixels = nWidth * nHeight;

    /* Mirror positions in mm */
    nTmp = nFrames;
    MIRPOS = astCalloc(nFrames, sizeof(*MIRPOS));
    fts2_getmirrorpositions(inData, MIRPOS, &nTmp, status); // (mm)
    if(*status != SAI__OK) {
      *status = SAI__ERROR;
      errRep( FUNC_NAME, "Unable to get the mirror positions!", status);
      goto CLEANUP;
    }

    nStart = -1;
    nStop = -1;
    nStartNext = 0;
    hrStart = -1;
    hrStop = -1;
    lrStart = -1;
    lrStop = -1;
    outDataCount = 0;
    done = 0;
    do {
        /* Find the next range of single scan mirror positions for which to extract corresponding NDF data */
        for(n=nStartNext; n<nFrames-1; n++){
            if(hrStart < 0 && fabs(MIRPOS[n+1] - MIRPOS[n]) >= EPSILON) {
                nStart = n;
                hrStart = n;
                /*printf("%s: Split nStart=%d\n", TASK_NAME, nStart);*/
            }
            if(hrStart >= 0 && hrStop < 0 && (fabs(MIRPOS[n+1] - MIRPOS[n]) < EPSILON || n+1 == nFrames-1)) {
                hrStop = n+1;
                hrFramesOutPrev = hrFramesOut;
                hrFramesOut = abs(hrStop - hrStart) + 1;
                outDataCount++;

                nStop = hrStop;
                nFramesOutPrev = hrFramesOutPrev;
                nFramesOut = hrFramesOut;

                /*printf("%s: Split: %d of %d frames found at hrStart=%d, hrStop=%d\n",
                       TASK_NAME, outDataCount, hrFramesOut, hrStart, hrStop);*/
                break;
            }
        }

        /* Determine scan direction */
        if(MIRPOS[hrStart] < MIRPOS[hrStop]) {
            scanDir = 1;    /* Positive */
        } else {
            scanDir = -1;   /* Negative */
        }

        /* Limit to specified mirror position range */
        if(LR) {
            /* Calculate how many frames correspond to the given +/- mm of LR bandpass */
            lrBandPassFrames = lrmmBandPass / dz;

            /* Find the centre of the current scan */
            lrCentre = floor((abs(hrStop-hrStart)+1)/2);

            /* Set low res start and stop values at corresponding frame offsets from centre */
            lrStart = lrCentre - lrBandPassFrames;
            lrStop = lrCentre + lrBandPassFrames;
            lrFramesOutPrev = lrFramesOut;
            lrFramesOut = abs(lrStop - lrStart) + 1;

            nStart = lrStart;
            nStop = lrStop;
            nFramesOutPrev = lrFramesOutPrev;
            nFramesOut = lrFramesOut;

            /*printf("%s: LR Split: %d of %d frames found at lrStart=%d, lrStop=%d\n",
                   TASK_NAME, outDataCount, lrFramesOut, lrStart, lrStop);*/
        }

        /* Check for end of data condition */
        if(hrStop < hrStart  || hrStop >= nFrames-1) {
            hrStop = nFrames-1;
            done = 1;
        }

        /* Output scan if there is a start and stop position found,
           and for the last scan if it's the only one
           and if it's not too short (compared to the previous one) */
        /*printf("%s: nStart=%d, nStop=%d, nFramesOutPrev=%d, nFramesOut=%d\n", TASK_NAME, nStart, nStop, nFramesOutPrev, nFramesOut);*/
        if(nStart >=0 && nStop > 0 &&
            (nFramesOutPrev == 0 ||
              (nFramesOutPrev > 0 && nFramesOut > 0 && (double)hrFramesOut/(double)hrFramesOutPrev >= 0.5))) {
            /* Copy single scan NDF data from input to output */
            outData = smf_deepcopy_smfData(inData, 0, SMF__NOCREATE_DATA | SMF__NOCREATE_FTS, 0, 0, status);
            outData->dtype   = SMF__DOUBLE;
            outData->ndims   = 3;
            outData->dims[0] = nWidth;
            outData->dims[1] = nHeight;
            outData->dims[2] = nFramesOut;
            outData_pntr = (double*) astMalloc((nPixels * nFramesOut) * sizeof(*outData_pntr));
            outData->pntr[0] = outData_pntr;
            outData->hdr->nframes = nFramesOut;

            for(i=0; i<nWidth; i++) {
                for(j=0; j<nHeight; j++) {
                    bolIndex = i + j * nWidth;
                    for(k=nStart; k<=nStop; k++) {
                        indexIn = bolIndex + k * nPixels;
                        indexOut = bolIndex + (k-nStart) * nPixels;
                        *((double*)(outData->pntr[0]) + indexOut) = *((double*)(inData->pntr[0]) + indexIn);
                    }
                }
            }

            /* Update the FITS headers */
            outData->fts = smf_create_smfFts(status);
            /* Update FITS component */
            smf_fits_updateD(outData->hdr, "FNYQUIST", fNyquist, "Nyquist frequency (cm^-1)", status);
            smf_fits_updateI(outData->hdr, "MIRSTART", 1, "Frame index in which the mirror starts moving", status);
            smf_fits_updateI(outData->hdr, "MIRSTOP", nFramesOut, "Frame index in which the mirror stops moving", status);
            smf_fits_updateI(outData->hdr, "SCANDIR", scanDir, "Scan direction", status);
            smf_fits_updateD(outData->hdr, "OPDMIN", 0.0, "Minimum OPD", status);
            smf_fits_updateD(outData->hdr, "OPDSTEP", 0.0, "OPD step size", status);

            /* Update the JCMTSTATE header */
            /* Reallocate outData header array memory to reduced size */
            allState = (JCMTState*) astRealloc(outData->hdr->allState, nFramesOut * sizeof(*(outData->hdr->allState)));
            if(*status == SAI__OK && allState) {
                outData->hdr->allState = allState;
            } else {
                errRepf(TASK_NAME, "Error reallocating allState JCMTState header", status);
                goto CLEANUP;
            }
            for(k=nStart; k<=nStop; k++) {
                /* Copy over JCMTstate */
                /*printf("%s: memcpy allState: %d to: %p from: %p size: %d\n",TASK_NAME, k,
                       (void *) &(outData->hdr->allState[k-nStart]), (void *) &(inData->hdr->allState[k]), sizeof(*(outData->hdr->allState)) );*/
                memcpy( (void *) &(outData->hdr->allState[k-nStart]), (void *) &(inData->hdr->allState[k]), sizeof(*(outData->hdr->allState)) );

                /*printf("%s: Scan: %d index: %d rts_num: %d\n", TASK_NAME, outDataCount, k-nStart, outData->hdr->allState[k-nStart].rts_num);*/
                /*printf("%s: Scan: %d index: %d fts_pos: %f\n", TASK_NAME, outDataCount, k-nStart, outData->hdr->allState[k-nStart].fts_pos);*/
            }

            /* Write output */
            /* Append unique suffix to fileName */
            /* This must be modified by the concatenation file scan number to improve uniqueness */
            n = one_snprintf(outData->file->name, SMF_PATH_MAX, "%s%04d_scn.sdf", status, fileName, conNum+outDataCount);
            /*printf("%s: Writing outData->file->name: %s\n", TASK_NAME, outData->file->name);*/
            if(n < 0 || n >= SMF_PATH_MAX) {
                errRepf(TASK_NAME, "Error creating outData->file->name", status);
                goto CLEANUP;
            }
            /* Update the list of output _scn file names */
            grpPut1(gOut, outData->file->name, 0, status);
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error saving outData file name", status);
                goto CLEANUP;
            }
            smf_write_smfData(outData, NULL, outData->file->name, gOut, fIndex, 0, MSG__VERB, 0, status);
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error writing outData file", status);
                goto CLEANUP;
            }
            smf_close_file(&outData, status);
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error closing outData file", status);
                goto CLEANUP;
            }
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error closing outData file", status);
                goto CLEANUP;
            }
        }/* else {
            if(!(nStart >=0 && nStop)) printf("%s: Output scan condition failed: nStart(%d) >= nStop(%d) is FALSE\n",TASK_NAME, nStart, nStop);
            if(!(nFramesOutPrev == 0 ||
              (nFramesOutPrev > 0 && nFramesOut > 0 && (double)nFramesOut/(double)nFramesOutPrev >= 0.5))) printf("%s: Output scan condition failed: nFramesOutPrev(%d) == 0 || (nFramesOutPrev(%d) > 0 && nFramesOut(%d) > 0 && nFramesOut/nFramesOutPrev (%f) >= 0.5) is FALSE\n", TASK_NAME, nFramesOutPrev, nFramesOutPrev, nFramesOut, (double)nFramesOut/(double)nFramesOutPrev);
        }*/

        /* Prepare for next iteration */
        nStartNext = hrStop + 1;
        hrStart = -1;
        hrStop = -1;

    } while (!done);


    /* Deallocate memory used by arrays */
    if(MIRPOS)  { MIRPOS    = astFree(MIRPOS); }

    /* Close the file */
    smf_close_file(&inData, status);

  }
  CLEANUP:
  /* Deallocate memory used by arrays */
  if(inData)  { smf_close_file(&inData, status); }
  if(outData) { smf_close_file(&outData, status); }

  /* END NDF */
  ndfEnd(status);

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK && gOut ) {
      grpList( "OUTFILES", 0, 0, NULL, gOut, status );
          if( *status == PAR__NULL ) {
              errRep(FUNC_NAME, "Error writing OUTFILES!", status);
              errAnnul( status );
          }
  }

  /* Delete groups */
  if(gIn)     { grpDelet(&gIn, status);  }
  if(gOut)    { grpDelet(&gOut, status); }
}
示例#20
0
void gsdac_getMapVars ( const gsdVars *gsdVars, const char *samMode,
                        mapVars *mapVars, int *status )

{

    const char * cell_sys;

    /* Check inherited status */
    if ( *status != SAI__OK ) return;


    /* Translate Switch mode. */
    if ( strncmp ( gsdVars->swMode, "POSITION_SWITCH", 15 ) == 0 ) {

        if ( gsdVars->chopping ) {
            if ( gsdVars->referenceX == 0.0 && gsdVars->referenceY == 0.0 )
                strcpy ( mapVars->swMode, "freqsw" );
            else
                strcpy ( mapVars->swMode, "pssw" );
        } else {
            if ( gsdVars->referenceX == 0.0 && gsdVars->referenceY == 0.0 ) {
                strcpy ( mapVars->swMode, "freqsw" );

                /* Print a message, this was likely intended as a freq. sw. */
                msgOutif(MSG__VERB," ", "SWITCH_MODE was POSITION_SWITCH and CHOPPING was 0, this was likely intended to be a frequency switch", status);
            } else strcpy ( mapVars->swMode, "pssw" );
        }

    } else if ( strncmp ( gsdVars->swMode, "BEAMSWITCH", 10 ) == 0 ) {

        if ( gsdVars->chopping ) {
            strcpy ( mapVars->swMode, "chop" );
        } else {
            strcpy ( mapVars->swMode, "none" );
            msgOutif(MSG__VERB," ", "SWITCH_MODE was BEAMSWITCH and CHOPPING was 0, this may be an error...)", status);
        }

    } else if ( strncmp ( gsdVars->swMode, "CHOPPING", 8 ) == 0 ) {

        strcpy ( mapVars->swMode, "freqsw" );
        if ( gsdVars->chopping ) {
            msgOutif(MSG__VERB," ", "SWITCH_MODE was CHOPPING and CHOPPING was 1, this appears to be a misconfigured frequency switch", status);
        }

    } else if ( strncmp ( gsdVars->swMode, "NO_SWITCH", 7 ) == 0 ) {

        strcpy ( mapVars->swMode, "none" );
        if ( gsdVars->chopping ) {
            msgOutif(MSG__VERB," ", "SWITCH_MODE was NO_SWITCH and CHOPPING was 1, this may be an error...", status);
        }

    } else {
        *status = SAI__ERROR;
        msgSetc ( "SWITCHMODE", gsdVars->swMode );
        errRep ( "gsdac_getMapVars", "Couldn't identify switch mode ^SWITCHMODE", status );
        return;
    }

    /* Get the chopping parameters for grid beamswitches
       and samples. */

    if ( strcmp ( mapVars->swMode, "chop" ) == 0 ) {

        if ( strncmp ( gsdVars->chopCoords, "AZ", 2 ) == 0 )
            strcpy ( mapVars->chopCrd, "AZEL" );
        else if ( strncmp ( gsdVars->chopCoords, "EQ", 2 ) == 0 )
            strcpy ( mapVars->chopCrd, "HADEC" );
        else if ( strncmp ( gsdVars->chopCoords, "RB", 2 ) == 0 )
            strcpy ( mapVars->chopCrd, "B1950" );
        else if ( strncmp ( gsdVars->chopCoords, "RJ", 2 ) == 0 )
            strcpy ( mapVars->chopCrd, "J2000" );
        else if ( strncmp ( gsdVars->chopCoords, "RD", 2 ) == 0 )
            strcpy ( mapVars->chopCrd, "APP" );
        else if ( strncmp ( gsdVars->chopCoords, "GA", 2 ) == 0 )
            strcpy ( mapVars->chopCrd, "GAL" );
        else {
            strcpy ( mapVars->chopCrd, "" );
            msgOutif(MSG__VERB," ",
                     "Couldn't identify chop coordinates, continuing anyway", status);
        }

    }

    /* Get the local offset coordinate system. */
    cell_sys = gsdac_code2tcssys( gsdVars->cellCode, status );
    if (*status == SAI__OK && strlen(cell_sys) == 0) {
        msgOutif(MSG__VERB," ",
                 "Couldn't identify cell coordinates, continuing anyway", status);
    }
    one_strlcpy( mapVars->loclCrd, cell_sys,
                 sizeof(mapVars->loclCrd), status );

    /* Convert to ACSIS formatted string. */
    sprintf ( mapVars->skyRefX, "[OFFSET] %.0f [%s]",
              gsdVars->referenceX, mapVars->loclCrd );
    sprintf ( mapVars->skyRefY, "[OFFSET] %.0f [%s]",
              gsdVars->referenceY, mapVars->loclCrd );

    /* Get the scanning coordinates. */
    strcpy ( mapVars->scanCrd, mapVars->loclCrd );

    /* Get the map and scan parameters for rasters. */
    if ( strcmp ( samMode, "scan" ) == 0
            && strcmp ( mapVars->swMode, "pssw" ) == 0 ) {

        /* Get the map height and width. */
        mapVars->mapHght = gsdVars->nMapPtsX * gsdVars->cellX;
        mapVars->mapWdth = gsdVars->nMapPtsY * gsdVars->cellY;

        /* Get the scan velocity and spacing. */
        if ( strncmp ( gsdVars->obsDirection, "HORIZONTAL", 10 ) == 0 ) {
            mapVars->scanVel = gsdVars->cellX * gsdVars->nMapPtsX /
                               gsdVars->scanTime;
            mapVars->scanDy = gsdVars->cellY;
        } else if ( strncmp ( gsdVars->obsDirection, "VERTICAL", 8 ) == 0 ) {
            mapVars->scanVel = gsdVars->cellY * gsdVars->nMapPtsY /
                               gsdVars->scanTime;
            mapVars->scanDy = gsdVars->cellX;
        } else {
            *status = SAI__ERROR;
            errRep ( "gsdac_getMapVars", "Error getting scan velocity",
                     status );
            return;
        }

        if ( gsdVars->scanRev ) strcpy ( mapVars->scanPat, "BOUSTROPHEDON" );
        else strcpy ( mapVars->scanPat, "RASTER" );

    }

    mapVars->scanPA = gsdVars->cellV2X;
    mapVars->mapPA = mapVars->scanPA - 90.0;

}
示例#21
0
void smf_obsmap_fill( const smfData * data, AstKeyMap * obsmap, AstKeyMap * objmap,
                      int * status ) {

  double dateobs = 0.0;    /* MJD UTC of start of observation */
  char object[SZFITSTR];   /* Object name */
  char obsid[SZFITSTR];    /* Observation ID */
  char instrume[SZFITSTR]; /* instrument name */
  AstKeyMap * obsinfo = NULL; /* observation information */


  if (*status != SAI__OK) return;

  /* if there is no hdr we can not index it in the reported summary */
  if (data->hdr && data->hdr->fitshdr) {

    /* Get observation ID and see if we already have an entry in the map */
    (void)smf_getobsidss( data->hdr->fitshdr, obsid, sizeof(obsid), NULL, 0, status );
    /* As of 20080718 OBSID is not unique per obs so chop off date*/
    obsid[22] = '\0';

    if (!astMapHasKey(obsmap, obsid )) {
      int itemp;

      /* Create a sub keymap and populate it */
      obsinfo = astKeyMap( " " );
      /* fill with default value in case undefined */
      one_strlcpy( object, "<undefined>", sizeof(object), status );
      smf_getfitss( data->hdr, "OBJECT", object, sizeof(object),
                    status );
      astMapPut0C( obsinfo, "OBJECT", object, NULL );
      astMapPut0I( obsinfo, "OBSMODE", data->hdr->obsmode, NULL );
      astMapPut0I( obsinfo, "OBSTYPE", data->hdr->obstype, NULL );
      astMapPut0I( obsinfo, "SWMODE", data->hdr->swmode, NULL );
      astMapPut0I( obsinfo, "INBEAM", data->hdr->inbeam, NULL );
      smf_fits_getI( data->hdr, "OBSNUM", &itemp, status );
      astMapPut0I( obsinfo, "OBSNUM", itemp, NULL );
      smf_fits_getI( data->hdr, "UTDATE", &itemp, status );
      astMapPut0I( obsinfo, "UTDATE", itemp, NULL );
      smf_fits_getL( data->hdr, "SIMULATE", &itemp, status );
      astMapPut0I( obsinfo, "SIMULATE", itemp, NULL );
      smf_getfitss( data->hdr, "INSTRUME", instrume, sizeof(instrume),
                    status);
      astMapPut0C( obsinfo, "INSTRUME", instrume, NULL );

      /* store the MJD of observation for sorting purposes */
      smf_find_dateobs( data->hdr, &dateobs, NULL, status );
      astMapPut0D( obsinfo, "MJD-OBS", dateobs, NULL );

      /* store information in the global observation map
         and also track how many distinct objects we have */
      astMapPut0A( obsmap, obsid, obsinfo, NULL );
      astMapPut0I( objmap, object, 0, NULL );

      obsinfo = astAnnul( obsinfo );
    } else {
      int curbeam = 0;

      astMapGet0A( obsmap, obsid, &obsinfo );

      /* INBEAM is interesting since technically each sequence can involve
         different hardware being in the beam so we have to retrieve the
         current value from the keymap and OR it with the current value
         from the data header. */

      /* we know that the value has been filled in previously so no
         need to check */
      astMapGet0I( obsinfo, "INBEAM", &curbeam );
      curbeam |= data->hdr->inbeam;
      astMapPut0I( obsinfo, "INBEAM", curbeam, NULL );

      obsinfo = astAnnul( obsinfo );

    }
  }

  return;
}
示例#22
0
void smurf_mon( int * status ) {

  /* Local variables */
  char taskname[PAR__SZNAM+1];
  char appname[NDF__SZAPP+1];
  char filter[PAR__SZNAM+PAR__SZNAM+1];
  int ngrp0;                   /* Number of grp ids at start */
  int ngrp1;                   /* Number of grp ids at end */
  int nloc0;                   /* Number of active HDS Locators at start */
  int nloc1;                   /* Number of active HDS Locators at end */
  int memory_caching;          /* Is AST current caching unused memory? */
  int emslev1;                 /* EMS level on entry */
  int emslev2;                 /* EMS level on exit */

  if ( *status != SAI__OK ) return;

  /* Read the input error message stack level */
  emsLevel( &emslev1 );

  /* Initialise AST */
  astBegin;
  memory_caching = astTune( "MemoryCaching", 1 );

  /* Register our status variable with AST */
  astWatch( status );

  /* If we are watching a particular memory Id reported by astActiveMemory
     we set the watch point here. */
  /* astWatchMemory( 29 ); */

  /* For debugging, watch one of the leaked GRP identifiers listed by the
     call to grpWatch at the end of this routine (if any). */
  /* grpWatch( 3129345, status ); */

  /* Mark any currently active NDF parameters, so that they will
     not be cancelled by the call to ndfCancl at the end of this
     function. */
  ndfCancl( "*", status );

  /* Find out the task name and provenance name we were invoked with */
  smf_get_taskname( taskname, NULL, status );

  /* Get the GRP and HDS status for leak checking - need the task name
     to mask out parameter names. Also need to mask out the monlith name */
  one_strlcpy( filter, "!SMURF_MON,!", sizeof(filter), status);
  one_strlcat( filter, taskname, sizeof(filter), status );
  grpInfoi( NULL, 0, "NGRP", &ngrp0, status );
  hdsInfoI( NULL, "LOCATORS", filter, &nloc0, status );


  /* Update the application name in the NDF history recording
     to include the version number of the application */
  snprintf( appname, NDF__SZAPP, "%-*s (%s V%s)", PAR__SZNAM,
            taskname, PACKAGE_UPCASE, PACKAGE_VERSION);
  ndfHappn( appname, status );

  /* Begin a GRP NDF history block. This causes the contents of GRP
     groups to be appended to default history text added to any NDFs
     during the block. */
  ndgBeggh( status );



  /* Call the subroutine associated with the requested task */
  if (strcmp( taskname, "BADBOLOS" ) == 0 ) {
    smurf_extinction( status );
  } else if (strcmp( taskname, "CALCDARK" ) == 0 ) {
    smurf_calcdark( status );
  } else if (strcmp( taskname, "CALCFLAT" ) == 0 ) {
    smurf_calcflat( status );
  } else if (strcmp( taskname, "CALCNOISE" ) == 0 ) {
    smurf_calcnoise( status );
  } else if (strcmp( taskname, "CALCQU" ) == 0 ) {
    smurf_calcqu( status );
  } else if (strcmp( taskname, "CALCRESP" ) == 0 ) {
    smurf_calcresp( status );
  } else if (strcmp( taskname, "COPYFLAT" ) == 0 ) {
    smurf_copyflat( status );
  } else if (strcmp( taskname, "DREAMSOLVE" ) == 0 ) {
    smurf_dreamsolve( status );
  } else if (strcmp( taskname, "DREAMWEIGHTS" ) == 0 ) {
    smurf_dreamweights( status );
  } else if (strcmp( taskname, "DSUTILS" ) == 0 ) {
    smurf_dsutils( status );
  } else if (strcmp( taskname, "EXTINCTION" ) == 0 ) {
    smurf_extinction( status );
  } else if (strcmp( taskname, "FIT1D" ) == 0 ) {
    smurf_fit1d( status );
  } else if (strcmp( taskname, "FIXSTEPS" ) == 0 ) {
    smurf_fixsteps( status );
  } else if (strcmp( taskname, "FLATFIELD" ) == 0 ) {
    smurf_flatfield( status );
  } else if (strcmp( taskname, "FTS2DEGLITCH" ) == 0 ) {
    smurf_fts2_deglitch( status );
  } else if (strcmp( taskname, "FTS2FLATFIELD" ) == 0 ) {
    smurf_fts2_flatfield( status );
  } else if (strcmp( taskname, "FTS2FREQCORR" ) == 0 ) {
    smurf_fts2_freqcorr( status );
  } else if (strcmp( taskname, "FTS2SPLIT" ) == 0 ) {
    smurf_fts2_split( status );
  } else if (strcmp( taskname, "FTS2INIT" ) == 0 ) {
    smurf_fts2_init( status );
  } else if (strcmp( taskname, "FTS2MASKMAP" ) == 0 ) {
    smurf_fts2_maskmap( status );
  } else if (strcmp( taskname, "FTS2OPCORR" ) == 0 ) {
    smurf_fts2_spatialwcs( status );
  } else if (strcmp( taskname, "FTS2PHASECORR" ) == 0 ) {
    smurf_fts2_phasecorr( status );
  } else if (strcmp( taskname, "FTS2PHASECORRDS" ) == 0 ) {
    smurf_fts2_phasecorrds( status );
  } else if (strcmp( taskname, "FTS2PORTIMBAL" ) == 0 ) {
    smurf_fts2_portimbal( status );
  } else if (strcmp( taskname, "FTS2REMOVEBSE" ) == 0 ) {
    smurf_fts2_removebse( status );
  } else if (strcmp( taskname, "FTS2SPECTRUM" ) == 0 ) {
    smurf_fts2_spectrum( status );
  } else if (strcmp( taskname, "FTS2TRANSCORR" ) == 0 ) {
    smurf_fts2_transcorr( status );
  } else if (strcmp( taskname, "GSD2ACSIS" ) == 0 ) {
    smurf_gsd2acsis( status );
  } else if (strcmp( taskname, "GSDSHOW" ) == 0 ) {
    smurf_gsdshow( status );
  } else if (strcmp( taskname, "IMPAZTEC" ) == 0 ) {
    smurf_impaztec( status );
  } else if (strcmp( taskname, "MAKECUBE" ) == 0 ) {
    smurf_makecube( status );
  } else if (strcmp( taskname, "MAKEMAP" ) == 0 ) {
    smurf_makemap( status );
  } else if (strcmp( taskname, "RAWFIXMETA" ) == 0 ) {
    smurf_rawfixmeta( status );
  } else if (strcmp( taskname, "RAWPRESS" ) == 0 ) {
    smurf_rawpress( status );
  } else if (strcmp( taskname, "RAWRECREATEWCS" ) == 0 ) {
    smurf_rawrecreatewcs( status );
  } else if (strcmp( taskname, "RAWREWRTSC2WCS" ) == 0 ) {
    smurf_rawrewrtsc2wcs( status );
  } else if (strcmp( taskname, "RAWUNPRESS" ) == 0 ) {
    smurf_rawunpress( status );
  } else if (strcmp( taskname, "REMSKY" ) == 0 ) {
    smurf_remsky( status );
  } else if (strcmp( taskname, "SC2CLEAN" ) == 0 ) {
    smurf_sc2clean( status );
  } else if (strcmp( taskname, "SC2CONCAT" ) == 0 ) {
    smurf_sc2concat( status );
  } else if (strcmp( taskname, "SC2EXPANDMODEL" ) == 0 ) {
    smurf_sc2expandmodel( status );
  } else if (strcmp( taskname, "SC2FFT" ) == 0 ) {
    smurf_sc2fft( status );
  } else if (strcmp( taskname, "SC2FILTERMAP" ) == 0 ) {
    smurf_sc2filtermap( status );
  } else if (strcmp( taskname, "SC2MAPFFT" ) == 0 ) {
    smurf_sc2mapfft( status );
  } else if (strcmp( taskname, "SC2PCA" ) == 0 ) {
    smurf_sc2pca( status );
  } else if (strcmp( taskname, "SC2SIM" ) == 0 ) {
    smurf_sc2sim( status );
  } else if (strcmp( taskname, "SC2THREADTEST" ) == 0 ) {
    smurf_sc2threadtest( status );
  } else if (strcmp( taskname, "SKYNOISE" ) == 0 ) {
    smurf_skynoise( status );
  } else if (strcmp( taskname, "SMURFCOPY" ) == 0 ) {
    smurf_smurfcopy( status );
  } else if (strcmp( taskname, "SMURFHELP" ) == 0 ) {
    smurf_smurfhelp( status );
  } else if (strcmp( taskname, "STACKFRAMES" ) == 0 ) {
    smurf_stackframes( status );
  } else if (strcmp( taskname, "STARECALC" ) == 0 ) {
    smurf_starecalc( status );
  } else if (strcmp( taskname, "TILEINFO" ) == 0 ) {
    smurf_tileinfo( status );
  } else if (strcmp( taskname, "TILELIST" ) == 0 ) {
    smurf_tilelist( status );
  } else if (strcmp( taskname, "TIMESORT" ) == 0 ) {
    smurf_timesort( status );
  } else if (strcmp( taskname, "UNMAKECUBE" ) == 0 ) {
    smurf_unmakecube( status );
  } else if (strcmp( taskname, "UNMAKEMAP" ) == 0 ) {
    smurf_unmakemap( status );
  } else {
    *status = SAI__ERROR;
    msgSetc( "TASK", taskname );
    errRep( "smurf_mon", "Unrecognized taskname: ^TASK", status);
  }


  /* End the GRP NDF history block. */
  ndgEndgh( status );

  /* Clear cached info from sc2ast_createwcs. */
  sc2ast_createwcs(SC2AST__NULLSUB, NULL, NULL, NULL, NO_FTS, NULL, status);

  /* Clear WVM caches (one for each thread). */
  smf_calc_wvm_clear( status );

  /* Free AST resources */
  astTune( "MemoryCaching", memory_caching );
  astEnd;

  /* Check for GRP leaks Do this in a new error reporting context so
   * that we get the correct value even if an error has occurred. */
  errBegin( status );
  grpInfoi( NULL, 0, "NGRP", &ngrp1, status );

  /* If there are more active groups now than there were on entry,
   * there must be a problem (GRP identifiers are not being freed
   * somewhere). So report it. */
  if (*status == SAI__OK && ngrp1 > ngrp0) {
    msgBlank( status );
    msgSetc( "NAME", taskname );
    msgSeti( "NGRP0", ngrp0 );
    msgSeti( "NGRP1", ngrp1 );
    msgOut( " ", "WARNING: The number of active "
            "GRP identifiers increased from ^NGRP0 to ^NGRP1 "
            "during execution of ^NAME (" PACKAGE_UPCASE " programming "
            " error).", status);
    msgBlank(status);
    grpWatch( 0, status );
  }
  errEnd( status );

  /* The NDF library registers locators with SUBPAR for any NDFs that
     are opened directly using ndfAssoc or ndfExist. These locators are
     only annulled when the associated parameters are cancelled, but most
     smurf applications do not explicitly cancel their NDF parameters.
     This means that such locators are picked up by the following check
     for dangling HDS locators. In order to prevent this, we cancel any
     remaining NDF parameters now, excluding any that were marked by the
     call to ndfCancl at the start of this routine. */
  ndfCancl( " ", status );

  /* Check for HDS leaks Do this in a new error reporting context so
   * that we get the correct value even if an error has occurred. */
  errBegin( status );
  hdsInfoI( NULL, "LOCATORS", filter, &nloc1, status );

  /* If there are more active locators now than there were on entry,
   * there must be a problem (HDS locators are not being freed
   * somewhere). So report it. */
  if (*status == SAI__OK && nloc1 > nloc0) {
    msgBlank( status );
    msgSetc( "NAME", taskname );
    msgSeti( "NLOC0", nloc0 );
    msgSeti( "NLOC1", nloc1 );
    msgOut( " ", "WARNING: The number of active "
            "HDS Locators increased from ^NLOC0 to ^NLOC1 "
            "during execution of ^NAME (" PACKAGE_UPCASE " programming "
            " error).", status);
    msgBlank(status);
    hdsShow("LOCATORS", status);
    hdsShow("FILES", status);
    printf("filter - %s\n",filter);
  }
  errEnd( status );

  /* Read the exitt error message stack level */
  emsLevel( &emslev2 );

  if (*status == SAI__OK && emslev1 != emslev2 ) {
    errMark();
    msgBlank( status );
    msgSetc( "NAME", taskname );
    msgSeti( "LV1", emslev1);
    msgSeti( "LV2", emslev2);
    msgOut( " ", "WARNING: EMS Stack level went from ^LV1 to ^LV2"
            " during execution of ^NAME (" PACKAGE_UPCASE " programming"
            " error).", status );
    msgBlank(status);
    errRlse();
  }

  /* configure AST --with-memdebug, and uncomment the following lines
     to see how much memory usage SMURF hit at its peak */
  /*
  {
    size_t memcurrent,mempeak;
    astMemoryStats( 0, &mempeak, &memcurrent );
    msgOutf( "", "SMURF: === current /peak memory usage: %zu / %zu MiB ===",
             status, memcurrent/SMF__MIB, mempeak/SMF__MIB );
  }
  */

  /* The astCheckMemory function does nothing unless AST has been compiled
   * with the MEM_DEBUG flag. If this is the case, then it reports the number
   * of memory blocks that have not been freed (useful for identifying memory
   * leaks). Use astActiveMemory() below to list all active memory and
   * then use astWatchMemory() at the start of this routine to get reports
   * when a particular ID is used. Set a breakpoint in the debugger for
   * astMemoryAlarm_
   */
  astActiveMemory("Exit:");
  astCheckMemory;
}
示例#23
0
void smf_open_ndfname( const HDSLoc *loc, const char accmode[],
                       const char extname[], const char state[], const char dattype[],
                       const int ndims, const int lbnd[], const int ubnd[],
                       const char datalabel[], const char dataunits[],
                       const AstFrameSet* wcs,
                       smfData **ndfdata,
                       int *status) {

  /* Local variables */
  void *datarr[] = { NULL, NULL }; /* Pointers for data */
  int dims[NDF__MXDIM];         /* Extent of each dimension */
  smf_dtype dtype;              /* Data type */
  int flags = 0;                /* Flags for creating smfDA, smfFile and
				   smfHead components in the output smfData */
  int i;
  int ndat;                     /* Number of elements mapped in the requested NDF */
  char ndfaccmode[NDF__SZMMD+1];/* Access mode to use to open the file */
  int ndimsmapped;              /* Number of dimensions in mapped NDF */
  int ndfid;                    /* NDF identifier */
  AstFrameSet *ndfwcs = NULL;   /* Copy of input FrameSet to write to NDF */
  smfFile *newfile = NULL;      /* New smfFile with details of requested NDF */
  int place;                    /* Placeholder for NDF */
  int updating = 0;             /* True if the extension is being updated */

  /* Initialize the output smfData to NULL pointer */
  *ndfdata = NULL;

  if ( *status != SAI__OK ) return;

  /* Check to see if the HDS Locator is null and retrieve the NDF id */
  if ( loc ==  NULL ) {
    errRep( FUNC_NAME, "Given HDS locator is NULL", status );
    return;
  }

  /* Start be assuming the requested access mode can be used for mapping
     and file opening */
  one_strlcpy( ndfaccmode, accmode, sizeof(ndfaccmode), status );

  /* Note: write access clears the contents of the NDF */
  if ( strncmp( accmode, "WRITE", 5 ) == 0 ) {
    msgOutif(MSG__DEBUG," ", "Opening NDF with WRITE access: this will clear the current contents if the NDF exists.", status);
    updating = 1;

    /* We can have WRITE/ZERO or WRITE/BAD so we need to force WRITE
       into the NDF open access mode */
    one_strlcpy( ndfaccmode, "WRITE", sizeof(ndfaccmode), status );

  } else if ( strncmp( accmode, "UPDATE", 6) == 0) {
    updating = 1;
  }
  ndfOpen( loc, extname, ndfaccmode, state, &ndfid, &place, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME,
	    "Call to ndfOpen failed: unable to obtain an NDF identifier",
	    status );
    return;
  }

  /* No placeholder => NDF exists */
  if ( place != NDF__NOPL ) {
    /* Define properties of NDF */
    ndfNew( dattype, ndims, lbnd, ubnd, &place, &ndfid, status );
    if ( *status != SAI__OK ) {
      errRep( FUNC_NAME, "Unable to create a new NDF", status );
      return;
    }
  }

  /* Convert the data type string to SMURF dtype */
  dtype = smf_dtype_fromstring( dattype, status );

  /* First step is to create an empty smfData with no extra components */
  flags |= SMF__NOCREATE_DA;
  flags |= SMF__NOCREATE_FTS;
  flags |= SMF__NOCREATE_HEAD;
  flags |= SMF__NOCREATE_FILE;
  *ndfdata = smf_create_smfData( flags, status);
  /* Set the requested data type */
  (*ndfdata)->dtype = dtype;

  /* OK, now map the data array */
  ndfMap( ndfid, "DATA", dattype, accmode, &datarr[0], &ndat, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME, "Unable to map data array: invalid NDF identifier?", status );
  }
  /* Retrieve dimensions of mapped array */
  ndfDim( ndfid, NDF__MXDIM, dims, &ndimsmapped, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME, "Problem identifying dimensions of requested NDF", status );
  }
  /* Consistency check */
  if ( ndimsmapped != ndims ) {
    if ( *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRep( FUNC_NAME, "Number of dimensions in new NDF not equal to number of dimensions specified", status );
    }
  }

  if (*status == SAI__OK) {
    for (i=0; i<ndims; i++) {
      ((*ndfdata)->dims)[i] = dims[i];
      ((*ndfdata)->lbnd)[i] = lbnd[i];
    }
  }

  /* Allow for label, units and WCS to be written */
  if (updating) {
    if (datalabel) ndfCput( datalabel, ndfid, "Label", status );
    if (dataunits) ndfCput( dataunits, ndfid, "Unit", status );
    if (wcs) {
      /* Take a copy of the input WCS and modify if necessary that
	 before writing to the NDF */
      ndfwcs = astCopy( wcs );
      smf_set_moving( (AstFrame *) ndfwcs, NULL, status );
      ndfPtwcs( ndfwcs, ndfid, status );
      if (ndfwcs) ndfwcs = astAnnul( ndfwcs );
    }
  }


  /* Create the smfFile */
  newfile = smf_construct_smfFile( newfile, ndfid, 0, 0, NULL, status );
  if ( *status != SAI__OK ) {
    errRep( FUNC_NAME, "Unable to construct new smfFile", status );
  }

  /* And populate the new smfData */
  *ndfdata = smf_construct_smfData( *ndfdata, newfile, NULL, NULL, NULL, dtype,
                                    datarr, NULL, SMF__QFAM_NULL, NULL, 0, 1,
                                    (*ndfdata)->dims, (*ndfdata)->lbnd, ndims,
                                    0, 0, NULL, NULL, status );

}
示例#24
0
void smf_labelunit( Grp *igrp,  int size, smfData *odata, int *status ){

/* Local Variables */
   char label1[ SMF__CHARLABEL ];/* Label from first NDF */
   char unit1[ SMF__CHARLABEL ]; /* Unit from first NDF */
   int ifile;            /* Index of current input file */
   smfData *data = NULL; /* Pointer to data struct for current input file */

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Loop round all the input NDFs. */
   for( ifile = 1; ifile <= size && *status == SAI__OK; ifile++ ) {
     char * unit = NULL;
     char * label = NULL;

/* Obtain information about the current input NDF. */
     smf_open_file( NULL, igrp, ifile, "READ", 0, &data, status );

     if (*status == SAI__OK) {
       unit = data->hdr->units;
       label = data->hdr->dlabel;

/* If this is the first input NDF, copy the Label and Unit string to the
   output NDF, and save them for later use. */
       if( ifile == 1 ) {
         if( strlen( label ) ) {
            ndfCput( label, odata->file->ndfid, "Label", status );
         }

         if( strlen( unit ) ) {
            ndfCput( unit, odata->file->ndfid, "Unit", status );
         }

         one_strlcpy( label1, label, sizeof(label1), status );
         one_strlcpy( unit1, unit, sizeof(unit1), status );

/* Otherwise, compare the Label and Unit strings for this input NDF with
   those from the first input NDF. If any difference is found issue a
   warning. */
       } else if( *status == SAI__OK && strcmp( label, label1 ) ) {
         msgSeti( "I", ifile );
         msgSetc( "L1", label1 );
         msgSetc( "L", label );
         smf_smfFile_msg( data->file, "N", 1, "<unknown file>" );
         msgOutif( MSG__NORM, " ", "   WARNING: Input ^I (^N) has Label "
                   "'^L' but the first input had Label '^L1'.", status );

       } else if( *status == SAI__OK && strcmp( unit, unit1 ) ) {
         msgSeti( "I", ifile );
         msgSetc( "U1", unit1 );
         msgSetc( "U", unit );
         smf_smfFile_msg( data->file, "N", 1, "<unknown file>" );
         msgOutif( MSG__NORM, " ", "   WARNING: Input ^I (^N) has Unit "
                   "'^U' but the first input had Unit '^U1'.", status );

       }
     }

/* Close the current input data file. */
      smf_close_file( NULL, &data, status );
      data = NULL;

   }
}