示例#1
0
int gmx_polystat(int argc, char *argv[])
{
    const char     *desc[] = {
        "[THISMODULE] plots static properties of polymers as a function of time",
        "and prints the average.[PAR]",
        "By default it determines the average end-to-end distance and radii",
        "of gyration of polymers. It asks for an index group and split this",
        "into molecules. The end-to-end distance is then determined using",
        "the first and the last atom in the index group for each molecules.",
        "For the radius of gyration the total and the three principal components",
        "for the average gyration tensor are written.",
        "With option [TT]-v[tt] the eigenvectors are written.",
        "With option [TT]-pc[tt] also the average eigenvalues of the individual",
        "gyration tensors are written.",
        "With option [TT]-i[tt] the mean square internal distances are",
        "written.[PAR]",
        "With option [TT]-p[tt] the persistence length is determined.",
        "The chosen index group should consist of atoms that are",
        "consecutively bonded in the polymer mainchains.",
        "The persistence length is then determined from the cosine of",
        "the angles between bonds with an index difference that is even,",
        "the odd pairs are not used, because straight polymer backbones",
        "are usually all trans and therefore only every second bond aligns.",
        "The persistence length is defined as number of bonds where",
        "the average cos reaches a value of 1/e. This point is determined",
        "by a linear interpolation of [LOG]<cos>[log]."
    };
    static gmx_bool bMW  = TRUE, bPC = FALSE;
    t_pargs         pa[] = {
        { "-mw", FALSE, etBOOL, {&bMW},
          "Use the mass weighting for radii of gyration" },
        { "-pc", FALSE, etBOOL, {&bPC},
          "Plot average eigenvalues" }
    };

    t_filenm        fnm[] = {
        { efTPR, nullptr, nullptr,  ffREAD  },
        { efTRX, "-f", nullptr,  ffREAD  },
        { efNDX, nullptr, nullptr,  ffOPTRD },
        { efXVG, "-o", "polystat",  ffWRITE },
        { efXVG, "-v", "polyvec", ffOPTWR },
        { efXVG, "-p", "persist",  ffOPTWR },
        { efXVG, "-i", "intdist", ffOPTWR }
    };
#define NFILE asize(fnm)

    t_topology       *top;
    gmx_output_env_t *oenv;
    int               ePBC;
    int               isize, *index, nmol, *molind, mol, nat_min = 0, nat_max = 0;
    char             *grpname;
    t_trxstatus      *status;
    real              t;
    rvec             *x, *bond = nullptr;
    matrix            box;
    int               natoms, i, j, frame, ind0, ind1, a, d, d2, ord[DIM] = {0};
    dvec              cm, sum_eig = {0, 0, 0};
    double          **gyr, **gyr_all, eig[DIM], **eigv;
    double            sum_eed2, sum_eed2_tot, sum_gyro, sum_gyro_tot, sum_pers_tot;
    int              *ninp    = nullptr;
    double           *sum_inp = nullptr, pers;
    double           *intd, ymax, ymin;
    double            mmol, m;
    char              title[STRLEN];
    FILE             *out, *outv, *outp, *outi;
    const char       *leg[8] = {
        "end to end", "<R\\sg\\N>",
        "<R\\sg\\N> eig1", "<R\\sg\\N> eig2", "<R\\sg\\N> eig3",
        "<R\\sg\\N eig1>", "<R\\sg\\N eig2>", "<R\\sg\\N eig3>"
    };
    char            **legp, buf[STRLEN];
    gmx_rmpbc_t       gpbc = nullptr;

    if (!parse_common_args(&argc, argv,
                           PCA_CAN_VIEW | PCA_CAN_TIME | PCA_TIME_UNIT,
                           NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, nullptr, &oenv))
    {
        return 0;
    }

    snew(top, 1);
    ePBC = read_tpx_top(ftp2fn(efTPR, NFILE, fnm),
                        nullptr, box, &natoms, nullptr, nullptr, top);

    fprintf(stderr, "Select a group of polymer mainchain atoms:\n");
    get_index(&top->atoms, ftp2fn_null(efNDX, NFILE, fnm),
              1, &isize, &index, &grpname);

    snew(molind, top->mols.nr+1);
    nmol = 0;
    mol  = -1;
    for (i = 0; i < isize; i++)
    {
        if (i == 0 || index[i] >= top->mols.index[mol+1])
        {
            molind[nmol++] = i;
            do
            {
                mol++;
            }
            while (index[i] >= top->mols.index[mol+1]);
        }
    }
    molind[nmol] = i;
    nat_min      = top->atoms.nr;
    nat_max      = 0;
    for (mol = 0; mol < nmol; mol++)
    {
        nat_min = std::min(nat_min, molind[mol+1]-molind[mol]);
        nat_max = std::max(nat_max, molind[mol+1]-molind[mol]);
    }
    fprintf(stderr, "Group %s consists of %d molecules\n", grpname, nmol);
    fprintf(stderr, "Group size per molecule, min: %d atoms, max %d atoms\n",
            nat_min, nat_max);

    sprintf(title, "Size of %d polymers", nmol);
    out = xvgropen(opt2fn("-o", NFILE, fnm), title, output_env_get_xvgr_tlabel(oenv), "(nm)",
                   oenv);
    xvgr_legend(out, bPC ? 8 : 5, leg, oenv);

    if (opt2bSet("-v", NFILE, fnm))
    {
        outv = xvgropen(opt2fn("-v", NFILE, fnm), "Principal components",
                        output_env_get_xvgr_tlabel(oenv), "(nm)", oenv);
        snew(legp, DIM*DIM);
        for (d = 0; d < DIM; d++)
        {
            for (d2 = 0; d2 < DIM; d2++)
            {
                sprintf(buf, "eig%d %c", d+1, 'x'+d2);
                legp[d*DIM+d2] = gmx_strdup(buf);
            }
        }
        xvgr_legend(outv, DIM*DIM, (const char**)legp, oenv);
    }
    else
    {
        outv = nullptr;
    }

    if (opt2bSet("-p", NFILE, fnm))
    {
        outp = xvgropen(opt2fn("-p", NFILE, fnm), "Persistence length",
                        output_env_get_xvgr_tlabel(oenv), "bonds", oenv);
        snew(bond, nat_max-1);
        snew(sum_inp, nat_min/2);
        snew(ninp, nat_min/2);
    }
    else
    {
        outp = nullptr;
    }

    if (opt2bSet("-i", NFILE, fnm))
    {
        outi = xvgropen(opt2fn("-i", NFILE, fnm), "Internal distances",
                        "n", "<R\\S2\\N(n)>/n (nm\\S2\\N)", oenv);
        i = index[molind[1]-1] - index[molind[0]]; /* Length of polymer -1 */
        snew(intd, i);
    }
    else
    {
        intd = nullptr;
        outi = nullptr;
    }

    natoms = read_first_x(oenv, &status, ftp2fn(efTRX, NFILE, fnm), &t, &x, box);

    snew(gyr, DIM);
    snew(gyr_all, DIM);
    snew(eigv, DIM);
    for (d = 0; d < DIM; d++)
    {
        snew(gyr[d], DIM);
        snew(gyr_all[d], DIM);
        snew(eigv[d], DIM);
    }

    frame        = 0;
    sum_eed2_tot = 0;
    sum_gyro_tot = 0;
    sum_pers_tot = 0;

    gpbc = gmx_rmpbc_init(&top->idef, ePBC, natoms);

    do
    {
        gmx_rmpbc(gpbc, natoms, box, x);

        sum_eed2 = 0;
        for (d = 0; d < DIM; d++)
        {
            clear_dvec(gyr_all[d]);
        }

        if (bPC)
        {
            clear_dvec(sum_eig);
        }

        if (outp)
        {
            for (i = 0; i < nat_min/2; i++)
            {
                sum_inp[i] = 0;
                ninp[i]    = 0;
            }
        }

        for (mol = 0; mol < nmol; mol++)
        {
            ind0 = molind[mol];
            ind1 = molind[mol+1];

            /* Determine end to end distance */
            sum_eed2 += distance2(x[index[ind0]], x[index[ind1-1]]);

            /* Determine internal distances */
            if (outi)
            {
                calc_int_dist(intd, x, index[ind0], index[ind1-1]);
            }

            /* Determine the radius of gyration */
            clear_dvec(cm);
            for (d = 0; d < DIM; d++)
            {
                clear_dvec(gyr[d]);
            }
            mmol = 0;

            for (i = ind0; i < ind1; i++)
            {
                a = index[i];
                if (bMW)
                {
                    m = top->atoms.atom[a].m;
                }
                else
                {
                    m = 1;
                }
                mmol += m;
                for (d = 0; d < DIM; d++)
                {
                    cm[d] += m*x[a][d];
                    for (d2 = 0; d2 < DIM; d2++)
                    {
                        gyr[d][d2] += m*x[a][d]*x[a][d2];
                    }
                }
            }
            dsvmul(1/mmol, cm, cm);
            for (d = 0; d < DIM; d++)
            {
                for (d2 = 0; d2 < DIM; d2++)
                {
                    gyr[d][d2]      = gyr[d][d2]/mmol - cm[d]*cm[d2];
                    gyr_all[d][d2] += gyr[d][d2];
                }
            }
            if (bPC)
            {
                gyro_eigen(gyr, eig, eigv, ord);
                for (d = 0; d < DIM; d++)
                {
                    sum_eig[d] += eig[ord[d]];
                }
            }
            if (outp)
            {
                for (i = ind0; i < ind1-1; i++)
                {
                    rvec_sub(x[index[i+1]], x[index[i]], bond[i-ind0]);
                    unitv(bond[i-ind0], bond[i-ind0]);
                }
                for (i = ind0; i < ind1-1; i++)
                {
                    for (j = 0; (i+j < ind1-1 && j < nat_min/2); j += 2)
                    {
                        sum_inp[j] += iprod(bond[i-ind0], bond[i-ind0+j]);
                        ninp[j]++;
                    }
                }
            }
        }
        sum_eed2 /= nmol;

        sum_gyro = 0;
        for (d = 0; d < DIM; d++)
        {
            for (d2 = 0; d2 < DIM; d2++)
            {
                gyr_all[d][d2] /= nmol;
            }
            sum_gyro += gyr_all[d][d];
        }

        gyro_eigen(gyr_all, eig, eigv, ord);

        fprintf(out, "%10.3f %8.4f %8.4f %8.4f %8.4f %8.4f",
                t*output_env_get_time_factor(oenv),
                std::sqrt(sum_eed2), sqrt(sum_gyro),
                std::sqrt(eig[ord[0]]), std::sqrt(eig[ord[1]]), std::sqrt(eig[ord[2]]));
        if (bPC)
        {
            for (d = 0; d < DIM; d++)
            {
                fprintf(out, " %8.4f", std::sqrt(sum_eig[d]/nmol));
            }
        }
        fprintf(out, "\n");

        if (outv)
        {
            fprintf(outv, "%10.3f", t*output_env_get_time_factor(oenv));
            for (d = 0; d < DIM; d++)
            {
                for (d2 = 0; d2 < DIM; d2++)
                {
                    fprintf(outv, " %6.3f", eigv[ord[d]][d2]);
                }
            }
            fprintf(outv, "\n");
        }

        sum_eed2_tot += sum_eed2;
        sum_gyro_tot += sum_gyro;

        if (outp)
        {
            i = -1;
            for (j = 0; j < nat_min/2; j += 2)
            {
                sum_inp[j] /= ninp[j];
                if (i == -1 && sum_inp[j] <= std::exp(-1.0))
                {
                    i = j;
                }
            }
            if (i == -1)
            {
                pers = j;
            }
            else
            {
                /* Do linear interpolation on a log scale */
                pers = i - 2.0
                    + 2.0*(std::log(sum_inp[i-2]) + 1.0)/(std::log(sum_inp[i-2]) - std::log(sum_inp[i]));
            }
            fprintf(outp, "%10.3f %8.4f\n", t*output_env_get_time_factor(oenv), pers);
            sum_pers_tot += pers;
        }

        frame++;
    }
    while (read_next_x(oenv, status, &t, x, box));

    gmx_rmpbc_done(gpbc);

    close_trx(status);

    xvgrclose(out);
    if (outv)
    {
        xvgrclose(outv);
    }
    if (outp)
    {
        xvgrclose(outp);
    }

    sum_eed2_tot /= frame;
    sum_gyro_tot /= frame;
    sum_pers_tot /= frame;
    fprintf(stdout, "\nAverage end to end distance: %.3f (nm)\n",
            std::sqrt(sum_eed2_tot));
    fprintf(stdout, "\nAverage radius of gyration:  %.3f (nm)\n",
            std::sqrt(sum_gyro_tot));
    if (opt2bSet("-p", NFILE, fnm))
    {
        fprintf(stdout, "\nAverage persistence length:  %.2f bonds\n",
                sum_pers_tot);
    }

    /* Handle printing of internal distances. */
    if (outi)
    {
        if (output_env_get_print_xvgr_codes(oenv))
        {
            fprintf(outi, "@    xaxes scale Logarithmic\n");
        }
        ymax = -1;
        ymin = 1e300;
        j    = index[molind[1]-1] - index[molind[0]]; /* Polymer length -1. */
        for (i = 0; i < j; i++)
        {
            intd[i] /= (i + 1) * frame * nmol;
            if (intd[i] > ymax)
            {
                ymax = intd[i];
            }
            if (intd[i] < ymin)
            {
                ymin = intd[i];
            }
        }
        xvgr_world(outi, 1, ymin, j, ymax, oenv);
        for (i = 0; i < j; i++)
        {
            fprintf(outi, "%d  %8.4f\n", i+1, intd[i]);
        }
        xvgrclose(outi);
    }

    do_view(oenv, opt2fn("-o", NFILE, fnm), "-nxy");
    if (opt2bSet("-v", NFILE, fnm))
    {
        do_view(oenv, opt2fn("-v", NFILE, fnm), "-nxy");
    }
    if (opt2bSet("-p", NFILE, fnm))
    {
        do_view(oenv, opt2fn("-p", NFILE, fnm), "-nxy");
    }

    return 0;
}
示例#2
0
static void project(const char *trajfile,t_topology *top,int ePBC,matrix topbox,
                    const char *projfile,const char *twodplotfile,
                    const char *threedplotfile, const char *filterfile,int skip,
                    const char *extremefile,gmx_bool bExtrAll,real extreme,
                    int nextr, t_atoms *atoms,int natoms,atom_id *index,
                    gmx_bool bFit,rvec *xref,int nfit,atom_id *ifit,real *w_rls,
                    real *sqrtm,rvec *xav,
                    int *eignr,rvec **eigvec,
                    int noutvec,int *outvec, gmx_bool bSplit,
                    const output_env_t oenv)
{
  FILE    *xvgrout=NULL;
  int     nat,i,j,d,v,vec,nfr,nframes=0,snew_size,frame;
  t_trxstatus *out=NULL;
  t_trxstatus *status;
  int     noutvec_extr,imin,imax;
  real    *pmin,*pmax;
  atom_id *all_at;
  matrix  box;
  rvec    *xread,*x;
  real    t,inp,**inprod=NULL,min=0,max=0;
  char    str[STRLEN],str2[STRLEN],**ylabel,*c;
  real    fact;
  gmx_rmpbc_t  gpbc=NULL;

  snew(x,natoms);
  
  if (bExtrAll)
    noutvec_extr=noutvec;
  else
    noutvec_extr=1;
  

  if (trajfile) {
    snew(inprod,noutvec+1);
    
    if (filterfile) {
      fprintf(stderr,"Writing a filtered trajectory to %s using eigenvectors\n",
	      filterfile);
      for(i=0; i<noutvec; i++)
	fprintf(stderr,"%d ",outvec[i]+1);
      fprintf(stderr,"\n");
      out=open_trx(filterfile,"w");
    }
    snew_size=0;
    nfr=0;
    nframes=0;
    nat=read_first_x(oenv,&status,trajfile,&t,&xread,box);
    if (nat>atoms->nr)
      gmx_fatal(FARGS,"the number of atoms in your trajectory (%d) is larger than the number of atoms in your structure file (%d)",nat,atoms->nr); 
    snew(all_at,nat);
    
    if (top)
      gpbc = gmx_rmpbc_init(&top->idef,ePBC,nat,box);

    for(i=0; i<nat; i++)
      all_at[i]=i;
    do {
      if (nfr % skip == 0) {
	if (top)
	  gmx_rmpbc(gpbc,nat,box,xread);
	if (nframes>=snew_size) {
	  snew_size+=100;
	  for(i=0; i<noutvec+1; i++)
	    srenew(inprod[i],snew_size);
	}
	inprod[noutvec][nframes]=t;
	/* calculate x: a fitted struture of the selected atoms */
	if (bFit) {
	  reset_x(nfit,ifit,nat,NULL,xread,w_rls);
	  do_fit(nat,w_rls,xref,xread);
	}
	for (i=0; i<natoms; i++)
	  copy_rvec(xread[index[i]],x[i]);

	for(v=0; v<noutvec; v++) {
	  vec=outvec[v];
	  /* calculate (mass-weighted) projection */
	  inp=0;
	  for (i=0; i<natoms; i++) {
	    inp+=(eigvec[vec][i][0]*(x[i][0]-xav[i][0])+
	    eigvec[vec][i][1]*(x[i][1]-xav[i][1])+
	    eigvec[vec][i][2]*(x[i][2]-xav[i][2]))*sqrtm[i];
	  }
	  inprod[v][nframes]=inp;
	}
	if (filterfile) {
	  for(i=0; i<natoms; i++)
	    for(d=0; d<DIM; d++) {
	      /* misuse xread for output */
	      xread[index[i]][d] = xav[i][d];
	      for(v=0; v<noutvec; v++)
		xread[index[i]][d] +=
		  inprod[v][nframes]*eigvec[outvec[v]][i][d]/sqrtm[i];
	    }
	  write_trx(out,natoms,index,atoms,0,t,box,xread,NULL,NULL);
	}
	nframes++;
      }
      nfr++;
    } while (read_next_x(oenv,status,&t,nat,xread,box));
    close_trx(status);
     sfree(x);
     if (filterfile)
       close_trx(out);
  }
  else
    snew(xread,atoms->nr);
  
  if (top)
    gmx_rmpbc_done(gpbc);


  if (projfile) {
    snew(ylabel,noutvec);
    for(v=0; v<noutvec; v++) {
      sprintf(str,"vec %d",eignr[outvec[v]]+1);
      ylabel[v]=strdup(str);
    }
    sprintf(str,"projection on eigenvectors (%s)",proj_unit);
    write_xvgr_graphs(projfile, noutvec, 1, str, NULL, output_env_get_xvgr_tlabel(oenv),
		      (const char **)ylabel,
		      nframes, inprod[noutvec], inprod, NULL,
		      output_env_get_time_factor(oenv), FALSE, bSplit,oenv);
  }
  
  if (twodplotfile) {
    sprintf(str,"projection on eigenvector %d (%s)",
	    eignr[outvec[0]]+1,proj_unit);
    sprintf(str2,"projection on eigenvector %d (%s)",
	    eignr[outvec[noutvec-1]]+1,proj_unit); 
    xvgrout=xvgropen(twodplotfile,"2D projection of trajectory",str,str2,
                     oenv);
    for(i=0; i<nframes; i++) {
      if ( bSplit && i>0 && abs(inprod[noutvec][i])<1e-5 ) 
	fprintf(xvgrout,"&\n");
      fprintf(xvgrout,"%10.5f %10.5f\n",inprod[0][i],inprod[noutvec-1][i]);
    }
    ffclose(xvgrout);
  }
  
  if (threedplotfile) {
    t_atoms atoms;
    rvec    *x;
    real    *b=NULL;
    matrix  box;
    char    *resnm,*atnm, pdbform[STRLEN];
    gmx_bool    bPDB, b4D;
    FILE    *out;
    
    if (noutvec < 3)
      gmx_fatal(FARGS,"You have selected less than 3 eigenvectors");  
      
    /* initialize */
    bPDB = fn2ftp(threedplotfile)==efPDB;
    clear_mat(box);
    box[XX][XX] = box[YY][YY] = box[ZZ][ZZ] = 1;
    
    b4D = bPDB && (noutvec >= 4);
    if (b4D) {
      fprintf(stderr, "You have selected four or more eigenvectors:\n"
	      "fourth eigenvector will be plotted "
	      "in bfactor field of pdb file\n");
      sprintf(str,"4D proj. of traj. on eigenv. %d, %d, %d and %d",
	      eignr[outvec[0]]+1,eignr[outvec[1]]+1,
	      eignr[outvec[2]]+1,eignr[outvec[3]]+1);
    } else {
    sprintf(str,"3D proj. of traj. on eigenv. %d, %d and %d",
	    eignr[outvec[0]]+1,eignr[outvec[1]]+1,eignr[outvec[2]]+1);
    }
    init_t_atoms(&atoms,nframes,FALSE);
    snew(x,nframes);
    snew(b,nframes);
    atnm=strdup("C");
    resnm=strdup("PRJ");

    if(nframes>10000)
      fact=10000.0/nframes;
    else
      fact=1.0;

    for(i=0; i<nframes; i++) {
      atoms.atomname[i] = &atnm;
      atoms.atom[i].resind = i;
      atoms.resinfo[i].name = &resnm;
      atoms.resinfo[i].nr   = ceil(i*fact);
      atoms.resinfo[i].ic   = ' ';
      x[i][XX]=inprod[0][i];
      x[i][YY]=inprod[1][i];
      x[i][ZZ]=inprod[2][i];
      if (b4D)
	b[i]  =inprod[3][i];
    }
    if ( ( b4D || bSplit ) && bPDB ) {
      strcpy(pdbform,get_pdbformat());
      strcat(pdbform,"%8.4f%8.4f\n");
      
      out=ffopen(threedplotfile,"w");
      fprintf(out,"HEADER    %s\n",str);
      if ( b4D )
	fprintf(out,"REMARK    %s\n","fourth dimension plotted as B-factor");
      j=0;
      for(i=0; i<atoms.nr; i++) {
	if ( j>0 && bSplit && abs(inprod[noutvec][i])<1e-5 ) {
	  fprintf(out,"TER\n");
	  j=0;
	}
	fprintf(out,pdbform,"ATOM",i+1,"C","PRJ",' ',j+1,
		PR_VEC(10*x[i]), 1.0, 10*b[i]);
	if (j>0)
	  fprintf(out,"CONECT%5d%5d\n", i, i+1);
	j++;
      }
      fprintf(out,"TER\n");
      ffclose(out);
    } else
      write_sto_conf(threedplotfile,str,&atoms,x,NULL,ePBC,box); 
    free_t_atoms(&atoms,FALSE);
  }
  
  if (extremefile) {
    snew(pmin,noutvec_extr);
    snew(pmax,noutvec_extr);
    if (extreme==0) {
      fprintf(stderr,"%11s %17s %17s\n","eigenvector","Minimum","Maximum");
      fprintf(stderr,
	      "%11s %10s %10s %10s %10s\n","","value","frame","value","frame");
      imin = 0;
      imax = 0;
      for(v=0; v<noutvec_extr; v++) {
	for(i=0; i<nframes; i++) {
	  if (inprod[v][i]<inprod[v][imin])
	    imin = i;
	  if (inprod[v][i]>inprod[v][imax])
	    imax = i;
	}
	pmin[v] = inprod[v][imin];
	pmax[v] = inprod[v][imax];
	fprintf(stderr,"%7d     %10.6f %10d %10.6f %10d\n",
		eignr[outvec[v]]+1,
		pmin[v],imin,pmax[v],imax); 
      }
    }
    else {
      pmin[0] = -extreme;
      pmax[0] =  extreme;
    }
    /* build format string for filename: */
    strcpy(str,extremefile);/* copy filename */
    c=strrchr(str,'.'); /* find where extention begins */
    strcpy(str2,c); /* get extention */
    sprintf(c,"%%d%s",str2); /* append '%s' and extention to filename */
    for(v=0; v<noutvec_extr; v++) {
      /* make filename using format string */
      if (noutvec_extr==1)
	strcpy(str2,extremefile);
      else
	sprintf(str2,str,eignr[outvec[v]]+1);
      fprintf(stderr,"Writing %d frames along eigenvector %d to %s\n",
	      nextr,outvec[v]+1,str2);
      out=open_trx(str2,"w");
      for(frame=0; frame<nextr; frame++) {
	if ((extreme==0) && (nextr<=3))
	  for(i=0; i<natoms; i++) {
	    atoms->resinfo[atoms->atom[index[i]].resind].chainid = 'A' + frame;
	  }
	for(i=0; i<natoms; i++)
	  for(d=0; d<DIM; d++) 
	    xread[index[i]][d] = 
	      (xav[i][d] + (pmin[v]*(nextr-frame-1)+pmax[v]*frame)/(nextr-1)
	      *eigvec[outvec[v]][i][d]/sqrtm[i]);
	write_trx(out,natoms,index,atoms,0,frame,topbox,xread,NULL,NULL);
      }
      close_trx(out);
    }
    sfree(pmin);
    sfree(pmax);
  }
  fprintf(stderr,"\n");
}
示例#3
0
int gmx_rms(int argc, char *argv[])
{
    const char     *desc[] =
    {
        "[THISMODULE] compares two structures by computing the root mean square",
        "deviation (RMSD), the size-independent [GRK]rho[grk] similarity parameter",
        "([TT]rho[tt]) or the scaled [GRK]rho[grk] ([TT]rhosc[tt]), ",
        "see Maiorov & Crippen, Proteins [BB]22[bb], 273 (1995).",
        "This is selected by [TT]-what[tt].[PAR]"

        "Each structure from a trajectory ([TT]-f[tt]) is compared to a",
        "reference structure. The reference structure",
        "is taken from the structure file ([TT]-s[tt]).[PAR]",

        "With option [TT]-mir[tt] also a comparison with the mirror image of",
        "the reference structure is calculated.",
        "This is useful as a reference for 'significant' values, see",
        "Maiorov & Crippen, Proteins [BB]22[bb], 273 (1995).[PAR]",

        "Option [TT]-prev[tt] produces the comparison with a previous frame",
        "the specified number of frames ago.[PAR]",

        "Option [TT]-m[tt] produces a matrix in [TT].xpm[tt] format of",
        "comparison values of each structure in the trajectory with respect to",
        "each other structure. This file can be visualized with for instance",
        "[TT]xv[tt] and can be converted to postscript with [gmx-xpm2ps].[PAR]",

        "Option [TT]-fit[tt] controls the least-squares fitting of",
        "the structures on top of each other: complete fit (rotation and",
        "translation), translation only, or no fitting at all.[PAR]",

        "Option [TT]-mw[tt] controls whether mass weighting is done or not.",
        "If you select the option (default) and ",
        "supply a valid [TT].tpr[tt] file masses will be taken from there, ",
        "otherwise the masses will be deduced from the [TT]atommass.dat[tt] file in",
        "[TT]GMXLIB[tt]. This is fine for proteins, but not",
        "necessarily for other molecules. A default mass of 12.011 amu (carbon)",
        "is assigned to unknown atoms. You can check whether this happend by",
        "turning on the [TT]-debug[tt] flag and inspecting the log file.[PAR]",

        "With [TT]-f2[tt], the 'other structures' are taken from a second",
        "trajectory, this generates a comparison matrix of one trajectory",
        "versus the other.[PAR]",

        "Option [TT]-bin[tt] does a binary dump of the comparison matrix.[PAR]",

        "Option [TT]-bm[tt] produces a matrix of average bond angle deviations",
        "analogously to the [TT]-m[tt] option. Only bonds between atoms in the",
        "comparison group are considered."
    };
    static gmx_bool bPBC              = TRUE, bFitAll = TRUE, bSplit = FALSE;
    static gmx_bool bDeltaLog         = FALSE;
    static int      prev              = 0, freq = 1, freq2 = 1, nlevels = 80, avl = 0;
    static real     rmsd_user_max     = -1, rmsd_user_min = -1, bond_user_max = -1,
                    bond_user_min     = -1, delta_maxy = 0.0;
    /* strings and things for selecting difference method */
    enum
    {
        ewSel, ewRMSD, ewRho, ewRhoSc, ewNR
    };
    int         ewhat;
    const char *what[ewNR + 1] =
    { NULL, "rmsd", "rho", "rhosc", NULL };
    const char *whatname[ewNR] =
    { NULL, "RMSD", "Rho", "Rho sc" };
    const char *whatlabel[ewNR] =
    { NULL, "RMSD (nm)", "Rho", "Rho sc" };
    const char *whatxvgname[ewNR] =
    { NULL, "RMSD", "\\8r\\4", "\\8r\\4\\ssc\\N" };
    const char *whatxvglabel[ewNR] =
    { NULL, "RMSD (nm)", "\\8r\\4", "\\8r\\4\\ssc\\N" };
    /* strings and things for fitting methods */
    enum
    {
        efSel, efFit, efReset, efNone, efNR
    };
    int             efit;
    const char     *fit[efNR + 1] =
    { NULL, "rot+trans", "translation", "none", NULL };
    const char     *fitgraphlabel[efNR + 1] =
    { NULL, "lsq fit", "translational fit", "no fit" };
    static int      nrms          = 1;
    static gmx_bool bMassWeighted = TRUE;
    t_pargs         pa[]          =
    {
        { "-what", FALSE, etENUM,
          { what }, "Structural difference measure" },
        { "-pbc", FALSE, etBOOL,
          { &bPBC }, "PBC check" },
        { "-fit", FALSE, etENUM,
          { fit }, "Fit to reference structure" },
        { "-prev", FALSE, etINT,
          { &prev }, "Compare with previous frame" },
        { "-split", FALSE, etBOOL,
          { &bSplit }, "Split graph where time is zero" },
        { "-fitall", FALSE, etBOOL,
          { &bFitAll }, "HIDDENFit all pairs of structures in matrix" },
        { "-skip", FALSE, etINT,
          { &freq }, "Only write every nr-th frame to matrix" },
        { "-skip2", FALSE, etINT,
          { &freq2 }, "Only write every nr-th frame to matrix" },
        { "-max", FALSE, etREAL,
          { &rmsd_user_max }, "Maximum level in comparison matrix" },
        { "-min", FALSE, etREAL,
          { &rmsd_user_min }, "Minimum level in comparison matrix" },
        { "-bmax", FALSE, etREAL,
          { &bond_user_max }, "Maximum level in bond angle matrix" },
        { "-bmin", FALSE, etREAL,
          { &bond_user_min }, "Minimum level in bond angle matrix" },
        { "-mw", FALSE, etBOOL,
          { &bMassWeighted }, "Use mass weighting for superposition" },
        { "-nlevels", FALSE, etINT,
          { &nlevels }, "Number of levels in the matrices" },
        { "-ng", FALSE, etINT,
          { &nrms }, "Number of groups to compute RMS between" },
        { "-dlog", FALSE, etBOOL,
          { &bDeltaLog },
          "HIDDENUse a log x-axis in the delta t matrix" },
        { "-dmax", FALSE, etREAL,
          { &delta_maxy }, "HIDDENMaximum level in delta matrix" },
        { "-aver", FALSE, etINT,
          { &avl },
          "HIDDENAverage over this distance in the RMSD matrix" }
    };
    int             natoms_trx, natoms_trx2, natoms;
    int             i, j, k, m, teller, teller2, tel_mat, tel_mat2;
#define NFRAME 5000
    int             maxframe = NFRAME, maxframe2 = NFRAME;
    real            t, *w_rls, *w_rms, *w_rls_m = NULL, *w_rms_m = NULL;
    gmx_bool        bNorm, bAv, bFreq2, bFile2, bMat, bBond, bDelta, bMirror, bMass;
    gmx_bool        bFit, bReset;
    t_topology      top;
    int             ePBC;
    t_iatom        *iatom = NULL;

    matrix          box;
    rvec           *x, *xp, *xm = NULL, **mat_x = NULL, **mat_x2, *mat_x2_j = NULL, vec1,
                    vec2;
    t_trxstatus    *status;
    char            buf[256], buf2[256];
    int             ncons = 0;
    FILE           *fp;
    real            rlstot = 0, **rls, **rlsm = NULL, *time, *time2, *rlsnorm = NULL,
    **rmsd_mat             = NULL, **bond_mat = NULL, *axis, *axis2, *del_xaxis,
    *del_yaxis, rmsd_max, rmsd_min, rmsd_avg, bond_max, bond_min, ang;
    real       **rmsdav_mat = NULL, av_tot, weight, weight_tot;
    real       **delta      = NULL, delta_max, delta_scalex = 0, delta_scaley = 0,
    *delta_tot;
    int          delta_xsize = 0, del_lev = 100, mx, my, abs_my;
    gmx_bool     bA1, bA2, bPrev, bTop, *bInMat = NULL;
    int          ifit, *irms, ibond = 0, *ind_bond1 = NULL, *ind_bond2 = NULL, n_ind_m =
        0;
    atom_id     *ind_fit, **ind_rms, *ind_m = NULL, *rev_ind_m = NULL, *ind_rms_m =
        NULL;
    char        *gn_fit, **gn_rms;
    t_rgb        rlo, rhi;
    output_env_t oenv;
    gmx_rmpbc_t  gpbc = NULL;

    t_filenm     fnm[] =
    {
        { efTPS, NULL, NULL, ffREAD },
        { efTRX, "-f", NULL, ffREAD },
        { efTRX, "-f2", NULL, ffOPTRD },
        { efNDX, NULL, NULL, ffOPTRD },
        { efXVG, NULL, "rmsd", ffWRITE },
        { efXVG, "-mir", "rmsdmir", ffOPTWR },
        { efXVG, "-a", "avgrp", ffOPTWR },
        { efXVG, "-dist", "rmsd-dist", ffOPTWR },
        { efXPM, "-m", "rmsd", ffOPTWR },
        { efDAT, "-bin", "rmsd", ffOPTWR },
        { efXPM, "-bm", "bond", ffOPTWR }
    };
#define NFILE asize(fnm)

    if (!parse_common_args(&argc, argv, PCA_CAN_TIME | PCA_TIME_UNIT | PCA_CAN_VIEW
                           | PCA_BE_NICE, NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL,
                           &oenv))
    {
        return 0;
    }
    /* parse enumerated options: */
    ewhat = nenum(what);
    if (ewhat == ewRho || ewhat == ewRhoSc)
    {
        please_cite(stdout, "Maiorov95");
    }
    efit   = nenum(fit);
    bFit   = efit == efFit;
    bReset = efit == efReset;
    if (bFit)
    {
        bReset = TRUE; /* for fit, reset *must* be set */
    }
    else
    {
        bFitAll = FALSE;
    }

    /* mark active cmdline options */
    bMirror = opt2bSet("-mir", NFILE, fnm); /* calc RMSD vs mirror of ref. */
    bFile2  = opt2bSet("-f2", NFILE, fnm);
    bMat    = opt2bSet("-m", NFILE, fnm);
    bBond   = opt2bSet("-bm", NFILE, fnm);
    bDelta  = (delta_maxy > 0); /* calculate rmsd vs delta t matrix from *
                                 *	your RMSD matrix (hidden option       */
    bNorm   = opt2bSet("-a", NFILE, fnm);
    bFreq2  = opt2parg_bSet("-skip2", asize(pa), pa);
    if (freq <= 0)
    {
        fprintf(stderr, "The number of frames to skip is <= 0. "
                "Writing out all frames.\n\n");
        freq = 1;
    }
    if (!bFreq2)
    {
        freq2 = freq;
    }
    else if (bFile2 && freq2 <= 0)
    {
        fprintf(stderr,
                "The number of frames to skip in second trajectory is <= 0.\n"
                "  Writing out all frames.\n\n");
        freq2 = 1;
    }

    bPrev = (prev > 0);
    if (bPrev)
    {
        prev = abs(prev);
        if (freq != 1)
        {
            fprintf(stderr, "WARNING: option -skip also applies to -prev\n");
        }
    }

    if (bFile2 && !bMat && !bBond)
    {
        fprintf(
                stderr,
                "WARNING: second trajectory (-f2) useless when not calculating matrix (-m/-bm),\n"
                "         will not read from %s\n", opt2fn("-f2", NFILE,
                                                           fnm));
        bFile2 = FALSE;
    }

    if (bDelta)
    {
        bMat = TRUE;
        if (bFile2)
        {
            fprintf(stderr,
                    "WARNING: second trajectory (-f2) useless when making delta matrix,\n"
                    "         will not read from %s\n", opt2fn("-f2",
                                                               NFILE, fnm));
            bFile2 = FALSE;
        }
    }

    bTop = read_tps_conf(ftp2fn(efTPS, NFILE, fnm), buf, &top, &ePBC, &xp,
                         NULL, box, TRUE);
    snew(w_rls, top.atoms.nr);
    snew(w_rms, top.atoms.nr);

    if (!bTop && bBond)
    {
        fprintf(stderr,
                "WARNING: Need a run input file for bond angle matrix,\n"
                "         will not calculate bond angle matrix.\n");
        bBond = FALSE;
    }

    if (bReset)
    {
        fprintf(stderr, "Select group for %s fit\n", bFit ? "least squares"
                : "translational");
        get_index(&(top.atoms), ftp2fn_null(efNDX, NFILE, fnm), 1, &ifit,
                  &ind_fit, &gn_fit);
    }
    else
    {
        ifit = 0;
    }

    if (bReset)
    {
        if (bFit && ifit < 3)
        {
            gmx_fatal(FARGS, "Need >= 3 points to fit!\n" );
        }

        bMass = FALSE;
        for (i = 0; i < ifit; i++)
        {
            if (bMassWeighted)
            {
                w_rls[ind_fit[i]] = top.atoms.atom[ind_fit[i]].m;
            }
            else
            {
                w_rls[ind_fit[i]] = 1;
            }
            bMass = bMass || (top.atoms.atom[ind_fit[i]].m != 0);
        }
        if (!bMass)
        {
            fprintf(stderr, "All masses in the fit group are 0, using masses of 1\n");
            for (i = 0; i < ifit; i++)
            {
                w_rls[ind_fit[i]] = 1;
            }
        }
    }

    if (bMat || bBond)
    {
        nrms = 1;
    }

    snew(gn_rms, nrms);
    snew(ind_rms, nrms);
    snew(irms, nrms);

    fprintf(stderr, "Select group%s for %s calculation\n",
            (nrms > 1) ? "s" : "", whatname[ewhat]);
    get_index(&(top.atoms), ftp2fn_null(efNDX, NFILE, fnm),
              nrms, irms, ind_rms, gn_rms);

    if (bNorm)
    {
        snew(rlsnorm, irms[0]);
    }
    snew(rls, nrms);
    for (j = 0; j < nrms; j++)
    {
        snew(rls[j], maxframe);
    }
    if (bMirror)
    {
        snew(rlsm, nrms);
        for (j = 0; j < nrms; j++)
        {
            snew(rlsm[j], maxframe);
        }
    }
    snew(time, maxframe);
    for (j = 0; j < nrms; j++)
    {
        bMass = FALSE;
        for (i = 0; i < irms[j]; i++)
        {
            if (bMassWeighted)
            {
                w_rms[ind_rms[j][i]] = top.atoms.atom[ind_rms[j][i]].m;
            }
            else
            {
                w_rms[ind_rms[j][i]] = 1.0;
            }
            bMass = bMass || (top.atoms.atom[ind_rms[j][i]].m != 0);
        }
        if (!bMass)
        {
            fprintf(stderr, "All masses in group %d are 0, using masses of 1\n", j);
            for (i = 0; i < irms[j]; i++)
            {
                w_rms[ind_rms[j][i]] = 1;
            }
        }
    }
    /* Prepare reference frame */
    if (bPBC)
    {
        gpbc = gmx_rmpbc_init(&top.idef, ePBC, top.atoms.nr);
        gmx_rmpbc(gpbc, top.atoms.nr, box, xp);
    }
    if (bReset)
    {
        reset_x(ifit, ind_fit, top.atoms.nr, NULL, xp, w_rls);
    }
    if (bMirror)
    {
        /* generate reference structure mirror image: */
        snew(xm, top.atoms.nr);
        for (i = 0; i < top.atoms.nr; i++)
        {
            copy_rvec(xp[i], xm[i]);
            xm[i][XX] = -xm[i][XX];
        }
    }
    if (ewhat == ewRhoSc)
    {
        norm_princ(&top.atoms, ifit, ind_fit, top.atoms.nr, xp);
    }

    /* read first frame */
    natoms_trx = read_first_x(oenv, &status, opt2fn("-f", NFILE, fnm), &t, &x, box);
    if (natoms_trx != top.atoms.nr)
    {
        fprintf(stderr,
                "\nWARNING: topology has %d atoms, whereas trajectory has %d\n",
                top.atoms.nr, natoms_trx);
    }
    natoms = min(top.atoms.nr, natoms_trx);
    if (bMat || bBond || bPrev)
    {
        snew(mat_x, NFRAME);

        if (bPrev)
        {
            /* With -prev we use all atoms for simplicity */
            n_ind_m = natoms;
        }
        else
        {
            /* Check which atoms we need (fit/rms) */
            snew(bInMat, natoms);
            for (i = 0; i < ifit; i++)
            {
                bInMat[ind_fit[i]] = TRUE;
            }
            n_ind_m = ifit;
            for (i = 0; i < irms[0]; i++)
            {
                if (!bInMat[ind_rms[0][i]])
                {
                    bInMat[ind_rms[0][i]] = TRUE;
                    n_ind_m++;
                }
            }
        }
        /* Make an index of needed atoms */
        snew(ind_m, n_ind_m);
        snew(rev_ind_m, natoms);
        j = 0;
        for (i = 0; i < natoms; i++)
        {
            if (bPrev || bInMat[i])
            {
                ind_m[j]     = i;
                rev_ind_m[i] = j;
                j++;
            }
        }
        snew(w_rls_m, n_ind_m);
        snew(ind_rms_m, irms[0]);
        snew(w_rms_m, n_ind_m);
        for (i = 0; i < ifit; i++)
        {
            w_rls_m[rev_ind_m[ind_fit[i]]] = w_rls[ind_fit[i]];
        }
        for (i = 0; i < irms[0]; i++)
        {
            ind_rms_m[i]          = rev_ind_m[ind_rms[0][i]];
            w_rms_m[ind_rms_m[i]] = w_rms[ind_rms[0][i]];
        }
        sfree(bInMat);
    }

    if (bBond)
    {
        ncons = 0;
        for (k = 0; k < F_NRE; k++)
        {
            if (IS_CHEMBOND(k))
            {
                iatom  = top.idef.il[k].iatoms;
                ncons += top.idef.il[k].nr/3;
            }
        }
        fprintf(stderr, "Found %d bonds in topology\n", ncons);
        snew(ind_bond1, ncons);
        snew(ind_bond2, ncons);
        ibond = 0;
        for (k = 0; k < F_NRE; k++)
        {
            if (IS_CHEMBOND(k))
            {
                iatom = top.idef.il[k].iatoms;
                ncons = top.idef.il[k].nr/3;
                for (i = 0; i < ncons; i++)
                {
                    bA1 = FALSE;
                    bA2 = FALSE;
                    for (j = 0; j < irms[0]; j++)
                    {
                        if (iatom[3*i+1] == ind_rms[0][j])
                        {
                            bA1 = TRUE;
                        }
                        if (iatom[3*i+2] == ind_rms[0][j])
                        {
                            bA2 = TRUE;
                        }
                    }
                    if (bA1 && bA2)
                    {
                        ind_bond1[ibond] = rev_ind_m[iatom[3*i+1]];
                        ind_bond2[ibond] = rev_ind_m[iatom[3*i+2]];
                        ibond++;
                    }
                }
            }
        }
        fprintf(stderr, "Using %d bonds for bond angle matrix\n", ibond);
        if (ibond == 0)
        {
            gmx_fatal(FARGS, "0 bonds found");
        }
    }

    /* start looping over frames: */
    tel_mat = 0;
    teller  = 0;
    do
    {
        if (bPBC)
        {
            gmx_rmpbc(gpbc, natoms, box, x);
        }

        if (bReset)
        {
            reset_x(ifit, ind_fit, natoms, NULL, x, w_rls);
        }
        if (ewhat == ewRhoSc)
        {
            norm_princ(&top.atoms, ifit, ind_fit, natoms, x);
        }

        if (bFit)
        {
            /*do the least squares fit to original structure*/
            do_fit(natoms, w_rls, xp, x);
        }

        if (teller % freq == 0)
        {
            /* keep frame for matrix calculation */
            if (bMat || bBond || bPrev)
            {
                if (tel_mat >= NFRAME)
                {
                    srenew(mat_x, tel_mat+1);
                }
                snew(mat_x[tel_mat], n_ind_m);
                for (i = 0; i < n_ind_m; i++)
                {
                    copy_rvec(x[ind_m[i]], mat_x[tel_mat][i]);
                }
            }
            tel_mat++;
        }

        /*calculate energy of root_least_squares*/
        if (bPrev)
        {
            j = tel_mat-prev-1;
            if (j < 0)
            {
                j = 0;
            }
            for (i = 0; i < n_ind_m; i++)
            {
                copy_rvec(mat_x[j][i], xp[ind_m[i]]);
            }
            if (bReset)
            {
                reset_x(ifit, ind_fit, natoms, NULL, xp, w_rls);
            }
            if (bFit)
            {
                do_fit(natoms, w_rls, x, xp);
            }
        }
        for (j = 0; (j < nrms); j++)
        {
            rls[j][teller] =
                calc_similar_ind(ewhat != ewRMSD, irms[j], ind_rms[j], w_rms, x, xp);
        }
        if (bNorm)
        {
            for (j = 0; (j < irms[0]); j++)
            {
                rlsnorm[j] +=
                    calc_similar_ind(ewhat != ewRMSD, 1, &(ind_rms[0][j]), w_rms, x, xp);
            }
        }

        if (bMirror)
        {
            if (bFit)
            {
                /*do the least squares fit to mirror of original structure*/
                do_fit(natoms, w_rls, xm, x);
            }

            for (j = 0; j < nrms; j++)
            {
                rlsm[j][teller] =
                    calc_similar_ind(ewhat != ewRMSD, irms[j], ind_rms[j], w_rms, x, xm);
            }
        }
        time[teller] = output_env_conv_time(oenv, t);

        teller++;
        if (teller >= maxframe)
        {
            maxframe += NFRAME;
            srenew(time, maxframe);
            for (j = 0; (j < nrms); j++)
            {
                srenew(rls[j], maxframe);
            }
            if (bMirror)
            {
                for (j = 0; (j < nrms); j++)
                {
                    srenew(rlsm[j], maxframe);
                }
            }
        }
    }
    while (read_next_x(oenv, status, &t, x, box));
    close_trj(status);

    if (bFile2)
    {
        snew(time2, maxframe2);

        fprintf(stderr, "\nWill read second trajectory file\n");
        snew(mat_x2, NFRAME);
        natoms_trx2 =
            read_first_x(oenv, &status, opt2fn("-f2", NFILE, fnm), &t, &x, box);
        if (natoms_trx2 != natoms_trx)
        {
            gmx_fatal(FARGS,
                      "Second trajectory (%d atoms) does not match the first one"
                      " (%d atoms)", natoms_trx2, natoms_trx);
        }
        tel_mat2 = 0;
        teller2  = 0;
        do
        {
            if (bPBC)
            {
                gmx_rmpbc(gpbc, natoms, box, x);
            }

            if (bReset)
            {
                reset_x(ifit, ind_fit, natoms, NULL, x, w_rls);
            }
            if (ewhat == ewRhoSc)
            {
                norm_princ(&top.atoms, ifit, ind_fit, natoms, x);
            }

            if (bFit)
            {
                /*do the least squares fit to original structure*/
                do_fit(natoms, w_rls, xp, x);
            }

            if (teller2 % freq2 == 0)
            {
                /* keep frame for matrix calculation */
                if (bMat)
                {
                    if (tel_mat2 >= NFRAME)
                    {
                        srenew(mat_x2, tel_mat2+1);
                    }
                    snew(mat_x2[tel_mat2], n_ind_m);
                    for (i = 0; i < n_ind_m; i++)
                    {
                        copy_rvec(x[ind_m[i]], mat_x2[tel_mat2][i]);
                    }
                }
                tel_mat2++;
            }

            time2[teller2] = output_env_conv_time(oenv, t);

            teller2++;
            if (teller2 >= maxframe2)
            {
                maxframe2 += NFRAME;
                srenew(time2, maxframe2);
            }
        }
        while (read_next_x(oenv, status, &t, x, box));
        close_trj(status);
    }
    else
    {
        mat_x2   = mat_x;
        time2    = time;
        tel_mat2 = tel_mat;
        freq2    = freq;
    }
    gmx_rmpbc_done(gpbc);

    if (bMat || bBond)
    {
        /* calculate RMS matrix */
        fprintf(stderr, "\n");
        if (bMat)
        {
            fprintf(stderr, "Building %s matrix, %dx%d elements\n",
                    whatname[ewhat], tel_mat, tel_mat2);
            snew(rmsd_mat, tel_mat);
        }
        if (bBond)
        {
            fprintf(stderr, "Building bond angle matrix, %dx%d elements\n",
                    tel_mat, tel_mat2);
            snew(bond_mat, tel_mat);
        }
        snew(axis, tel_mat);
        snew(axis2, tel_mat2);
        rmsd_max = 0;
        if (bFile2)
        {
            rmsd_min = 1e10;
        }
        else
        {
            rmsd_min = 0;
        }
        rmsd_avg = 0;
        bond_max = 0;
        bond_min = 1e10;
        for (j = 0; j < tel_mat2; j++)
        {
            axis2[j] = time2[freq2*j];
        }
        if (bDelta)
        {
            if (bDeltaLog)
            {
                delta_scalex = 8.0/log(2.0);
                delta_xsize  = (int)(log(tel_mat/2)*delta_scalex+0.5)+1;
            }
            else
            {
                delta_xsize = tel_mat/2;
            }
            delta_scaley = 1.0/delta_maxy;
            snew(delta, delta_xsize);
            for (j = 0; j < delta_xsize; j++)
            {
                snew(delta[j], del_lev+1);
            }
            if (avl > 0)
            {
                snew(rmsdav_mat, tel_mat);
                for (j = 0; j < tel_mat; j++)
                {
                    snew(rmsdav_mat[j], tel_mat);
                }
            }
        }

        if (bFitAll)
        {
            snew(mat_x2_j, natoms);
        }
        for (i = 0; i < tel_mat; i++)
        {
            axis[i] = time[freq*i];
            fprintf(stderr, "\r element %5d; time %5.2f  ", i, axis[i]);
            if (bMat)
            {
                snew(rmsd_mat[i], tel_mat2);
            }
            if (bBond)
            {
                snew(bond_mat[i], tel_mat2);
            }
            for (j = 0; j < tel_mat2; j++)
            {
                if (bFitAll)
                {
                    for (k = 0; k < n_ind_m; k++)
                    {
                        copy_rvec(mat_x2[j][k], mat_x2_j[k]);
                    }
                    do_fit(n_ind_m, w_rls_m, mat_x[i], mat_x2_j);
                }
                else
                {
                    mat_x2_j = mat_x2[j];
                }
                if (bMat)
                {
                    if (bFile2 || (i < j))
                    {
                        rmsd_mat[i][j] =
                            calc_similar_ind(ewhat != ewRMSD, irms[0], ind_rms_m,
                                             w_rms_m, mat_x[i], mat_x2_j);
                        if (rmsd_mat[i][j] > rmsd_max)
                        {
                            rmsd_max = rmsd_mat[i][j];
                        }
                        if (rmsd_mat[i][j] < rmsd_min)
                        {
                            rmsd_min = rmsd_mat[i][j];
                        }
                        rmsd_avg += rmsd_mat[i][j];
                    }
                    else
                    {
                        rmsd_mat[i][j] = rmsd_mat[j][i];
                    }
                }
                if (bBond)
                {
                    if (bFile2 || (i <= j))
                    {
                        ang = 0.0;
                        for (m = 0; m < ibond; m++)
                        {
                            rvec_sub(mat_x[i][ind_bond1[m]], mat_x[i][ind_bond2[m]], vec1);
                            rvec_sub(mat_x2_j[ind_bond1[m]], mat_x2_j[ind_bond2[m]], vec2);
                            ang += acos(cos_angle(vec1, vec2));
                        }
                        bond_mat[i][j] = ang*180.0/(M_PI*ibond);
                        if (bond_mat[i][j] > bond_max)
                        {
                            bond_max = bond_mat[i][j];
                        }
                        if (bond_mat[i][j] < bond_min)
                        {
                            bond_min = bond_mat[i][j];
                        }
                    }
                    else
                    {
                        bond_mat[i][j] = bond_mat[j][i];
                    }
                }
            }
        }
        if (bFile2)
        {
            rmsd_avg /= tel_mat*tel_mat2;
        }
        else
        {
            rmsd_avg /= tel_mat*(tel_mat - 1)/2;
        }
        if (bMat && (avl > 0))
        {
            rmsd_max = 0.0;
            rmsd_min = 0.0;
            rmsd_avg = 0.0;
            for (j = 0; j < tel_mat-1; j++)
            {
                for (i = j+1; i < tel_mat; i++)
                {
                    av_tot     = 0;
                    weight_tot = 0;
                    for (my = -avl; my <= avl; my++)
                    {
                        if ((j+my >= 0) && (j+my < tel_mat))
                        {
                            abs_my = abs(my);
                            for (mx = -avl; mx <= avl; mx++)
                            {
                                if ((i+mx >= 0) && (i+mx < tel_mat))
                                {
                                    weight      = (real)(avl+1-max(abs(mx), abs_my));
                                    av_tot     += weight*rmsd_mat[i+mx][j+my];
                                    weight_tot += weight;
                                }
                            }
                        }
                    }
                    rmsdav_mat[i][j] = av_tot/weight_tot;
                    rmsdav_mat[j][i] = rmsdav_mat[i][j];
                    if (rmsdav_mat[i][j] > rmsd_max)
                    {
                        rmsd_max = rmsdav_mat[i][j];
                    }
                }
            }
            rmsd_mat = rmsdav_mat;
        }

        if (bMat)
        {
            fprintf(stderr, "\n%s: Min %f, Max %f, Avg %f\n",
                    whatname[ewhat], rmsd_min, rmsd_max, rmsd_avg);
            rlo.r = 1; rlo.g = 1; rlo.b = 1;
            rhi.r = 0; rhi.g = 0; rhi.b = 0;
            if (rmsd_user_max != -1)
            {
                rmsd_max = rmsd_user_max;
            }
            if (rmsd_user_min != -1)
            {
                rmsd_min = rmsd_user_min;
            }
            if ((rmsd_user_max !=  -1) || (rmsd_user_min != -1))
            {
                fprintf(stderr, "Min and Max value set to resp. %f and %f\n",
                        rmsd_min, rmsd_max);
            }
            sprintf(buf, "%s %s matrix", gn_rms[0], whatname[ewhat]);
            write_xpm(opt2FILE("-m", NFILE, fnm, "w"), 0, buf, whatlabel[ewhat],
                      output_env_get_time_label(oenv), output_env_get_time_label(oenv), tel_mat, tel_mat2,
                      axis, axis2, rmsd_mat, rmsd_min, rmsd_max, rlo, rhi, &nlevels);
            /* Print the distribution of RMSD values */
            if (opt2bSet("-dist", NFILE, fnm))
            {
                low_rmsd_dist(opt2fn("-dist", NFILE, fnm), rmsd_max, tel_mat, rmsd_mat, oenv);
            }

            if (bDelta)
            {
                snew(delta_tot, delta_xsize);
                for (j = 0; j < tel_mat-1; j++)
                {
                    for (i = j+1; i < tel_mat; i++)
                    {
                        mx = i-j;
                        if (mx < tel_mat/2)
                        {
                            if (bDeltaLog)
                            {
                                mx = (int)(log(mx)*delta_scalex+0.5);
                            }
                            my             = (int)(rmsd_mat[i][j]*delta_scaley*del_lev+0.5);
                            delta_tot[mx] += 1.0;
                            if ((rmsd_mat[i][j] >= 0) && (rmsd_mat[i][j] <= delta_maxy))
                            {
                                delta[mx][my] += 1.0;
                            }
                        }
                    }
                }
                delta_max = 0;
                for (i = 0; i < delta_xsize; i++)
                {
                    if (delta_tot[i] > 0.0)
                    {
                        delta_tot[i] = 1.0/delta_tot[i];
                        for (j = 0; j <= del_lev; j++)
                        {
                            delta[i][j] *= delta_tot[i];
                            if (delta[i][j] > delta_max)
                            {
                                delta_max = delta[i][j];
                            }
                        }
                    }
                }
                fprintf(stderr, "Maximum in delta matrix: %f\n", delta_max);
                snew(del_xaxis, delta_xsize);
                snew(del_yaxis, del_lev+1);
                for (i = 0; i < delta_xsize; i++)
                {
                    del_xaxis[i] = axis[i]-axis[0];
                }
                for (i = 0; i < del_lev+1; i++)
                {
                    del_yaxis[i] = delta_maxy*i/del_lev;
                }
                sprintf(buf, "%s %s vs. delta t", gn_rms[0], whatname[ewhat]);
                fp = gmx_ffopen("delta.xpm", "w");
                write_xpm(fp, 0, buf, "density", output_env_get_time_label(oenv), whatlabel[ewhat],
                          delta_xsize, del_lev+1, del_xaxis, del_yaxis,
                          delta, 0.0, delta_max, rlo, rhi, &nlevels);
                gmx_ffclose(fp);
            }
            if (opt2bSet("-bin", NFILE, fnm))
            {
                /* NB: File must be binary if we use fwrite */
                fp = ftp2FILE(efDAT, NFILE, fnm, "wb");
                for (i = 0; i < tel_mat; i++)
                {
                    if (fwrite(rmsd_mat[i], sizeof(**rmsd_mat), tel_mat2, fp) != tel_mat2)
                    {
                        gmx_fatal(FARGS, "Error writing to output file");
                    }
                }
                gmx_ffclose(fp);
            }
        }
        if (bBond)
        {
            fprintf(stderr, "\nMin. angle: %f, Max. angle: %f\n", bond_min, bond_max);
            if (bond_user_max != -1)
            {
                bond_max = bond_user_max;
            }
            if (bond_user_min != -1)
            {
                bond_min = bond_user_min;
            }
            if ((bond_user_max !=  -1) || (bond_user_min != -1))
            {
                fprintf(stderr, "Bond angle Min and Max set to:\n"
                        "Min. angle: %f, Max. angle: %f\n", bond_min, bond_max);
            }
            rlo.r = 1; rlo.g = 1; rlo.b = 1;
            rhi.r = 0; rhi.g = 0; rhi.b = 0;
            sprintf(buf, "%s av. bond angle deviation", gn_rms[0]);
            write_xpm(opt2FILE("-bm", NFILE, fnm, "w"), 0, buf, "degrees",
                      output_env_get_time_label(oenv), output_env_get_time_label(oenv), tel_mat, tel_mat2,
                      axis, axis2, bond_mat, bond_min, bond_max, rlo, rhi, &nlevels);
        }
    }

    bAv = opt2bSet("-a", NFILE, fnm);

    /* Write the RMSD's to file */
    if (!bPrev)
    {
        sprintf(buf, "%s", whatxvgname[ewhat]);
    }
    else
    {
        sprintf(buf, "%s with frame %g %s ago", whatxvgname[ewhat],
                time[prev*freq]-time[0], output_env_get_time_label(oenv));
    }
    fp = xvgropen(opt2fn("-o", NFILE, fnm), buf, output_env_get_xvgr_tlabel(oenv),
                  whatxvglabel[ewhat], oenv);
    if (output_env_get_print_xvgr_codes(oenv))
    {
        fprintf(fp, "@ subtitle \"%s%s after %s%s%s\"\n",
                (nrms == 1) ? "" : "of ", gn_rms[0], fitgraphlabel[efit],
                bFit     ? " to " : "", bFit ? gn_fit : "");
    }
    if (nrms != 1)
    {
        xvgr_legend(fp, nrms, (const char**)gn_rms, oenv);
    }
    for (i = 0; (i < teller); i++)
    {
        if (bSplit && i > 0 &&
            abs(time[bPrev ? freq*i : i]/output_env_get_time_factor(oenv)) < 1e-5)
        {
            fprintf(fp, "&\n");
        }
        fprintf(fp, "%12.7f", time[bPrev ? freq*i : i]);
        for (j = 0; (j < nrms); j++)
        {
            fprintf(fp, " %12.7f", rls[j][i]);
            if (bAv)
            {
                rlstot += rls[j][i];
            }
        }
        fprintf(fp, "\n");
    }
    gmx_ffclose(fp);

    if (bMirror)
    {
        /* Write the mirror RMSD's to file */
        sprintf(buf, "%s with Mirror", whatxvgname[ewhat]);
        sprintf(buf2, "Mirror %s", whatxvglabel[ewhat]);
        fp = xvgropen(opt2fn("-mir", NFILE, fnm), buf, output_env_get_xvgr_tlabel(oenv),
                      buf2, oenv);
        if (nrms == 1)
        {
            if (output_env_get_print_xvgr_codes(oenv))
            {
                fprintf(fp, "@ subtitle \"of %s after lsq fit to mirror of %s\"\n",
                        gn_rms[0], gn_fit);
            }
        }
        else
        {
            if (output_env_get_print_xvgr_codes(oenv))
            {
                fprintf(fp, "@ subtitle \"after lsq fit to mirror %s\"\n", gn_fit);
            }
            xvgr_legend(fp, nrms, (const char**)gn_rms, oenv);
        }
        for (i = 0; (i < teller); i++)
        {
            if (bSplit && i > 0 && abs(time[i]) < 1e-5)
            {
                fprintf(fp, "&\n");
            }
            fprintf(fp, "%12.7f", time[i]);
            for (j = 0; (j < nrms); j++)
            {
                fprintf(fp, " %12.7f", rlsm[j][i]);
            }
            fprintf(fp, "\n");
        }
        gmx_ffclose(fp);
    }

    if (bAv)
    {
        sprintf(buf, "Average %s", whatxvgname[ewhat]);
        sprintf(buf2, "Average %s", whatxvglabel[ewhat]);
        fp = xvgropen(opt2fn("-a", NFILE, fnm), buf, "Residue", buf2, oenv);
        for (j = 0; (j < nrms); j++)
        {
            fprintf(fp, "%10d  %10g\n", j, rlstot/teller);
        }
        gmx_ffclose(fp);
    }

    if (bNorm)
    {
        fp = xvgropen("aver.xvg", gn_rms[0], "Residue", whatxvglabel[ewhat], oenv);
        for (j = 0; (j < irms[0]); j++)
        {
            fprintf(fp, "%10d  %10g\n", j, rlsnorm[j]/teller);
        }
        gmx_ffclose(fp);
    }
    do_view(oenv, opt2fn_null("-a", NFILE, fnm), "-graphtype bar");
    do_view(oenv, opt2fn("-o", NFILE, fnm), NULL);
    do_view(oenv, opt2fn_null("-mir", NFILE, fnm), NULL);
    do_view(oenv, opt2fn_null("-m", NFILE, fnm), NULL);
    do_view(oenv, opt2fn_null("-bm", NFILE, fnm), NULL);
    do_view(oenv, opt2fn_null("-dist", NFILE, fnm), NULL);

    return 0;
}
示例#4
0
static void clust_size(const char *ndx, const char *trx, const char *xpm,
                       const char *xpmw, const char *ncl, const char *acl,
                       const char *mcl, const char *histo, const char *tempf,
                       const char *mcn, gmx_bool bMol, gmx_bool bPBC, const char *tpr,
                       real cut, int nskip, int nlevels,
                       t_rgb rmid, t_rgb rhi, int ndf,
                       const output_env_t oenv)
{
    FILE                 *fp, *gp, *hp, *tp;
    atom_id              *index = NULL;
    int                   nindex, natoms;
    t_trxstatus          *status;
    rvec                 *x = NULL, *v = NULL, dx;
    t_pbc                 pbc;
    char                 *gname;
    char                  timebuf[32];
    gmx_bool              bSame, bTPRwarn = TRUE;
    /* Topology stuff */
    t_trxframe            fr;
    t_tpxheader           tpxh;
    gmx_mtop_t           *mtop = NULL;
    int                   ePBC = -1;
    t_block              *mols = NULL;
    gmx_mtop_atomlookup_t alook;
    t_atom               *atom;
    int                   version, generation, ii, jj;
    real                  temp, tfac;
    /* Cluster size distribution (matrix) */
    real                **cs_dist = NULL;
    real                  tf, dx2, cut2, *t_x = NULL, *t_y, cmid, cmax, cav, ekin;
    int                   i, j, k, ai, aj, ci, cj, nframe, nclust, n_x, max_size = 0;
    int                  *clust_index, *clust_size, max_clust_size, max_clust_ind, nav, nhisto;
    t_rgb                 rlo = { 1.0, 1.0, 1.0 };

    clear_trxframe(&fr, TRUE);
    sprintf(timebuf, "Time (%s)", output_env_get_time_unit(oenv));
    tf     = output_env_get_time_factor(oenv);
    fp     = xvgropen(ncl, "Number of clusters", timebuf, "N", oenv);
    gp     = xvgropen(acl, "Average cluster size", timebuf, "#molecules", oenv);
    hp     = xvgropen(mcl, "Max cluster size", timebuf, "#molecules", oenv);
    tp     = xvgropen(tempf, "Temperature of largest cluster", timebuf, "T (K)",
                      oenv);

    if (!read_first_frame(oenv, &status, trx, &fr, TRX_NEED_X | TRX_READ_V))
    {
        gmx_file(trx);
    }

    natoms = fr.natoms;
    x      = fr.x;

    if (tpr)
    {
        snew(mtop, 1);
        read_tpxheader(tpr, &tpxh, TRUE, &version, &generation);
        if (tpxh.natoms != natoms)
        {
            gmx_fatal(FARGS, "tpr (%d atoms) and trajectory (%d atoms) do not match!",
                      tpxh.natoms, natoms);
        }
        ePBC = read_tpx(tpr, NULL, NULL, &natoms, NULL, NULL, mtop);
    }
    if (ndf <= -1)
    {
        tfac = 1;
    }
    else
    {
        tfac = ndf/(3.0*natoms);
    }

    if (bMol)
    {
        if (ndx)
        {
            printf("Using molecules rather than atoms. Not reading index file %s\n",
                   ndx);
        }
        GMX_RELEASE_ASSERT(mtop != NULL, "Trying to access mtop->mols from NULL mtop pointer");
        mols = &(mtop->mols);

        /* Make dummy index */
        nindex = mols->nr;
        snew(index, nindex);
        for (i = 0; (i < nindex); i++)
        {
            index[i] = i;
        }
        gname = gmx_strdup("mols");
    }
    else
    {
        rd_index(ndx, 1, &nindex, &index, &gname);
    }

    alook = gmx_mtop_atomlookup_init(mtop);

    snew(clust_index, nindex);
    snew(clust_size, nindex);
    cut2   = cut*cut;
    nframe = 0;
    n_x    = 0;
    snew(t_y, nindex);
    for (i = 0; (i < nindex); i++)
    {
        t_y[i] = i+1;
    }
    max_clust_size = 1;
    max_clust_ind  = -1;
    do
    {
        if ((nskip == 0) || ((nskip > 0) && ((nframe % nskip) == 0)))
        {
            if (bPBC)
            {
                set_pbc(&pbc, ePBC, fr.box);
            }
            max_clust_size = 1;
            max_clust_ind  = -1;

            /* Put all atoms/molecules in their own cluster, with size 1 */
            for (i = 0; (i < nindex); i++)
            {
                /* Cluster index is indexed with atom index number */
                clust_index[i] = i;
                /* Cluster size is indexed with cluster number */
                clust_size[i]  = 1;
            }

            /* Loop over atoms */
            for (i = 0; (i < nindex); i++)
            {
                ai = index[i];
                ci = clust_index[i];

                /* Loop over atoms (only half a matrix) */
                for (j = i+1; (j < nindex); j++)
                {
                    cj = clust_index[j];

                    /* If they are not in the same cluster already */
                    if (ci != cj)
                    {
                        aj = index[j];

                        /* Compute distance */
                        if (bMol)
                        {
                            GMX_RELEASE_ASSERT(mols != NULL, "Cannot access index[] from NULL mols pointer");
                            bSame = FALSE;
                            for (ii = mols->index[ai]; !bSame && (ii < mols->index[ai+1]); ii++)
                            {
                                for (jj = mols->index[aj]; !bSame && (jj < mols->index[aj+1]); jj++)
                                {
                                    if (bPBC)
                                    {
                                        pbc_dx(&pbc, x[ii], x[jj], dx);
                                    }
                                    else
                                    {
                                        rvec_sub(x[ii], x[jj], dx);
                                    }
                                    dx2   = iprod(dx, dx);
                                    bSame = (dx2 < cut2);
                                }
                            }
                        }
                        else
                        {
                            if (bPBC)
                            {
                                pbc_dx(&pbc, x[ai], x[aj], dx);
                            }
                            else
                            {
                                rvec_sub(x[ai], x[aj], dx);
                            }
                            dx2   = iprod(dx, dx);
                            bSame = (dx2 < cut2);
                        }
                        /* If distance less than cut-off */
                        if (bSame)
                        {
                            /* Merge clusters: check for all atoms whether they are in
                             * cluster cj and if so, put them in ci
                             */
                            for (k = 0; (k < nindex); k++)
                            {
                                if (clust_index[k] == cj)
                                {
                                    if (clust_size[cj] <= 0)
                                    {
                                        gmx_fatal(FARGS, "negative cluster size %d for element %d",
                                                  clust_size[cj], cj);
                                    }
                                    clust_size[cj]--;
                                    clust_index[k] = ci;
                                    clust_size[ci]++;
                                }
                            }
                        }
                    }
                }
            }
            n_x++;
            srenew(t_x, n_x);
            t_x[n_x-1] = fr.time*tf;
            srenew(cs_dist, n_x);
            snew(cs_dist[n_x-1], nindex);
            nclust = 0;
            cav    = 0;
            nav    = 0;
            for (i = 0; (i < nindex); i++)
            {
                ci = clust_size[i];
                if (ci > max_clust_size)
                {
                    max_clust_size = ci;
                    max_clust_ind  = i;
                }
                if (ci > 0)
                {
                    nclust++;
                    cs_dist[n_x-1][ci-1] += 1.0;
                    max_size              = std::max(max_size, ci);
                    if (ci > 1)
                    {
                        cav += ci;
                        nav++;
                    }
                }
            }
            fprintf(fp, "%14.6e  %10d\n", fr.time, nclust);
            if (nav > 0)
            {
                fprintf(gp, "%14.6e  %10.3f\n", fr.time, cav/nav);
            }
            fprintf(hp, "%14.6e  %10d\n", fr.time, max_clust_size);
        }
        /* Analyse velocities, if present */
        if (fr.bV)
        {
            if (!tpr)
            {
                if (bTPRwarn)
                {
                    printf("You need a [REF].tpr[ref] file to analyse temperatures\n");
                    bTPRwarn = FALSE;
                }
            }
            else
            {
                v = fr.v;
                /* Loop over clusters and for each cluster compute 1/2 m v^2 */
                if (max_clust_ind >= 0)
                {
                    ekin = 0;
                    for (i = 0; (i < nindex); i++)
                    {
                        if (clust_index[i] == max_clust_ind)
                        {
                            ai    = index[i];
                            gmx_mtop_atomnr_to_atom(alook, ai, &atom);
                            ekin += 0.5*atom->m*iprod(v[ai], v[ai]);
                        }
                    }
                    temp = (ekin*2.0)/(3.0*tfac*max_clust_size*BOLTZ);
                    fprintf(tp, "%10.3f  %10.3f\n", fr.time, temp);
                }
            }
        }
        nframe++;
    }
    while (read_next_frame(oenv, status, &fr));
    close_trx(status);
    xvgrclose(fp);
    xvgrclose(gp);
    xvgrclose(hp);
    xvgrclose(tp);

    gmx_mtop_atomlookup_destroy(alook);

    if (max_clust_ind >= 0)
    {
        fp = gmx_ffopen(mcn, "w");
        fprintf(fp, "[ max_clust ]\n");
        for (i = 0; (i < nindex); i++)
        {
            if (clust_index[i] == max_clust_ind)
            {
                if (bMol)
                {
                    GMX_RELEASE_ASSERT(mols != NULL, "Cannot access index[] from NULL mols pointer");
                    for (j = mols->index[i]; (j < mols->index[i+1]); j++)
                    {
                        fprintf(fp, "%d\n", j+1);
                    }
                }
                else
                {
                    fprintf(fp, "%d\n", index[i]+1);
                }
            }
        }
        gmx_ffclose(fp);
    }

    /* Print the real distribution cluster-size/numer, averaged over the trajectory. */
    fp     = xvgropen(histo, "Cluster size distribution", "Cluster size", "()", oenv);
    nhisto = 0;
    fprintf(fp, "%5d  %8.3f\n", 0, 0.0);
    for (j = 0; (j < max_size); j++)
    {
        real nelem = 0;
        for (i = 0; (i < n_x); i++)
        {
            nelem += cs_dist[i][j];
        }
        fprintf(fp, "%5d  %8.3f\n", j+1, nelem/n_x);
        nhisto += static_cast<int>((j+1)*nelem/n_x);
    }
    fprintf(fp, "%5d  %8.3f\n", j+1, 0.0);
    xvgrclose(fp);

    fprintf(stderr, "Total number of atoms in clusters =  %d\n", nhisto);

    /* Look for the smallest entry that is not zero
     * This will make that zero is white, and not zero is coloured.
     */
    cmid = 100.0;
    cmax = 0.0;
    for (i = 0; (i < n_x); i++)
    {
        for (j = 0; (j < max_size); j++)
        {
            if ((cs_dist[i][j] > 0) && (cs_dist[i][j] < cmid))
            {
                cmid = cs_dist[i][j];
            }
            cmax = std::max(cs_dist[i][j], cmax);
        }
    }
    fprintf(stderr, "cmid: %g, cmax: %g, max_size: %d\n", cmid, cmax, max_size);
    cmid = 1;
    fp   = gmx_ffopen(xpm, "w");
    write_xpm3(fp, 0, "Cluster size distribution", "# clusters", timebuf, "Size",
               n_x, max_size, t_x, t_y, cs_dist, 0, cmid, cmax,
               rlo, rmid, rhi, &nlevels);
    gmx_ffclose(fp);
    cmid = 100.0;
    cmax = 0.0;
    for (i = 0; (i < n_x); i++)
    {
        for (j = 0; (j < max_size); j++)
        {
            cs_dist[i][j] *= (j+1);
            if ((cs_dist[i][j] > 0) && (cs_dist[i][j] < cmid))
            {
                cmid = cs_dist[i][j];
            }
            cmax = std::max(cs_dist[i][j], cmax);
        }
    }
    fprintf(stderr, "cmid: %g, cmax: %g, max_size: %d\n", cmid, cmax, max_size);
    fp = gmx_ffopen(xpmw, "w");
    write_xpm3(fp, 0, "Weighted cluster size distribution", "Fraction", timebuf,
               "Size", n_x, max_size, t_x, t_y, cs_dist, 0, cmid, cmax,
               rlo, rmid, rhi, &nlevels);
    gmx_ffclose(fp);

    sfree(clust_index);
    sfree(clust_size);
    sfree(index);
}
示例#5
0
void dist_plot(const char *fn, const char *afile, const char *dfile,
               const char *nfile, const char *rfile, const char *xfile,
               real rcut, gmx_bool bMat, t_atoms *atoms,
               int ng, atom_id *index[], int gnx[], char *grpn[], gmx_bool bSplit,
               gmx_bool bMin, int nres, atom_id *residue, gmx_bool bPBC, int ePBC,
               gmx_bool bGroup, gmx_bool bEachResEachTime, gmx_bool bPrintResName,
               const output_env_t oenv)
{
    FILE            *atm, *dist, *num;
    t_trxstatus     *trxout;
    char             buf[256];
    char           **leg;
    real             t, dmin, dmax, **mindres = NULL, **maxdres = NULL;
    int              nmin, nmax;
    t_trxstatus     *status;
    int              i = -1, j, k, natoms;
    int              min1, min2, max1, max2, min1r, min2r, max1r, max2r;
    atom_id          oindex[2];
    rvec            *x0;
    matrix           box;
    t_trxframe       frout;
    gmx_bool         bFirst;
    FILE            *respertime = NULL;

    if ((natoms = read_first_x(oenv, &status, fn, &t, &x0, box)) == 0)
    {
        gmx_fatal(FARGS, "Could not read coordinates from statusfile\n");
    }

    sprintf(buf, "%simum Distance", bMin ? "Min" : "Max");
    dist = xvgropen(dfile, buf, output_env_get_time_label(oenv), "Distance (nm)", oenv);
    sprintf(buf, "Number of Contacts %s %g nm", bMin ? "<" : ">", rcut);
    num    = nfile ? xvgropen(nfile, buf, output_env_get_time_label(oenv), "Number", oenv) : NULL;
    atm    = afile ? ffopen(afile, "w") : NULL;
    trxout = xfile ? open_trx(xfile, "w") : NULL;

    if (bMat)
    {
        if (ng == 1)
        {
            snew(leg, 1);
            sprintf(buf, "Internal in %s", grpn[0]);
            leg[0] = strdup(buf);
            xvgr_legend(dist, 0, (const char**)leg, oenv);
            if (num)
            {
                xvgr_legend(num, 0, (const char**)leg, oenv);
            }
        }
        else
        {
            snew(leg, (ng*(ng-1))/2);
            for (i = j = 0; (i < ng-1); i++)
            {
                for (k = i+1; (k < ng); k++, j++)
                {
                    sprintf(buf, "%s-%s", grpn[i], grpn[k]);
                    leg[j] = strdup(buf);
                }
            }
            xvgr_legend(dist, j, (const char**)leg, oenv);
            if (num)
            {
                xvgr_legend(num, j, (const char**)leg, oenv);
            }
        }
    }
    else
    {
        snew(leg, ng-1);
        for (i = 0; (i < ng-1); i++)
        {
            sprintf(buf, "%s-%s", grpn[0], grpn[i+1]);
            leg[i] = strdup(buf);
        }
        xvgr_legend(dist, ng-1, (const char**)leg, oenv);
        if (num)
        {
            xvgr_legend(num, ng-1, (const char**)leg, oenv);
        }
    }

    if (bEachResEachTime)
    {
        sprintf(buf, "%simum Distance", bMin ? "Min" : "Max");
        respertime = xvgropen(rfile, buf, output_env_get_time_label(oenv), "Distance (nm)", oenv);
        xvgr_legend(respertime, ng-1, (const char**)leg, oenv);
        if (bPrintResName)
        {
            fprintf(respertime, "# ");
        }
        for (j = 0; j < nres; j++)
        {
            fprintf(respertime, "%s%d ", *(atoms->resinfo[atoms->atom[index[0][residue[j]]].resind].name), atoms->atom[index[0][residue[j]]].resind);
        }
        fprintf(respertime, "\n");

    }

    j = 0;
    if (nres)
    {
        snew(mindres, ng-1);
        snew(maxdres, ng-1);
        for (i = 1; i < ng; i++)
        {
            snew(mindres[i-1], nres);
            snew(maxdres[i-1], nres);
            for (j = 0; j < nres; j++)
            {
                mindres[i-1][j] = 1e6;
            }
            /* maxdres[*][*] is already 0 */
        }
    }
    bFirst = TRUE;
    do
    {
        if (bSplit && !bFirst && abs(t/output_env_get_time_factor(oenv)) < 1e-5)
        {
            fprintf(dist, "&\n");
            if (num)
            {
                fprintf(num, "&\n");
            }
            if (atm)
            {
                fprintf(atm, "&\n");
            }
        }
        fprintf(dist, "%12e", output_env_conv_time(oenv, t));
        if (num)
        {
            fprintf(num, "%12e", output_env_conv_time(oenv, t));
        }

        if (bMat)
        {
            if (ng == 1)
            {
                calc_dist(rcut, bPBC, ePBC, box, x0, gnx[0], gnx[0], index[0], index[0], bGroup,
                          &dmin, &dmax, &nmin, &nmax, &min1, &min2, &max1, &max2);
                fprintf(dist, "  %12e", bMin ? dmin : dmax);
                if (num)
                {
                    fprintf(num, "  %8d", bMin ? nmin : nmax);
                }
            }
            else
            {
                for (i = 0; (i < ng-1); i++)
                {
                    for (k = i+1; (k < ng); k++)
                    {
                        calc_dist(rcut, bPBC, ePBC, box, x0, gnx[i], gnx[k], index[i], index[k],
                                  bGroup, &dmin, &dmax, &nmin, &nmax, &min1, &min2, &max1, &max2);
                        fprintf(dist, "  %12e", bMin ? dmin : dmax);
                        if (num)
                        {
                            fprintf(num, "  %8d", bMin ? nmin : nmax);
                        }
                    }
                }
            }
        }
        else
        {
            for (i = 1; (i < ng); i++)
            {
                calc_dist(rcut, bPBC, ePBC, box, x0, gnx[0], gnx[i], index[0], index[i], bGroup,
                          &dmin, &dmax, &nmin, &nmax, &min1, &min2, &max1, &max2);
                fprintf(dist, "  %12e", bMin ? dmin : dmax);
                if (num)
                {
                    fprintf(num, "  %8d", bMin ? nmin : nmax);
                }
                if (nres)
                {
                    for (j = 0; j < nres; j++)
                    {
                        calc_dist(rcut, bPBC, ePBC, box, x0, residue[j+1]-residue[j], gnx[i],
                                  &(index[0][residue[j]]), index[i], bGroup,
                                  &dmin, &dmax, &nmin, &nmax, &min1r, &min2r, &max1r, &max2r);
                        mindres[i-1][j] = min(mindres[i-1][j], dmin);
                        maxdres[i-1][j] = max(maxdres[i-1][j], dmax);
                    }
                }
            }
        }
        fprintf(dist, "\n");
        if (num)
        {
            fprintf(num, "\n");
        }
        if ( (bMin ? min1 : max1) != -1)
        {
            if (atm)
            {
                fprintf(atm, "%12e  %12d  %12d\n",
                        output_env_conv_time(oenv, t), 1+(bMin ? min1 : max1),
                        1+(bMin ? min2 : max2));
            }
        }

        if (trxout)
        {
            oindex[0] = bMin ? min1 : max1;
            oindex[1] = bMin ? min2 : max2;
            write_trx(trxout, 2, oindex, atoms, i, t, box, x0, NULL, NULL);
        }
        bFirst = FALSE;
        /*dmin should be minimum distance for residue and group*/
        if (bEachResEachTime)
        {
            fprintf(respertime, "%12e", t);
            for (i = 1; i < ng; i++)
            {
                for (j = 0; j < nres; j++)
                {
                    fprintf(respertime, " %7g", bMin ? mindres[i-1][j] : maxdres[i-1][j]);
                    /*reset distances for next time point*/
                    mindres[i-1][j] = 1e6;
                    maxdres[i-1][j] = 0;
                }
            }
            fprintf(respertime, "\n");
        }
    }
    while (read_next_x(oenv, status, &t, x0, box));

    close_trj(status);
    ffclose(dist);
    if (num)
    {
        ffclose(num);
    }
    if (atm)
    {
        ffclose(atm);
    }
    if (trxout)
    {
        close_trx(trxout);
    }

    if (nres && !bEachResEachTime)
    {
        FILE *res;

        sprintf(buf, "%simum Distance", bMin ? "Min" : "Max");
        res = xvgropen(rfile, buf, "Residue (#)", "Distance (nm)", oenv);
        xvgr_legend(res, ng-1, (const char**)leg, oenv);
        for (j = 0; j < nres; j++)
        {
            fprintf(res, "%4d", j+1);
            for (i = 1; i < ng; i++)
            {
                fprintf(res, " %7g", bMin ? mindres[i-1][j] : maxdres[i-1][j]);
            }
            fprintf(res, "\n");
        }
    }

    sfree(x0);
}
示例#6
0
static void periodic_mindist_plot(const char *trxfn, const char *outfn,
                                  t_topology *top, int ePBC,
                                  int n, atom_id index[], gmx_bool bSplit,
                                  const output_env_t oenv)
{
    FILE        *out;
    const char  *leg[5] = { "min per.", "max int.", "box1", "box2", "box3" };
    t_trxstatus *status;
    real         t;
    rvec        *x;
    matrix       box;
    int          natoms, ind_min[2] = {0, 0}, ind_mini = 0, ind_minj = 0;
    real         r, rmin, rmax, rmint, tmint;
    gmx_bool     bFirst;
    gmx_rmpbc_t  gpbc = NULL;

    natoms = read_first_x(oenv, &status, trxfn, &t, &x, box);

    check_index(NULL, n, index, NULL, natoms);

    out = xvgropen(outfn, "Minimum distance to periodic image",
                   output_env_get_time_label(oenv), "Distance (nm)", oenv);
    if (output_env_get_print_xvgr_codes(oenv))
    {
        fprintf(out, "@ subtitle \"and maximum internal distance\"\n");
    }
    xvgr_legend(out, 5, leg, oenv);

    rmint = box[XX][XX];
    tmint = 0;

    if (NULL != top)
    {
        gpbc = gmx_rmpbc_init(&top->idef, ePBC, natoms);
    }

    bFirst = TRUE;
    do
    {
        if (NULL != top)
        {
            gmx_rmpbc(gpbc, natoms, box, x);
        }

        periodic_dist(box, x, n, index, &rmin, &rmax, ind_min);
        if (rmin < rmint)
        {
            rmint    = rmin;
            tmint    = t;
            ind_mini = ind_min[0];
            ind_minj = ind_min[1];
        }
        if (bSplit && !bFirst && abs(t/output_env_get_time_factor(oenv)) < 1e-5)
        {
            fprintf(out, "&\n");
        }
        fprintf(out, "\t%g\t%6.3f %6.3f %6.3f %6.3f %6.3f\n",
                output_env_conv_time(oenv, t), rmin, rmax, norm(box[0]), norm(box[1]), norm(box[2]));
        bFirst = FALSE;
    }
    while (read_next_x(oenv, status, &t, x, box));

    if (NULL != top)
    {
        gmx_rmpbc_done(gpbc);
    }

    ffclose(out);

    fprintf(stdout,
            "\nThe shortest periodic distance is %g (nm) at time %g (%s),\n"
            "between atoms %d and %d\n",
            rmint, output_env_conv_time(oenv, tmint), output_env_get_time_unit(oenv),
            index[ind_mini]+1, index[ind_minj]+1);
}