示例#1
0
box random_icp::solve(box b, double const precision ) {
    thread_local static unordered_set<shared_ptr<constraint>> used_constraints;
    used_constraints.clear();
    thread_local static vector<box> solns;
    thread_local static vector<box> box_stack;
    solns.clear();
    box_stack.clear();
    box_stack.push_back(b);
    do {
        DREAL_LOG_INFO << "random_icp::solve - loop"
                       << "\t" << "box stack Size = " << box_stack.size();
        b = box_stack.back();
        box_stack.pop_back();
        try {
            m_ctc.prune(b, m_config);
            auto this_used_constraints = m_ctc.used_constraints();
            used_constraints.insert(this_used_constraints.begin(), this_used_constraints.end());
        } catch (contractor_exception & e) {
            // Do nothing
        }
        if (!b.is_empty()) {
            tuple<int, box, box> splits = b.bisect(precision);
            int const i = get<0>(splits);
            if (i >= 0) {
                box const & first  = get<1>(splits);
                box const & second = get<2>(splits);
                if (random_bool()) {
                    box_stack.push_back(second);
                    box_stack.push_back(first);
                } else {
                    box_stack.push_back(first);
                    box_stack.push_back(second);
                }
                if (m_config.nra_proof) {
                    m_config.nra_proof_out << "[branched on "
                                         << b.get_name(i)
                                         << "]" << endl;
                }
            } else {
                m_config.nra_found_soln++;
                if (m_config.nra_found_soln >= m_config.nra_multiple_soln) {
                    break;
                }
                if (m_config.nra_multiple_soln > 1) {
                    // If --multiple_soln is used
                    output_solution(b, m_config, m_config.nra_found_soln);
                }
                solns.push_back(b);
            }
        }
    } while (box_stack.size() > 0);
    m_ctc.set_used_constraints(used_constraints);
    if (m_config.nra_multiple_soln > 1 && solns.size() > 0) {
        return solns.back();
    } else {
        assert(!b.is_empty() || box_stack.size() == 0);
        return b;
    }
}
示例#2
0
box naive_icp::solve(box b, contractor & ctc,
                     scoped_vec<shared_ptr<constraint>> const & ctrs,
                     SMTConfig & config, BranchHeuristic& brancher) {
    thread_local static unordered_set<shared_ptr<constraint>> used_constraints;
    used_constraints.clear();
    thread_local static vector<box> solns;
    thread_local static vector<box> box_stack;
    solns.clear();
    box_stack.clear();
    box_stack.push_back(b);
    do {
        DREAL_LOG_INFO << "naive_icp::solve - loop"
                       << "\t" << "box stack Size = " << box_stack.size();
        b = box_stack.back();
        box_stack.pop_back();
        prune(b, ctc, config, used_constraints);
        if (!b.is_empty()) {
            if (config.nra_use_stat) { config.nra_stat.increase_branch(); }
            vector<int> sorted_dims = brancher.sort_branches(b, ctrs, config);
            if (sorted_dims.size() > 0) {
                int const i = sorted_dims[0];
                tuple<int, box, box> splits = b.bisect_at(sorted_dims[0]);
                box const & first  = get<1>(splits);
                box const & second = get<2>(splits);
                assert(first.get_idx_last_branched() == i);
                assert(second.get_idx_last_branched() == i);
                if (second.is_bisectable()) {
                    box_stack.push_back(second);
                    box_stack.push_back(first);
                } else {
                    box_stack.push_back(first);
                    box_stack.push_back(second);
                }
                if (config.nra_proof) {
                    config.nra_proof_out << "[branched on "
                                         << b.get_name(i)
                                         << "]" << endl;
                }
            } else {
                config.nra_found_soln++;
                if (config.nra_multiple_soln > 1) {
                    // If --multiple_soln is used
                    output_solution(b, config, config.nra_found_soln);
                }
                if (config.nra_found_soln >= config.nra_multiple_soln) {
                    break;
                }
                solns.push_back(b);
            }
        }
    } while (box_stack.size() > 0);
    ctc.set_used_constraints(used_constraints);
    if (config.nra_multiple_soln > 1 && solns.size() > 0) {
        return solns.back();
    } else {
        assert(!b.is_empty() || box_stack.size() == 0);
        return b;
    }
}
示例#3
0
box naive_icp::solve(box b, contractor const & ctc, SMTConfig & config) {
    vector<box> solns;
    vector<box> box_stack;
    box_stack.push_back(b);
    do {
        DREAL_LOG_INFO << "icp_loop()"
                       << "\t" << "box stack Size = " << box_stack.size();
        b = box_stack.back();
        box_stack.pop_back();
        try {
            b = ctc.prune(b, config);
            if (config.nra_use_stat) { config.nra_stat.increase_prune(); }
        } catch (contractor_exception & e) {
            // Do nothing
        }
        if (!b.is_empty()) {
            tuple<int, box, box> splits = b.bisect(config.nra_precision);
            if (config.nra_use_stat) { config.nra_stat.increase_branch(); }
            int const i = get<0>(splits);
            if (i >= 0) {
                box const & first  = get<1>(splits);
                box const & second = get<2>(splits);
                if (second.is_bisectable()) {
                    box_stack.push_back(second);
                    box_stack.push_back(first);
                } else {
                    box_stack.push_back(first);
                    box_stack.push_back(second);
                }
                if (config.nra_proof) {
                    config.nra_proof_out << "[branched on "
                                         << b.get_name(i)
                                         << "]" << endl;
                }
            } else {
                config.nra_found_soln++;
                if (config.nra_found_soln >= config.nra_multiple_soln) {
                    break;
                }
                if (config.nra_multiple_soln > 1) {
                    // If --multiple_soln is used
                    output_solution(b, config, config.nra_found_soln);
                }
                solns.push_back(b);
            }
        }
    } while (box_stack.size() > 0);
    if (config.nra_multiple_soln > 1 && solns.size() > 0) {
        return solns.back();
    } else {
        assert(!b.is_empty() || box_stack.size() == 0);
        // cerr << "BEFORE ADJUST_BOUND\n==================\n" << b << "=========================\n\n\n";
        b.adjust_bound(box_stack);
        // cerr << "AFTER  ADJUST_BOUND\n==================\n" << b << "=========================\n\n\n";
        return b;
    }
}
示例#4
0
box multiheuristic_icp::solve(box bx, contractor & ctc,
                              scoped_vec<shared_ptr<constraint>> const & ctrs,
                              SMTConfig & config, vector<reference_wrapper<BranchHeuristic>> heuristics) {
    // don't use yet, since contractor is not yet threadsafe
    static vector<box> solns;
    solns.clear();
    mutex mu;
    box hull = bx;
    // hull is a shared box, that's used by all dothreads,
    // contains the intersection of the unions of the possible regions for each heuristic.
    // Therefore, any solution must be in hull.
    atomic_bool solved;
    unordered_set<shared_ptr<constraint>> all_used_constraints;
    prune(hull, ctc, config, all_used_constraints);
    vector<thread> threads;

    auto dothread = [&](BranchHeuristic & heuristic) {
#define PRUNEBOX(x) prune((x), ctc, config, used_constraints)
        thread_local static unordered_set<shared_ptr<constraint>> used_constraints;
        thread_local static vector<box> box_stack;
        thread_local static vector<box> hull_stack;  // nth box in hull_stack contains hull of first n boxes in box_stack
        box_stack.clear();
        hull_stack.clear();
        used_constraints.clear();

        auto pushbox = [&](box b) {
            box_stack.push_back(b);  // copies hull into vector
            if (hull_stack.size() > 0) { b.hull(hull_stack.back()); }  // maintain hull_stack invariant
            hull_stack.push_back(b);
        };

        auto popbox = [&] {
            box b = box_stack.back();
            box_stack.pop_back();
            hull_stack.pop_back();
            return b;
        };

        mu.lock();
        box b = hull;
        mu.unlock();
        pushbox(b);

        do {
            b = popbox();
            mu.lock();
            b.intersect(hull);
            // TODO(clhuang): is contractor threadsafe???
            PRUNEBOX(b);
            mu.unlock();
            if (!b.is_empty()) {
                vector<int> sorted_dims = heuristic.sort_branches(b, ctrs, config);
                if (config.nra_use_stat) { config.nra_stat.increase_branch(); }
                if (sorted_dims.size() > 0) {
                    int bisectdim = sorted_dims[0];
                    auto splits = b.bisect_at(bisectdim);
                    box first = get<1>(splits);
                    box second = get<2>(splits);
                    assert(bisectdim != -1);
                    assert(first.get_idx_last_branched() == bisectdim);
                    assert(second.get_idx_last_branched() == bisectdim);
                    if (second.is_bisectable()) {
                        pushbox(second);
                        pushbox(first);
                    } else {
                        pushbox(first);
                        pushbox(second);
                    }
                    if (config.nra_proof) {
                        config.nra_proof_out << "[branched on "
                            << b.get_name(bisectdim)
                            << "]" << endl;
                    }
                } else {
                    mu.lock();
                    config.nra_found_soln++;
                    solns.push_back(b);
                    if (config.nra_multiple_soln > 1) {
                        // If --multiple_soln is used
                        output_solution(b, config, config.nra_found_soln);
                    }
                    if (config.nra_found_soln >= config.nra_multiple_soln) {
                        solved = true;
                        mu.unlock();
                        break;
                    }
                    mu.unlock();
                }
            }
            // hull_stack, hopefully shrunk
            if (!hull_stack.empty()) {
                mu.lock();
                hull.intersect(hull_stack.back());
                mu.unlock();
            }
        } while (box_stack.size() > 0 && !solved);

        mu.lock();
        if (config.nra_found_soln == 0) {
            solved = true;  // needed if unsat
            solns.push_back(b);  // would be empty
        }
        // update all_used_constraints
        for (auto x : used_constraints) {
            all_used_constraints.insert(x);
        }
        mu.unlock();

#undef PRUNEBOX
    };

    for (auto& heuristic : heuristics) {
        threads.push_back(thread(dothread, heuristic));
    }

    for (auto& t : threads) {
        t.join();
    }
    ctc.set_used_constraints(all_used_constraints);

    return solns.back();
}
示例#5
0
box multiprune_icp::solve(box b, contractor & ctc,
                          scoped_vec<shared_ptr<constraint>> const & ctrs,
                          SMTConfig & config, BranchHeuristic& brancher, unsigned num_try) {
#define PRUNEBOX(x) prune((x), ctc, config, used_constraints)
    thread_local static unordered_set<shared_ptr<constraint>> used_constraints;
    used_constraints.clear();
    thread_local static vector<box> solns;
    thread_local static vector<box> box_stack;
    solns.clear();
    box_stack.clear();
    PRUNEBOX(b);
    box_stack.push_back(b);
    do {
        DREAL_LOG_INFO << "multiprune_icp::solve - loop"
                       << "\t" << "box stack Size = " << box_stack.size();
        b = box_stack.back();
        box_stack.pop_back();
        if (!b.is_empty()) {
            vector<int> sorted_dims = brancher.sort_branches(b, ctrs, config);
            if (sorted_dims.size() > num_try) {
                sorted_dims = vector<int>(sorted_dims.begin(), sorted_dims.begin()+num_try);
            }

            if (config.nra_use_stat) { config.nra_stat.increase_branch(); }
            if (sorted_dims.size() > 0) {
                int bisectdim = -1;
                box first = b;
                box second = b;
                double score = -INFINITY;
                for (int dim : sorted_dims) {
                    tuple<int, box, box> splits = b.bisect_at(dim);
                    box a1 = get<1>(splits);
                    box a2 = get<2>(splits);
                    PRUNEBOX(a1);
                    PRUNEBOX(a2);
                    double cscore = -a1.volume() * a2.volume();
                    if (cscore > score || bisectdim == -1) {
                        first.hull(second);
                        a1.intersect(first);
                        a2.intersect(first);
                        first = a1;
                        second = a2;
                        bisectdim = dim;
                        score = cscore;
                    } else {
                        a1.hull(a2);
                        first.intersect(a1);
                        second.intersect(a1);
                    }
                }
                assert(bisectdim != -1);
                assert(first.get_idx_last_branched() == bisectdim);
                assert(second.get_idx_last_branched() == bisectdim);
                if (second.is_bisectable()) {
                    box_stack.push_back(second);
                    box_stack.push_back(first);
                } else {
                    box_stack.push_back(first);
                    box_stack.push_back(second);
                }
                if (config.nra_proof) {
                    config.nra_proof_out << "[branched on "
                                         << b.get_name(bisectdim)
                                         << "]" << endl;
                }
            } else {
                config.nra_found_soln++;
                if (config.nra_multiple_soln > 1) {
                    // If --multiple_soln is used
                    output_solution(b, config, config.nra_found_soln);
                }
                if (config.nra_found_soln >= config.nra_multiple_soln) {
                    break;
                }
                solns.push_back(b);
            }
        }
    } while (box_stack.size() > 0);
    ctc.set_used_constraints(used_constraints);
    if (config.nra_multiple_soln > 1 && solns.size() > 0) {
        return solns.back();
    } else {
        assert(!b.is_empty() || box_stack.size() == 0);
        return b;
    }
#undef PRUNEBOX
}
示例#6
0
文件: icp.cpp 项目: sunqxj/dreal3
box naive_icp::solve(box b, contractor & ctc, SMTConfig & config) {
    thread_local static std::unordered_set<std::shared_ptr<constraint>> used_constraints;
    used_constraints.clear();
    thread_local static vector<box> solns;
    thread_local static vector<box> box_stack;
    solns.clear();
    box_stack.clear();
    box_stack.push_back(b);
    do {
        DREAL_LOG_INFO << "naive_icp::solve - loop"
                       << "\t" << "box stack Size = " << box_stack.size();
        b = box_stack.back();
        box_stack.pop_back();
        try {
            ctc.prune(b, config);
            auto this_used_constraints = ctc.used_constraints();
            used_constraints.insert(this_used_constraints.begin(), this_used_constraints.end());
            if (config.nra_use_stat) { config.nra_stat.increase_prune(); }
        } catch (contractor_exception & e) {
            // Do nothing
        }
        if (!b.is_empty()) {
            tuple<int, box, box> splits = b.bisect(config.nra_precision);
            if (config.nra_use_stat) { config.nra_stat.increase_branch(); }
            int const i = get<0>(splits);
            if (i >= 0) {
                box const & first  = get<1>(splits);
                box const & second = get<2>(splits);
                assert(first.get_idx_last_branched() == i);
                assert(second.get_idx_last_branched() == i);
                if (second.is_bisectable()) {
                    box_stack.push_back(second);
                    box_stack.push_back(first);
                } else {
                    box_stack.push_back(first);
                    box_stack.push_back(second);
                }
                if (config.nra_proof) {
                    config.nra_proof_out << "[branched on "
                                         << b.get_name(i)
                                         << "]" << endl;
                }
            } else {
                config.nra_found_soln++;
                if (config.nra_multiple_soln > 1) {
                    // If --multiple_soln is used
                    output_solution(b, config, config.nra_found_soln);
                }
                if (config.nra_found_soln >= config.nra_multiple_soln) {
                    break;
                }
                solns.push_back(b);
            }
        }
    } while (box_stack.size() > 0);
    ctc.set_used_constraints(used_constraints);
    if (config.nra_multiple_soln > 1 && solns.size() > 0) {
        return solns.back();
    } else {
        assert(!b.is_empty() || box_stack.size() == 0);
        return b;
    }
}
示例#7
0
文件: icp.cpp 项目: zenna/dreal3
box sample_icp::solve(box init_b, contractor const & ctc, SMTConfig & config ) {
    vector<box> solns;
    vector<box> box_stack;
    box b = init_b;
    box_stack.push_back(b);
    std::map<unsigned int, unsigned int> nempty; // Number of empty boxes at particular depth
    int nconflicts = 0;

    // Random Restarts
    // I need a container for my stack that will allow me to add elements to the end,
    // i.e lower depth means its at the end and pop from either end
    // std::set<box, BoxComparator> box_stack;
    do {
        DREAL_LOG_INFO << "icp_loop()"
                       << "\t" << "box stack Size = " << box_stack.size();
        b = box_stack.back();
        box_stack.pop_back();
        // std::cout << "Depth: " << b.depth << std::endl;
        try {
            b = ctc.prune(b, config);
        } catch (contractor_exception & e) {
            // Do nothing
        }
        if (!b.is_empty()) {
            tuple<int, box, box> splits = b.bisect(config.nra_precision);
            int const i = get<0>(splits);
            // std::cout << "i is" << i << std::endl;
            if (i >= 0) {
                box & first  = get<1>(splits);
                box & second = get<2>(splits);
                first.depth = b.depth + 1;
                second.depth = b.depth + 1;
                bool leftright = random_icp::random_bool();
                // std::cout << "left or right? " << leftright << std::endl;
                if (leftright) {
                    box_stack.push_back(second);
                    box_stack.push_back(first);
                } else {
                    box_stack.push_back(first);
                    box_stack.push_back(second);
                }
                if (config.nra_proof) {
                    config.nra_proof_out << "[branched on "
                                         << b.get_name(i)
                                         << "]" << endl;
                }
            } else {
                config.nra_found_soln++;
                if (config.nra_found_soln >= config.nra_multiple_soln) {
                    break;
                }
                if (config.nra_multiple_soln > 1) {
                    // If --multiple_soln is used
                    output_solution(b, config, config.nra_found_soln);
                }
                solns.push_back(b);
            }
        }
        else {
          // std::cout << "Backtracking at Depth: " << b.depth << std::endl;
          nempty[b.depth] += 1;
          nconflicts += 1;
          int nconflicts_before_restart = 200;
          if (nconflicts > nconflicts_before_restart) {
            std::cout << "Restarting" << std::endl;
            box_stack.empty();
            box_stack.push_back(init_b);
            nempty.empty();
            nconflicts = 0;
            continue;
          }
        }
    } while (box_stack.size() > 0);
    if (config.nra_multiple_soln > 1 && solns.size() > 0) {
        return solns.back();
    } else {
        assert(!b.is_empty() || box_stack.size() == 0);
        // cerr << "BEFORE ADJUST_BOUND\n==================\n" << b << "=========================\n\n\n";
        b.adjust_bound(box_stack);
        // cerr << "AFTER  ADJUST_BOUND\n==================\n" << b << "=========================\n\n\n";

        double q = proposal_prob(b.depth, nempty);
        b.logprob = q;
        return b;
    }
}