int write_minc(char *filename, float *image, image_metadata *meta,VIO_BOOL binary_mask){ VIO_Volume volume; int i,j,k,index; float min=FLT_MAX,max=FLT_MIN; VIO_Real dummy[3]; if(binary_mask) { volume = create_volume(3,NULL,NC_BYTE,FALSE,0.0,1.0); printf("Writing a binary volume...\n"); } else volume = create_volume(3,NULL,NC_FLOAT,FALSE,FLT_MIN,FLT_MAX); if(!volume) return STATUS_ERR; if(!binary_mask) { for (i=0;i<meta->length[0];i++){ for (j=0;j<meta->length[1];j++){ for (k=0;k<meta->length[2];k++){ index=i*meta->length[2]*meta->length[1] + j*meta->length[2] + k; min=MIN(min,image[index]); max=MAX(max,image[index]); } } } set_volume_real_range(volume,min,max); } else { set_volume_real_range(volume,0.0,1.0); } set_volume_sizes(volume,meta->length); dummy[0]=meta->start[0]; dummy[1]=meta->start[1]; dummy[2]=meta->start[2]; set_volume_starts(volume,dummy); dummy[0]=meta->step[0]; dummy[1]=meta->step[1]; dummy[2]=meta->step[2]; set_volume_separations(volume,dummy); alloc_volume_data(volume); get_volume(image, volume, meta->length); if(!binary_mask) output_volume( filename, NC_FLOAT,FALSE,min, max,volume,meta->history,(minc_output_options *)NULL); else output_volume( filename, NC_BYTE,FALSE,0, 1.0,volume,meta->history,(minc_output_options *)NULL); delete_volume(volume); return STATUS_OK; }
int write_volume(char *name, VIO_Volume vol, float *data){ int i,j,k,index,sizes[5]; float min=FLT_MAX,max=FLT_MIN; fprintf(stderr,"Writing %s\n",name); get_volume_sizes(vol,sizes); for (i=0;i<sizes[0];i++){ for (j=0;j<sizes[1];j++){ for (k=0;k<sizes[2];k++){ index=i*sizes[2]*sizes[1] + j*sizes[2] + k; min=MIN(min,data[index]); max=MAX(max,data[index]); } } } set_volume_real_range(vol,min,max); get_volume(data, vol, sizes); output_volume( name, NC_FLOAT,FALSE,min,max,vol,NULL, (minc_output_options *)NULL); return STATUS_OK; }
void save_volume(VIO_Volume d, char *filename) { VIO_Status status; status = output_volume(filename,NC_UNSPECIFIED, FALSE, 0.0, 0.0, d, (char *)NULL, (minc_output_options *)NULL); if (status != OK) print_error_and_line_num("problems writing volume `%s'.",__FILE__, __LINE__, filename); }
int main(int argc, char *argv[]) { int v1, v2, v3, v4; int sizes[VIO_MAX_DIMENSIONS], grid_sizes[4]; int n_concat_transforms, i; VIO_STR arg_string; char *input_volume_name; char *input_xfm; VIO_STR outfile; VIO_Real w1, w2, w3; VIO_Real nw1, nw2, nw3; VIO_Real original[3], transformed[3]; VIO_Real value; VIO_Real cosine[3]; VIO_Real original_separation[3], grid_separation[4]; VIO_Real original_starts[3], grid_starts[4]; VIO_Volume eval_volume, new_grid; VIO_General_transform xfm, *voxel_to_world; VIO_STR *dimnames, dimnames_grid[4]; VIO_progress_struct progress; arg_string = time_stamp(argc, argv); /* Check arguments */ if(ParseArgv(&argc, argv, argTable, 0) || (argc != 4)){ fprintf(stderr, "\nUsage: %s [options] input.mnc input.xfm output_grid.mnc\n", argv[0]); fprintf(stderr, " %s -help\n\n", argv[0]); exit(EXIT_FAILURE); } input_volume_name = argv[1]; input_xfm = argv[2]; outfile = argv[3]; /* check for the infile and outfile */ if(access(input_volume_name, F_OK) != 0){ fprintf(stderr, "%s: Couldn't find %s\n\n", argv[0], input_volume_name); exit(EXIT_FAILURE); } if(access(input_xfm, F_OK) != 0) { fprintf(stderr, "%s: Couldn't find %s\n\n", argv[0], input_xfm); exit(EXIT_FAILURE); } if(access(outfile, F_OK) == 0 && !clobber){ fprintf(stderr, "%s: %s exists! (use -clobber to overwrite)\n\n", argv[0], outfile); exit(EXIT_FAILURE); } /*--- input the volume */ /* if( input_volume( input_volume_name, 3, NULL, MI_ORIGINAL_TYPE, FALSE, 0.0, 0.0, TRUE, &eval_volume,(minc_input_options *) NULL ) != OK ) return( 1 ); */ if (input_volume_header_only( input_volume_name, 3, NULL, &eval_volume,(minc_input_options *) NULL ) != VIO_OK ) { return( 1 ); } /* get information about the volume */ get_volume_sizes( eval_volume, sizes ); voxel_to_world = get_voxel_to_world_transform(eval_volume); dimnames = get_volume_dimension_names(eval_volume); get_volume_separations(eval_volume, original_separation); get_volume_starts(eval_volume, original_starts); /* create new 4D volume, last three dims same as other volume, first dimension being the vector dimension. */ for(i=1; i < 4; i++) { dimnames_grid[i] = dimnames[i-1]; grid_separation[i] = original_separation[i-1]; grid_sizes[i] = sizes[i-1]; grid_starts[i] = original_starts[i-1]; } dimnames_grid[0] = "vector_dimension"; grid_sizes[0] = 3; grid_separation[0] = 1; grid_starts[0] = 0; new_grid = create_volume(4, dimnames_grid, NC_SHORT, FALSE, 0.0, 0.0); //set_voxel_to_world_transform(new_grid, voxel_to_world); // initialize the new grid volume, otherwise the output will be // garbage... set_volume_real_range(new_grid, -100, 100); set_volume_sizes(new_grid, grid_sizes); set_volume_separations(new_grid, grid_separation); set_volume_starts(new_grid, grid_starts); /* for (i=0; i < 3; i++) { get_volume_direction_cosine(eval_volume, i, cosine); set_volume_direction_cosine(new_grid, i+1, cosine); } */ alloc_volume_data(new_grid); /* get the transforms */ if( input_transform_file( input_xfm, &xfm ) != VIO_OK ) return( 1 ); /* see how many transforms will be applied */ n_concat_transforms = get_n_concated_transforms( &xfm ); printf("Number of transforms to be applied: %d\n", n_concat_transforms); initialize_progress_report(&progress, FALSE, sizes[0], "Processing"); /* evaluate the transform at every voxel, keep the displacement in the three cardinal directions */ for( v1 = 0; v1 < sizes[0]; ++v1 ) { update_progress_report(&progress, v1 + 1); for( v2 = 0; v2 < sizes[1]; ++v2 ) { for( v3 = 0; v3 < sizes[2]; ++v3 ) { convert_3D_voxel_to_world(eval_volume, v1, v2, v3, &original[0], &original[1], &original[2]); general_transform_point(&xfm, original[0], original[1], original[2], &transformed[0], &transformed[1], &transformed[2]); for(i=0; i < 3; i++) { value = transformed[i] - original[i]; set_volume_real_value(new_grid, i, v1, v2, v3, 0, value); } } } } terminate_progress_report(&progress); printf("Outputting volume.\n"); output_volume(outfile, MI_ORIGINAL_TYPE, TRUE, 0.0, 0.0, new_grid, arg_string, NULL); return(0); }
int main(int argc, char *argv[]) { char **infiles; int n_infiles; char *out_fn; char *history; VIO_progress_struct progress; VIO_Volume totals, weights; int i, j, k, v; double min, max; double w_min, w_max; long num_missed; double weight, value; double initial_weight; VIO_Real dummy[3]; int sizes[MAX_VAR_DIMS]; double starts[MAX_VAR_DIMS]; double steps[MAX_VAR_DIMS]; long t = 0; /* start the time counter */ current_realtime_seconds(); /* get the history string */ history = time_stamp(argc, argv); /* get args */ if(ParseArgv(&argc, argv, argTable, 0) || (argc < 3)){ fprintf(stderr, "\nUsage: %s [options] <in1.mnc> [<in2.mnc> [...]] <out.mnc>\n", argv[0]); fprintf(stderr, " %s [options] -arb_path pth.conf <infile.raw> <out.mnc>\n", argv[0]); fprintf(stderr, " %s -help\n\n", argv[0]); exit(EXIT_FAILURE); } /* get file names */ n_infiles = argc - 2; infiles = (char **)malloc(sizeof(char *) * n_infiles); for(i = 0; i < n_infiles; i++){ infiles[i] = argv[i + 1]; } out_fn = argv[argc - 1]; /* check for infiles and outfile */ for(i = 0; i < n_infiles; i++){ if(!file_exists(infiles[i])){ fprintf(stderr, "%s: Couldn't find input file %s.\n\n", argv[0], infiles[i]); exit(EXIT_FAILURE); } } if(!clobber && file_exists(out_fn)){ fprintf(stderr, "%s: %s exists, -clobber to overwrite.\n\n", argv[0], out_fn); exit(EXIT_FAILURE); } /* check for weights_fn if required */ if(weights_fn != NULL){ if(!clobber && file_exists(weights_fn)){ fprintf(stderr, "%s: %s exists, -clobber to overwrite.\n\n", argv[0], weights_fn); exit(EXIT_FAILURE); } } /* set up parameters for reconstruction */ if(out_dtype == NC_UNSPECIFIED){ out_dtype = in_dtype; } if(out_is_signed == DEF_BOOL){ out_is_signed = in_is_signed; } /* check vector dimension size */ if(vect_size < 1){ fprintf(stderr, "%s: -vector (%d) must be 1 or greater.\n\n", argv[0], vect_size); exit(EXIT_FAILURE); } /* check sigma */ if(regrid_sigma[0] <= 0 || regrid_sigma[1] <= 0 || regrid_sigma[2] <= 0 ){ fprintf(stderr, "%s: -sigma must be greater than 0\n\n", argv[0]); exit(EXIT_FAILURE); } /* read in the output file config from a file is specified */ if(out_config_fn != NULL){ int ext_args_c; char *ext_args[32]; /* max possible is 32 arguments */ ext_args_c = read_config_file(out_config_fn, ext_args); if(ParseArgv(&ext_args_c, ext_args, argTable, ARGV_DONT_SKIP_FIRST_ARG | ARGV_NO_LEFTOVERS | ARGV_NO_DEFAULTS)){ fprintf(stderr, "\nError in parameters in %s\n", out_config_fn); exit(EXIT_FAILURE); } } if(verbose){ fprintf_vol_def(stdout, &out_inf); } /* transpose the geometry arrays */ /* out_inf.*[] are in world xyz order, perm[] is the permutation array to map world xyz to the right voxel order in the volume */ for(i = 0; i < WORLD_NDIMS; i++){ sizes[i] = out_inf.nelem[perm[i]]; /* sizes, starts, steps are in voxel volume order. */ starts[i] = out_inf.start[perm[i]]; steps[i] = out_inf.step[perm[i]]; } sizes[WORLD_NDIMS] = vect_size; /* create the totals volume */ totals = create_volume((vect_size > 1) ? 4 : 3, (vect_size > 1) ? std_dimorder_v : std_dimorder, out_dtype, out_is_signed, 0.0, 0.0); set_volume_sizes(totals, sizes); set_volume_starts(totals, starts); set_volume_separations(totals, steps); for(i = 0; i < WORLD_NDIMS; i++){ /* out_inf.dircos is in world x,y,z order, we have to use the perm array to map each direction to the right voxel axis. */ set_volume_direction_cosine(totals, i, out_inf.dircos[perm[i]]); } alloc_volume_data(totals); /* create the "weights" volume */ weights = create_volume(3, std_dimorder, out_dtype, out_is_signed, 0.0, 0.0); set_volume_sizes(weights, sizes); set_volume_starts(weights, starts); set_volume_separations(weights, steps); for(i = 0; i < WORLD_NDIMS; i++){ set_volume_direction_cosine(weights, i, out_inf.dircos[perm[i]]); } alloc_volume_data(weights); /* down below in regrid_loop, Andrew makes a nasty direct reference to the voxel_to_world transformation in the volume. This transformation is not necessarily up to date, particularly when non-default direction cosines are used. In volume_io, the direction cosines are set and a FLAG is also set to indicate that the voxel-to-world xform is not up to date. If the stanrd volume_io general transform code is used, it checks internally to see if the matrix is up to date, and if not it is recomputed. So here, we'll (LC + MK) force an update by calling a general transform. */ // convert_world_to_voxel(weights, (Real) 0, (Real) 0, (Real) 0, dummy); // convert_world_to_voxel(totals, (Real) 0, (Real) 0, (Real) 0, dummy); fprintf(stderr, "2Sizes: [%d:%d:%d] \n", sizes[perm[0]], sizes[perm[1]], sizes[perm[2]]); /* initialize weights to be arbitray large value if using NEAREST */ /* volume interpolation else initialize all to zero */ if(regrid_type == NEAREST_FUNC && ap_coord_fn == NULL){ initial_weight = LARGE_INITIAL_WEIGHT; } else{ initial_weight = 0.0; } /* initialize weights and totals */ for(k = sizes[Z_IDX]; k--;){ for(j = sizes[Y_IDX]; j--;){ for(i = sizes[X_IDX]; i--;){ set_volume_real_value(weights, k, j, i, 0, 0, initial_weight); for(v = vect_size; v--;){ set_volume_real_value(totals, k, j, i, v, 0, 0.0); } } } } /* if regridding via an arbitrary path */ if(ap_coord_fn != NULL){ if(n_infiles > 1){ fprintf(stderr, "%s: arb_path only works for one input file (so far).\n\n", argv[0]); exit(EXIT_FAILURE); } /* print some pretty output */ if(verbose){ fprintf(stdout, " | Input data: %s\n", infiles[0]); fprintf(stdout, " | Arb path: %s\n", ap_coord_fn); fprintf(stdout, " | Output range: [%g:%g]\n", out_range[0], out_range[1]); fprintf(stdout, " | Output file: %s\n", out_fn); } regrid_arb_path(ap_coord_fn, infiles[0], max_buffer_size_in_kb, &totals, &weights, vect_size, regrid_range[0], regrid_range[1]); } /* else if regridding via a series of input minc file(s) */ else { for(i = 0; i < n_infiles; i++){ if(verbose){ fprintf(stdout, " | Input file: %s\n", infiles[i]); } regrid_minc(infiles[i], max_buffer_size_in_kb, &totals, &weights, vect_size, regrid_range[0], regrid_range[1]); } } /* initialise min and max counters and divide totals/weights */ num_missed = 0; min = get_volume_real_value(totals, 0, 0, 0, 0, 0); max = get_volume_real_value(totals, 0, 0, 0, 0, 0); w_min = get_volume_real_value(weights, 0, 0, 0, 0, 0); w_max = get_volume_real_value(weights, 0, 0, 0, 0, 0); initialize_progress_report(&progress, FALSE, out_inf.nelem[Z_IDX], "Dividing through"); for(i = sizes[perm[0]]; i--;){ for(j = sizes[perm[1]]; j--;){ for(k = sizes[perm[2]]; k--;){ weight = get_volume_real_value(weights, k, j, i, 0, 0); if(weight < w_min){ w_min = weight; } else if(weight > w_max){ w_max = weight; } if(weight != 0){ for(v = vect_size; v--;){ value = get_volume_real_value(totals, k, j, i, v, 0) / weight; if(value < min){ min = value; } else if(value > max){ max = value; } set_volume_real_value(totals, k, j, i, v, 0, value); } } else { num_missed++; } } } update_progress_report(&progress, k + 1); } terminate_progress_report(&progress); /* set the volumes range */ if(verbose){ fprintf(stdout, " + data range: [%g:%g]\n", min, max); fprintf(stdout, " + weight range: [%g:%g]\n", w_min, w_max); } set_volume_real_range(totals, min, max); set_volume_real_range(weights, w_min, w_max); if(num_missed > 0 && verbose){ int nvox; nvox = out_inf.nelem[X_IDX] * out_inf.nelem[Y_IDX] * out_inf.nelem[Z_IDX]; fprintf(stdout, "\n-regrid_radius possibly too small, no data in %ld/%d[%2.2f%%] voxels\n\n", num_missed, nvox, ((float)num_missed / nvox * 100)); } /* rescale data if required */ if(out_range[0] != -DBL_MAX && out_range[1] != DBL_MAX){ double o_min, o_max; /* get the existing range */ get_volume_real_range(totals, &o_min, &o_max); /* rescale it */ scale_volume(&totals, o_min, o_max, out_range[0], out_range[1]); } /* output the result */ if(verbose){ fprintf(stdout, " | Outputting %s...\n", out_fn); } if(output_volume(out_fn, out_dtype, out_is_signed, 0.0, 0.0, totals, history, NULL) != VIO_OK){ fprintf(stderr, "Problems outputing: %s\n\n", out_fn); } /* output weights volume if required */ if(weights_fn != NULL){ if(verbose){ fprintf(stdout, " | Outputting %s...\n", weights_fn); } if(output_volume(weights_fn, out_dtype, out_is_signed, 0.0, 0.0, weights, history, NULL) != VIO_OK){ fprintf(stderr, "Problems outputting: %s\n\n", weights_fn); } } delete_volume(totals); delete_volume(weights); t = current_realtime_seconds(); printf("Total reconstruction time: %ld hours %ld minutes %ld seconds\n", t/3600, (t/60)%60, t%60); return (EXIT_SUCCESS); }
int main(int argc, char *argv[]) { VIO_Volume volume; VIO_Real variability, rand_val, voxel[VIO_MAX_DIMENSIONS]; int progress_count, sizes[VIO_MAX_DIMENSIONS], index[VIO_MAX_DIMENSIONS], i,j,k; VIO_progress_struct progress; union { long l; char c[4]; } seedval; time_t t; char tmp; prog_name = argv[0]; /* Check arguments */ if (argc != 4) { (void) fprintf(stderr, "Usage: %s input.mnc output.mnc std_dev\n", argv[0]); exit(EXIT_FAILURE); } if( input_volume( argv[1], 3, NULL, NC_UNSPECIFIED, FALSE, 0.0, 0.0, TRUE, &volume, (minc_input_options *)NULL ) != OK ) { (void)fprintf(stderr, "Error opening input volume file %s.\n", argv[1]); exit(EXIT_FAILURE); } variability = atof( argv[3] ); /* initialize drand function */ t = 2*time(NULL); seedval.l = t; tmp = seedval.c[0]; seedval.c[0] = seedval.c[3]; seedval.c[3] = tmp; tmp = seedval.c[1]; seedval.c[1] = seedval.c[2]; seedval.c[2] = tmp; srand48(seedval.l); set_volume_real_range(volume, -5.0*variability, 5.0*variability); get_volume_sizes(volume,sizes); initialize_progress_report(&progress, FALSE, sizes[VIO_X]*sizes[VIO_Y]*sizes[VIO_Z]+1, "Randomizing volume"); progress_count = 0; for(i=0; i<MAX_DIMENSIONS; i++) index[i] = 0; /* loop over all voxels */ for(index[X]=0; index[X]<sizes[X]; index[X]++) for(index[Y]=0; index[Y]<sizes[Y]; index[Y]++) for(index[Z]=0; index[Z]<sizes[Z]; index[Z]++) { /* get a random value from a gaussian distribution */ rand_val = variability * gaussian_random_0_1(); if (rand_val > 5.0*variability) rand_val = 5.0*variability; if (rand_val < -5.0*variability) rand_val = -5.0*variability; set_volume_real_value(volume, index[0],index[1],index[2],index[3],index[4], rand_val); progress_count++; update_progress_report(&progress, progress_count); } terminate_progress_report(&progress); /* Write out the random volume */ if (output_volume(argv[2], NC_UNSPECIFIED, FALSE, 0.0, 0.0, volume, (char *)NULL, (minc_output_options *)NULL) != OK) { (void) fprintf(stderr, "%s: Error writing volume file %s\n", argv[0], argv[2]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); }
int main( int argc, char *argv[] ) { Volume volume; STRING input_filename, output_filename; int n_slices, n_components; pixels_struct *pixels; nc_type vol_type; BOOLEAN two_d_allowed; initialize_argument_processing( argc, argv ); if( !get_string_argument( NULL, &output_filename ) || !get_int_argument( 0, &n_components ) ) { print( "Usage: %s output.mnc 3|4|23|24 input1.rgb input2.rgb ...\n", argv[0] ); return( 1 ); } if( n_components > 100 ) { vol_type = NC_FLOAT; n_components -= 100; } else vol_type = NC_BYTE; if( n_components > 20 ) { two_d_allowed = TRUE; n_components -= 20; } else { two_d_allowed = FALSE; } n_slices = 0; pixels = NULL; while( get_string_argument( "", &input_filename ) ) { SET_ARRAY_SIZE( pixels, n_slices, n_slices+1, DEFAULT_CHUNK_SIZE ); if( input_rgb_file( input_filename, &pixels[n_slices] ) != OK ) return( 1 ); ++n_slices; } volume = convert_pixels_to_volume( n_components, n_slices, (two_d_allowed && n_slices == 1) ? 2 : 3, vol_type, pixels ); if( volume != NULL ) { (void) output_volume( output_filename, NC_UNSPECIFIED, FALSE, 0.0, 0.0, volume, "Converted from pixels", (minc_output_options *) NULL ); delete_volume( volume ); } return( 0 ); }