示例#1
0
    void MainLoop()
    {
	    Layer[0] = new VRLayer(Session);

	    while (HandleMessages())
	    {
		    ActionFromInput();
		    Layer[0]->GetEyePoses();


			// Read the remote state 
			ovrInputState inputState;
			ovr_GetInputState(Session, ovrControllerType_Remote, &inputState);
			unsigned int result = ovr_GetConnectedControllerTypes(Session);
			bool isRemoteConnected = (result & ovrControllerType_Remote) ? true : false;

			// Some auxiliary controls we're going to read from the remote. 
			XMVECTOR forward = XMVector3Rotate(XMVectorSet(0, 0, -0.05f, 0), MainCam->Rot);
			XMVECTOR right = XMVector3Rotate(XMVectorSet(0.05f, 0, 0, 0), MainCam->Rot);
			if (inputState.Buttons & ovrButton_Up)	  MainCam->Pos = XMVectorAdd(MainCam->Pos, forward);
			if (inputState.Buttons & ovrButton_Down)  MainCam->Pos = XMVectorSubtract(MainCam->Pos, forward);
			if (inputState.Buttons & ovrButton_Left)  MainCam->Pos = XMVectorSubtract(MainCam->Pos, right);
			if (inputState.Buttons & ovrButton_Right)  MainCam->Pos = XMVectorAdd(MainCam->Pos, right);


			for (int eye = 0; eye < 2; ++eye)
		    {
				//Tint the world, green for it the controller is attached, otherwise red
				if (isRemoteConnected)
					Layer[0]->RenderSceneToEyeBuffer(MainCam, RoomScene, eye, 0, 0, 1,/**/ 1, 0.5f, 1, 0.5f /*green*/);
				else 
					Layer[0]->RenderSceneToEyeBuffer(MainCam, RoomScene, eye, 0, 0, 1,/**/ 1, 1, 0, 0 /*red*/);
			}

		    Layer[0]->PrepareLayerHeader();
		    DistortAndPresent(1);
	    }
    }
示例#2
0
/**
* Render the Virtual Cinema Theatre.
***/
void* OculusTracker::Provoke(void* pThis, int eD3D, int eD3DInterface, int eD3DMethod, DWORD dwNumberConnected, int& nProvokerIndex)
{
	// update game timer
	m_cGameTimer.Tick();

	static UINT unFrameSkip = 200;
	if (unFrameSkip > 0)
	{
		unFrameSkip--;
		return nullptr;
	}

	// #define _DEBUG_OTR
#ifdef _DEBUG_OTR
	{ wchar_t buf[128]; wsprintf(buf, L"[OTR] ifc %u mtd %u", eD3DInterface, eD3DMethod); OutputDebugString(buf); }
#endif

	// save ini file ?
	if (m_nIniFrameCount)
	{
		if (m_nIniFrameCount == 1)
			SaveIniSettings();
		m_nIniFrameCount--;
	}

	// main menu update ?
	if (m_sMenu.bOnChanged)
	{
		// set back event bool, set ini file frame count
		m_sMenu.bOnChanged = false;
		m_nIniFrameCount = 300;

		// loop through entries
		for (size_t nIx = 0; nIx < m_sMenu.asEntries.size(); nIx++)
		{
			// entry index changed ?
			if (m_sMenu.asEntries[nIx].bOnChanged)
			{
				m_sMenu.asEntries[nIx].bOnChanged = false;

				// touch entries ?
				if (nIx < 25)
				{
					// set new vk code by string
					m_aaunKeys[1][nIx] = GetVkCodeByString(m_sMenu.asEntries[nIx].astrValueEnumeration[m_sMenu.asEntries[nIx].unValue]);
				}
			}
		}
	}

	if (m_hSession)
	{
#pragma region controller
		// controller indices
		static const uint32_t s_unIndexRemote = 0;
		static const uint32_t s_unIndexTouch = 1;
		static const uint32_t s_unIndexXBox = 2;

		// get all connected input states
		ovrInputState sInputState[3] = {};
		unsigned int unControllersConnected = ovr_GetConnectedControllerTypes(m_hSession);
#pragma region Remote
		if (unControllersConnected & ovrControllerType_Remote)
		{
			ovr_GetInputState(m_hSession, ovrControllerType_Remote, &sInputState[s_unIndexRemote]);

			// handle all remote buttons except Oculus private ones
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Up)
				m_sMenu.bOnUp = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Down)
				m_sMenu.bOnDown = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Left)
				m_sMenu.bOnLeft = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Right)
				m_sMenu.bOnRight = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Enter)
				m_sMenu.bOnAccept = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Back)
				m_sMenu.bOnBack = true;
		}
#pragma endregion
#pragma region touch
		if (unControllersConnected & ovrControllerType_Touch)
		{
			// get input state
			ovr_GetInputState(m_hSession, ovrControllerType_Touch, &sInputState[s_unIndexTouch]);

			// loop through controller buttons
			for (UINT unButtonIx = 0; unButtonIx < unButtonNo; unButtonIx++)
			{
				// cast keyboard event
				if (sInputState[s_unIndexTouch].Buttons & aunButtonIds[unButtonIx])
				{
					if (!m_aabKeys[s_unIndexTouch][unButtonIx])
						MapButtonDown(s_unIndexTouch, unButtonIx);
				}
				else
				if (m_aabKeys[s_unIndexTouch][unButtonIx])
					MapButtonUp(s_unIndexTouch, unButtonIx);
			}
		}
#pragma endregion
		if (unControllersConnected & ovrControllerType_XBox)
			ovr_GetInputState(m_hSession, ovrControllerType_XBox, &sInputState[s_unIndexXBox]);



#pragma endregion
#pragma region hmd
		/*// Start the sensor which informs of the Rift's pose and motion   .... obsolete for SDK 1.3.x ??
		ovr_ConfigureTracking(m_hSession, ovrTrackingCap_Orientation | ovrTrackingCap_MagYawCorrection |
		ovrTrackingCap_Position, 0);*/

		// get the current tracking state
		ovrTrackingState sTrackingState = ovr_GetTrackingState(m_hSession, ovr_GetTimeInSeconds(), false);

		if (TRUE)//(sTrackingState.StatusFlags & (ovrStatus_OrientationTracked | ovrStatus_PositionTracked))
		{
			// get pose
			ovrPoseStatef sPoseState = sTrackingState.HeadPose;
			m_sPose = sPoseState.ThePose;
			m_sOrientation.x = m_sPose.Orientation.x;
			m_sOrientation.y = m_sPose.Orientation.y;
			m_sOrientation.z = m_sPose.Orientation.z;
			m_sOrientation.w = m_sPose.Orientation.w;

			// backup old euler angles and velocity
			float fEulerOld[3];
			float fEulerVelocityOld[3];
			memcpy(&fEulerOld[0], &m_fEuler[0], sizeof(float)* 3);
			memcpy(&fEulerVelocityOld[0], &m_fEulerVelocity[0], sizeof(float)* 3);

			// predicted euler angles ? for Oculus, due to ATW, we do not predict the euler angles
			if (FALSE)
			{
				// get angles
				m_sOrientation.GetEulerAngles<Axis::Axis_Y, Axis::Axis_X, Axis::Axis_Z, RotateDirection::Rotate_CW, HandedSystem::Handed_R >(&m_fEuler[1], &m_fEuler[0], &m_fEuler[2]);

				// quick fix here...
				m_fEuler[1] *= -1.0f;
				m_fEuler[0] *= -1.0f;
				m_fEuler[2] *= -1.0f;

				// get euler velocity + acceleration
				float fEulerAcceleration[3];
				for (UINT unI = 0; unI < 3; unI++)
				{
					// get the velocity
					m_fEulerVelocity[unI] = (m_fEuler[unI] - fEulerOld[unI]) / (float)m_cGameTimer.DeltaTime();

					// get the acceleration
					fEulerAcceleration[unI] = (m_fEulerVelocity[unI] - fEulerVelocityOld[unI]) / (float)m_cGameTimer.DeltaTime();
				}

				// get predicted euler
				for (UINT unI = 0; unI < 3; unI++)
				{
					// compute predicted euler
					m_fEulerPredicted[unI] = (0.5f * fEulerAcceleration[unI] * ((float)m_cGameTimer.DeltaTime() * (float)m_cGameTimer.DeltaTime())) + (m_fEulerVelocity[unI] * (float)m_cGameTimer.DeltaTime()) + m_fEuler[unI];
				}
			}
			else
			{
				// get angles
				m_sOrientation.GetEulerAngles<Axis::Axis_Y, Axis::Axis_X, Axis::Axis_Z, RotateDirection::Rotate_CW, HandedSystem::Handed_R >(&m_fEulerPredicted[1], &m_fEulerPredicted[0], &m_fEulerPredicted[2]);

				// quick fix here...
				m_fEulerPredicted[1] *= -1.0f;
				m_fEulerPredicted[0] *= -1.0f;
				m_fEulerPredicted[2] *= -1.0f;
			}

			// set the drawing update to true
			m_bControlUpdate = true;

			// set position
			m_afPosition[0] = (float)-m_sPose.Position.x - m_afPositionOrigin[0];
			m_afPosition[1] = (float)-m_sPose.Position.y - m_afPositionOrigin[1];
			m_afPosition[2] = (float)m_sPose.Position.z + m_afPositionOrigin[2];

			// get eye render pose and other fields
			ovrEyeRenderDesc asEyeRenderDesc[2];
			asEyeRenderDesc[0] = ovr_GetRenderDesc(m_hSession, ovrEye_Left, m_sHMDDesc.DefaultEyeFov[0]);
			asEyeRenderDesc[1] = ovr_GetRenderDesc(m_hSession, ovrEye_Right, m_sHMDDesc.DefaultEyeFov[1]);
			ovrPosef asHmdToEyePose[2] = { asEyeRenderDesc[0].HmdToEyePose,asEyeRenderDesc[1].HmdToEyePose };
			//ovrVector3f      asHmdToEyeViewOffset[2] = { asEyeRenderDesc[0].HmdToEyePose, asEyeRenderDesc[1].HmdToEyePose };
			ovrPosef         asEyeRenderPose[2];
			static long long s_frameIndex = 0;
			static double s_sensorSampleTime = 0.0;    // sensorSampleTime is fed into the layer later
			ovr_GetEyePoses(m_hSession, s_frameIndex, ovrTrue, asHmdToEyePose, asEyeRenderPose, &s_sensorSampleTime);
			// ovr_CalcEyePoses(sTrackingState.HeadPose.ThePose, asHmdToEyePose, asEyeRenderPose);

			// create rotation matrix from euler angles
			D3DXMATRIX sRotation;
			D3DXMATRIX sPitch, sYaw, sRoll;
			D3DXMatrixRotationX(&sPitch, m_fEulerPredicted[0]);
			D3DXMatrixRotationY(&sYaw, m_fEulerPredicted[1]);
			D3DXMatrixRotationZ(&sRoll, -m_fEulerPredicted[2]);
			sRotation = sYaw * sPitch * sRoll;

			// create per eye view matrix from rotation and position
			D3DXMATRIX sView[2];
			for (UINT unEye = 0; unEye < 2; unEye++)
			{
				D3DXMATRIX sTranslation;
				D3DXMatrixTranslation(&sTranslation, (float)-asEyeRenderPose[unEye].Position.x - m_afPositionOrigin[0], (float)-asEyeRenderPose[unEye].Position.y - m_afPositionOrigin[1], (float)asEyeRenderPose[unEye].Position.z + m_afPositionOrigin[2]);
				sView[unEye] = sTranslation * sRotation;
			}

			// create head pose view matrix
			D3DXMATRIX sTranslation;
			D3DXMatrixTranslation(&sTranslation, (float)-sTrackingState.HeadPose.ThePose.Position.x - m_afPositionOrigin[0], (float)-sTrackingState.HeadPose.ThePose.Position.y - m_afPositionOrigin[1], (float)sTrackingState.HeadPose.ThePose.Position.z + m_afPositionOrigin[2]);
			m_sView = sTranslation * sRotation;

			// create inverse view matrix
			D3DXMATRIX sVInv = {};
			D3DXMatrixInverse(&sVInv, nullptr, &m_sView);

			// get projection matrices left/right
			D3DXMATRIX asToEye[2];
			D3DXMATRIX asProjection[2];
			for (UINT unEye = 0; unEye < 2; unEye++)
			{
				// get ovr projection
				ovrMatrix4f sProj = ovrMatrix4f_Projection(m_sHMDDesc.DefaultEyeFov[unEye], 0.01f, 30.0f, ovrProjection_LeftHanded);

				// create dx projection
				asProjection[unEye] = D3DXMATRIX(&sProj.M[0][0]);
				D3DXMatrixTranspose(&asProjection[unEye], &asProjection[unEye]);

				// create eventual projection using inverse matrix of the head pose view matrix
				m_asProjection[unEye] = sVInv * sView[unEye] * asProjection[unEye];
			}
		}
#pragma endregion
	}
	else
	{
		// Initialize LibOVR, and the Rift... then create hmd handle
		ovrResult result = ovr_Initialize(nullptr);
		if (!OVR_SUCCESS(result))
		{
			OutputDebugString(L"[OVR] Failed to initialize libOVR.");
			return nullptr;
		}

		result = ovr_Create(&m_hSession, &m_sLuid);
		if (!OVR_SUCCESS(result))
		{
			OutputDebugString(L"[OVR] Failed to retreive HMD handle.");
			return nullptr;
		}
		else
			OutputDebugString(L"[OVR] HMD handle initialized !");

		if (m_hSession)
		{
			// get the description and set pointers
			m_sHMDDesc = ovr_GetHmdDesc(m_hSession);

			// Configure Stereo settings.
			ovrSizei sRecommenedTex0Size = ovr_GetFovTextureSize(m_hSession, ovrEye_Left,
				m_sHMDDesc.DefaultEyeFov[0], 1.0f);
			ovrSizei sRecommenedTex1Size = ovr_GetFovTextureSize(m_hSession, ovrEye_Right,
				m_sHMDDesc.DefaultEyeFov[1], 1.0f);

			ovrSizei sTextureSize;
			sTextureSize.w = max(sRecommenedTex0Size.w, sRecommenedTex1Size.w);
			sTextureSize.h = max(sRecommenedTex0Size.h, sRecommenedTex1Size.h);
			m_unRenderTextureWidth = (UINT)sTextureSize.w;
			m_unRenderTextureHeight = (UINT)sTextureSize.h;

			// get view offset
			ovrEyeRenderDesc asEyeRenderDesc[2];
			asEyeRenderDesc[0] = ovr_GetRenderDesc(m_hSession, ovrEye_Left, m_sHMDDesc.DefaultEyeFov[0]);
			asEyeRenderDesc[1] = ovr_GetRenderDesc(m_hSession, ovrEye_Right, m_sHMDDesc.DefaultEyeFov[1]);
			ovrVector3f asViewOffset[2] = { asEyeRenderDesc[0].HmdToEyePose.Position, asEyeRenderDesc[1].HmdToEyePose.Position };

			// get projection matrices left/right
			D3DXMATRIX asToEye[2];
			D3DXMATRIX asProjection[2];
			for (UINT unEye = 0; unEye < 2; unEye++)
			{
				// get ovr projection
				ovrMatrix4f sProj = ovrMatrix4f_Projection(m_sHMDDesc.DefaultEyeFov[unEye], 0.01f, 30.0f, ovrProjection_LeftHanded);

				// create dx projection
				asProjection[unEye] = D3DXMATRIX(&sProj.M[0][0]);
				D3DXMatrixTranspose(&asProjection[unEye], &asProjection[unEye]);

				// create view offset translation matrix
				D3DXMatrixTranslation(&asToEye[unEye], -asViewOffset[unEye].x, -asViewOffset[unEye].y, -asViewOffset[unEye].z);

				// create eventual projection
				m_asProjection[unEye] = asToEye[unEye] * asProjection[unEye];
			}
		}
	}

	return nullptr;
}