示例#1
0
void Clouds::render()
{
	video::IVideoDriver* driver = SceneManager->getVideoDriver();

	if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_TRANSPARENT)
	//if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SOLID)
		return;

	ScopeProfiler sp(g_profiler, "Rendering of clouds, avg", SPT_AVG);
	
	bool enable_3d = g_settings->getBool("enable_3d_clouds");
	int num_faces_to_draw = enable_3d ? 6 : 1;
	
	m_material.setFlag(video::EMF_BACK_FACE_CULLING, enable_3d);

	driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
	driver->setMaterial(m_material);
	
	/*
		Clouds move from X+ towards X-
	*/

	const s16 cloud_radius_i = 12;
	const float cloud_size = BS*64;
	const v2f cloud_speed(0, -BS*2);
	
	const float cloud_full_radius = cloud_size * cloud_radius_i;
	
	// Position of cloud noise origin in world coordinates
	v2f world_cloud_origin_pos_f = m_time*cloud_speed;
	// Position of cloud noise origin from the camera
	v2f cloud_origin_from_camera_f = world_cloud_origin_pos_f - m_camera_pos;
	// The center point of drawing in the noise
	v2f center_of_drawing_in_noise_f = -cloud_origin_from_camera_f;
	// The integer center point of drawing in the noise
	v2s16 center_of_drawing_in_noise_i(
		MYROUND(center_of_drawing_in_noise_f.X / cloud_size),
		MYROUND(center_of_drawing_in_noise_f.Y / cloud_size)
	);
	// The world position of the integer center point of drawing in the noise
	v2f world_center_of_drawing_in_noise_f = v2f(
		center_of_drawing_in_noise_i.X * cloud_size,
		center_of_drawing_in_noise_i.Y * cloud_size
	) + world_cloud_origin_pos_f;

	/*video::SColor c_top(128,b*240,b*240,b*255);
	video::SColor c_side_1(128,b*230,b*230,b*255);
	video::SColor c_side_2(128,b*220,b*220,b*245);
	video::SColor c_bottom(128,b*205,b*205,b*230);*/
	video::SColorf c_top_f(m_color);
	video::SColorf c_side_1_f(m_color);
	video::SColorf c_side_2_f(m_color);
	video::SColorf c_bottom_f(m_color);
	c_side_1_f.r *= 0.95;
	c_side_1_f.g *= 0.95;
	c_side_1_f.b *= 0.95;
	c_side_2_f.r *= 0.90;
	c_side_2_f.g *= 0.90;
	c_side_2_f.b *= 0.90;
	c_bottom_f.r *= 0.80;
	c_bottom_f.g *= 0.80;
	c_bottom_f.b *= 0.80;
	c_top_f.a = 0.9;
	c_side_1_f.a = 0.9;
	c_side_2_f.a = 0.9;
	c_bottom_f.a = 0.9;
	video::SColor c_top = c_top_f.toSColor();
	video::SColor c_side_1 = c_side_1_f.toSColor();
	video::SColor c_side_2 = c_side_2_f.toSColor();
	video::SColor c_bottom = c_bottom_f.toSColor();

	// Get fog parameters for setting them back later
	video::SColor fog_color(0,0,0,0);
	video::E_FOG_TYPE fog_type = video::EFT_FOG_LINEAR;
	f32 fog_start = 0;
	f32 fog_end = 0;
	f32 fog_density = 0;
	bool fog_pixelfog = false;
	bool fog_rangefog = false;
	driver->getFog(fog_color, fog_type, fog_start, fog_end, fog_density,
			fog_pixelfog, fog_rangefog);
	
	// Set our own fog
	driver->setFog(fog_color, fog_type, cloud_full_radius * 0.5,
			cloud_full_radius*1.2, fog_density, fog_pixelfog, fog_rangefog);

	// Read noise

	bool *grid = new bool[cloud_radius_i*2*cloud_radius_i*2];

	for(s16 zi=-cloud_radius_i; zi<cloud_radius_i; zi++)
	for(s16 xi=-cloud_radius_i; xi<cloud_radius_i; xi++)
	{
		u32 i = (zi+cloud_radius_i)*cloud_radius_i*2 + xi+cloud_radius_i;

		v2s16 p_in_noise_i(
			xi+center_of_drawing_in_noise_i.X,
			zi+center_of_drawing_in_noise_i.Y
		);

#if 0
		double noise = noise2d_perlin_abs(
				(float)p_in_noise_i.X*cloud_size/BS/200,
				(float)p_in_noise_i.Y*cloud_size/BS/200,
				m_seed, 3, 0.4);
		grid[i] = (noise >= 0.80);
#endif
#if 1
		double noise = noise2d_perlin(
				(float)p_in_noise_i.X*cloud_size/BS/200,
				(float)p_in_noise_i.Y*cloud_size/BS/200,
				m_seed, 3, 0.5);
		grid[i] = (noise >= 0.4);
#endif
	}

#define GETINDEX(x, z, radius) (((z)+(radius))*(radius)*2 + (x)+(radius))
#define INAREA(x, z, radius) \
	((x) >= -(radius) && (x) < (radius) && (z) >= -(radius) && (z) < (radius))

	for(s16 zi0=-cloud_radius_i; zi0<cloud_radius_i; zi0++)
	for(s16 xi0=-cloud_radius_i; xi0<cloud_radius_i; xi0++)
	{
		s16 zi = zi0;
		s16 xi = xi0;
		// Draw from front to back (needed for transparency)
		/*if(zi <= 0)
			zi = -cloud_radius_i - zi;
		if(xi <= 0)
			xi = -cloud_radius_i - xi;*/
		// Draw from back to front
		if(zi >= 0)
			zi = cloud_radius_i - zi - 1;
		if(xi >= 0)
			xi = cloud_radius_i - xi - 1;

		u32 i = GETINDEX(xi, zi, cloud_radius_i);

		if(grid[i] == false)
			continue;

		v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f;

		video::S3DVertex v[4] = {
			video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 1),
			video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 1),
			video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 0),
			video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 0)
		};

		/*if(zi <= 0 && xi <= 0){
			v[0].Color.setBlue(255);
			v[1].Color.setBlue(255);
			v[2].Color.setBlue(255);
			v[3].Color.setBlue(255);
		}*/

		f32 rx = cloud_size/2;
		f32 ry = 8*BS;
		f32 rz = cloud_size/2;

		for(int i=0; i<num_faces_to_draw; i++)
		{
			switch(i)
			{
			case 0:	// top
				for(int j=0;j<4;j++){
					v[j].Normal.set(0,1,0);
				}
				v[0].Pos.set(-rx, ry,-rz);
				v[1].Pos.set(-rx, ry, rz);
				v[2].Pos.set( rx, ry, rz);
				v[3].Pos.set( rx, ry,-rz);
				break;
			case 1: // back
				if(INAREA(xi, zi-1, cloud_radius_i)){
					u32 j = GETINDEX(xi, zi-1, cloud_radius_i);
					if(grid[j])
						continue;
				}
				for(int j=0;j<4;j++){
					v[j].Color = c_side_1;
					v[j].Normal.set(0,0,-1);
				}
				v[0].Pos.set(-rx, ry,-rz);
				v[1].Pos.set( rx, ry,-rz);
				v[2].Pos.set( rx,-ry,-rz);
				v[3].Pos.set(-rx,-ry,-rz);
				break;
			case 2: //right
				if(INAREA(xi+1, zi, cloud_radius_i)){
					u32 j = GETINDEX(xi+1, zi, cloud_radius_i);
					if(grid[j])
						continue;
				}
				for(int j=0;j<4;j++){
					v[j].Color = c_side_2;
					v[j].Normal.set(1,0,0);
				}
				v[0].Pos.set( rx, ry,-rz);
				v[1].Pos.set( rx, ry, rz);
				v[2].Pos.set( rx,-ry, rz);
				v[3].Pos.set( rx,-ry,-rz);
				break;
			case 3: // front
				if(INAREA(xi, zi+1, cloud_radius_i)){
					u32 j = GETINDEX(xi, zi+1, cloud_radius_i);
					if(grid[j])
						continue;
				}
				for(int j=0;j<4;j++){
					v[j].Color = c_side_1;
					v[j].Normal.set(0,0,-1);
				}
				v[0].Pos.set( rx, ry, rz);
				v[1].Pos.set(-rx, ry, rz);
				v[2].Pos.set(-rx,-ry, rz);
				v[3].Pos.set( rx,-ry, rz);
				break;
			case 4: // left
				if(INAREA(xi-1, zi, cloud_radius_i)){
					u32 j = GETINDEX(xi-1, zi, cloud_radius_i);
					if(grid[j])
						continue;
				}
				for(int j=0;j<4;j++){
					v[j].Color = c_side_2;
					v[j].Normal.set(-1,0,0);
				}
				v[0].Pos.set(-rx, ry, rz);
				v[1].Pos.set(-rx, ry,-rz);
				v[2].Pos.set(-rx,-ry,-rz);
				v[3].Pos.set(-rx,-ry, rz);
				break;
			case 5: // bottom
				for(int j=0;j<4;j++){
					v[j].Color = c_bottom;
					v[j].Normal.set(0,-1,0);
				}
				v[0].Pos.set( rx,-ry, rz);
				v[1].Pos.set(-rx,-ry, rz);
				v[2].Pos.set(-rx,-ry,-rz);
				v[3].Pos.set( rx,-ry,-rz);
				break;
			}

			v3f pos(p0.X, m_cloud_y, p0.Y);
			pos -= intToFloat(m_camera_offset, BS);

			for(u16 i=0; i<4; i++)
				v[i].Pos += pos;
			u16 indices[] = {0,1,2,2,3,0};
			driver->drawVertexPrimitiveList(v, 4, indices, 2,
					video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT);
		}
	}

	delete[] grid;
	
	// Restore fog settings
	driver->setFog(fog_color, fog_type, fog_start, fog_end, fog_density,
			fog_pixelfog, fog_rangefog);
}
示例#2
0
void FarMesh::render()
{
	video::IVideoDriver* driver = SceneManager->getVideoDriver();

	/*if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_TRANSPARENT)
		return;*/
	if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SOLID)
		return;
	/*if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SKY_BOX)
		return;*/

	driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
	
	//const s16 grid_radius_i = 12;
	//const float grid_size = BS*50;
	const s16 grid_radius_i = m_render_range/MAP_BLOCKSIZE;
	const float grid_size = BS*MAP_BLOCKSIZE;
	const v2f grid_speed(-BS*0, 0);
	
	// Position of grid noise origin in world coordinates
	v2f world_grid_origin_pos_f(0,0);
	// Position of grid noise origin from the camera
	v2f grid_origin_from_camera_f = world_grid_origin_pos_f - m_camera_pos;
	// The center point of drawing in the noise
	v2f center_of_drawing_in_noise_f = -grid_origin_from_camera_f;
	// The integer center point of drawing in the noise
	v2s16 center_of_drawing_in_noise_i(
		MYROUND(center_of_drawing_in_noise_f.X / grid_size),
		MYROUND(center_of_drawing_in_noise_f.Y / grid_size)
	);
	// The world position of the integer center point of drawing in the noise
	v2f world_center_of_drawing_in_noise_f = v2f(
		center_of_drawing_in_noise_i.X * grid_size,
		center_of_drawing_in_noise_i.Y * grid_size
	) + world_grid_origin_pos_f;

	for(s16 zi=-grid_radius_i; zi<grid_radius_i; zi++)
	for(s16 xi=-grid_radius_i; xi<grid_radius_i; xi++)
	{
		/*// Don't draw very close to player
		s16 dd = 3;
		if(zi > -dd && zi < dd && xi > -dd && xi < dd)
			continue;*/

		v2s16 p_in_noise_i(
			xi+center_of_drawing_in_noise_i.X,
			zi+center_of_drawing_in_noise_i.Y
		);
		
		// If sector was drawn, don't draw it this way
		if(m_client->m_env.getClientMap().sectorWasDrawn(p_in_noise_i))
			continue;

		/*if((p_in_noise_i.X + p_in_noise_i.Y)%2==0)
			continue;*/
		/*if((p_in_noise_i.X/2 + p_in_noise_i.Y/2)%2==0)
			continue;*/

		v2f p0 = v2f(xi,zi)*grid_size + world_center_of_drawing_in_noise_f;
		
		/*double noise[4];
		double d = 100*BS;
		noise[0] = d*noise2d_perlin(
				(float)(p_in_noise_i.X+0)*grid_size/BS/100,
				(float)(p_in_noise_i.Y+0)*grid_size/BS/100,
				m_seed, 3, 0.5);
		
		noise[1] = d*noise2d_perlin(
				(float)(p_in_noise_i.X+0)*grid_size/BS/100,
				(float)(p_in_noise_i.Y+1)*grid_size/BS/100,
				m_seed, 3, 0.5);
		
		noise[2] = d*noise2d_perlin(
				(float)(p_in_noise_i.X+1)*grid_size/BS/100,
				(float)(p_in_noise_i.Y+1)*grid_size/BS/100,
				m_seed, 3, 0.5);
		
		noise[3] = d*noise2d_perlin(
				(float)(p_in_noise_i.X+1)*grid_size/BS/100,
				(float)(p_in_noise_i.Y+0)*grid_size/BS/100,
				m_seed, 3, 0.5);*/
		
		HeightPoint hps[5];
		hps[0] = ground_height(m_seed, v2s16(
				(p_in_noise_i.X+0)*grid_size/BS,
				(p_in_noise_i.Y+0)*grid_size/BS));
		hps[1] = ground_height(m_seed, v2s16(
				(p_in_noise_i.X+0)*grid_size/BS,
				(p_in_noise_i.Y+1)*grid_size/BS));
		hps[2] = ground_height(m_seed, v2s16(
				(p_in_noise_i.X+1)*grid_size/BS,
				(p_in_noise_i.Y+1)*grid_size/BS));
		hps[3] = ground_height(m_seed, v2s16(
				(p_in_noise_i.X+1)*grid_size/BS,
				(p_in_noise_i.Y+0)*grid_size/BS));
		v2s16 centerpoint(
				(p_in_noise_i.X+0)*grid_size/BS+MAP_BLOCKSIZE/2,
				(p_in_noise_i.Y+0)*grid_size/BS+MAP_BLOCKSIZE/2);
		hps[4] = ground_height(m_seed, centerpoint);
		
		float noise[5];
		float h_min = BS*65535;
		float h_max = -BS*65536;
		float ma_avg = 0;
		float h_avg = 0;
		u32 have_sand_count = 0;
		float tree_amount_avg = 0;
		for(u32 i=0; i<5; i++)
		{
			noise[i] = hps[i].gh + hps[i].ma;
			if(noise[i] < h_min)
				h_min = noise[i];
			if(noise[i] > h_max)
				h_max = noise[i];
			ma_avg += hps[i].ma;
			h_avg += noise[i];
			if(hps[i].have_sand)
				have_sand_count++;
			tree_amount_avg += hps[i].tree_amount;
		}
		ma_avg /= 5.0;
		h_avg /= 5.0;
		tree_amount_avg /= 5.0;

		float steepness = (h_max - h_min)/grid_size;
		
		float light_f = noise[0]+noise[1]-noise[2]-noise[3];
		light_f /= 100;
		if(light_f < -1.0) light_f = -1.0;
		if(light_f > 1.0) light_f = 1.0;
		//light_f += 1.0;
		//light_f /= 2.0;
		
		v2f p1 = p0 + v2f(1,1)*grid_size;
		
		bool ground_is_sand = false;
		bool ground_is_rock = false;
		bool ground_is_mud = false;
		video::SColor c;
		// Detect water
		if(h_avg < WATER_LEVEL*BS && h_max < (WATER_LEVEL+5)*BS)
		{
			//c = video::SColor(255,59,86,146);
			//c = video::SColor(255,82,120,204);
			c = video::SColor(255,74,105,170);

			/*// Set to water level
			for(u32 i=0; i<4; i++)
			{
				if(noise[i] < BS*WATER_LEVEL)
					noise[i] = BS*WATER_LEVEL;
			}*/
			light_f = 0;
		}
		// Steep cliffs
		else if(steepness > 2.0)
		{
			c = video::SColor(255,128,128,128);
			ground_is_rock = true;
		}
		// Basic ground
		else
		{
			if(ma_avg < 2.0*BS)
			{
				c = video::SColor(255,128,128,128);
				ground_is_rock = true;
			}
			else
			{
				if(h_avg <= 2.5*BS && have_sand_count >= 2)
				{
					c = video::SColor(255,210,194,156);
					ground_is_sand = true;
				}
				else
				{
					/*// Trees if there are over 0.01 trees per MapNode
					if(tree_amount_avg > 0.01)
						c = video::SColor(255,50,128,50);
					else
						c = video::SColor(255,107,134,51);*/
					c = video::SColor(255,107,134,51);
					ground_is_mud = true;
				}
			}
		}
		
		// Set to water level
		for(u32 i=0; i<4; i++)
		{
			if(noise[i] < BS*WATER_LEVEL)
				noise[i] = BS*WATER_LEVEL;
		}

		float b = m_brightness + light_f*0.1*m_brightness;
		if(b < 0) b = 0;
		if(b > 2) b = 2;
		
		c = video::SColor(255, b*c.getRed(), b*c.getGreen(), b*c.getBlue());
		
		driver->setMaterial(m_materials[0]);

		video::S3DVertex vertices[4] =
		{
			video::S3DVertex(p0.X,noise[0],p0.Y, 0,0,0, c, 0,1),
			video::S3DVertex(p0.X,noise[1],p1.Y, 0,0,0, c, 1,1),
			video::S3DVertex(p1.X,noise[2],p1.Y, 0,0,0, c, 1,0),
			video::S3DVertex(p1.X,noise[3],p0.Y, 0,0,0, c, 0,0),
		};
		u16 indices[] = {0,1,2,2,3,0};
		driver->drawVertexPrimitiveList(vertices, 4, indices, 2,
				video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT);

		// Add some trees if appropriate
		if(tree_amount_avg >= 0.0065 && steepness < 1.4
				&& ground_is_mud == true)
		{
			driver->setMaterial(m_materials[1]);
			
			float b = m_brightness;
			c = video::SColor(255, b*255, b*255, b*255);
			
			{
				video::S3DVertex vertices[4] =
				{
					video::S3DVertex(p0.X,noise[0],p0.Y,
							0,0,0, c, 0,1),
					video::S3DVertex(p0.X,noise[0]+BS*MAP_BLOCKSIZE,p0.Y,
							0,0,0, c, 0,0),
					video::S3DVertex(p1.X,noise[2]+BS*MAP_BLOCKSIZE,p1.Y,
							0,0,0, c, 1,0),
					video::S3DVertex(p1.X,noise[2],p1.Y,
							0,0,0, c, 1,1),
				};
				u16 indices[] = {0,1,2,2,3,0};
				driver->drawVertexPrimitiveList(vertices, 4, indices, 2,
						video::EVT_STANDARD, scene::EPT_TRIANGLES,
						video::EIT_16BIT);
			}
			{
				video::S3DVertex vertices[4] =
				{
					video::S3DVertex(p1.X,noise[3],p0.Y,
							0,0,0, c, 0,1),
					video::S3DVertex(p1.X,noise[3]+BS*MAP_BLOCKSIZE,p0.Y,
							0,0,0, c, 0,0),
					video::S3DVertex(p0.X,noise[1]+BS*MAP_BLOCKSIZE,p1.Y,
							0,0,0, c, 1,0),
					video::S3DVertex(p0.X,noise[1],p1.Y,
							0,0,0, c, 1,1),
				};
				u16 indices[] = {0,1,2,2,3,0};
				driver->drawVertexPrimitiveList(vertices, 4, indices, 2,
						video::EVT_STANDARD, scene::EPT_TRIANGLES,
						video::EIT_16BIT);
			}
		}
	}

	//driver->clearZBuffer();
}
示例#3
0
void Clouds::render()
{
	video::IVideoDriver* driver = SceneManager->getVideoDriver();

	/*if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_TRANSPARENT)
		return;*/
	if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SOLID)
		return;

	ScopeProfiler sp(g_profiler, "Rendering of clouds, avg", SPT_AVG);

	int num_faces_to_draw = 6;
	if(g_settings->getBool("enable_2d_clouds"))
		num_faces_to_draw = 1;

	driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
	driver->setMaterial(m_material);
	
	/*
		Clouds move from X+ towards X-
	*/

	const s16 cloud_radius_i = 12;
	const float cloud_size = BS*48;
	const v2f cloud_speed(-BS*2, 0);
	
	// Position of cloud noise origin in world coordinates
	v2f world_cloud_origin_pos_f = m_time*cloud_speed;
	// Position of cloud noise origin from the camera
	v2f cloud_origin_from_camera_f = world_cloud_origin_pos_f - m_camera_pos;
	// The center point of drawing in the noise
	v2f center_of_drawing_in_noise_f = -cloud_origin_from_camera_f;
	// The integer center point of drawing in the noise
	v2s16 center_of_drawing_in_noise_i(
		MYROUND(center_of_drawing_in_noise_f.X / cloud_size),
		MYROUND(center_of_drawing_in_noise_f.Y / cloud_size)
	);
	// The world position of the integer center point of drawing in the noise
	v2f world_center_of_drawing_in_noise_f = v2f(
		center_of_drawing_in_noise_i.X * cloud_size,
		center_of_drawing_in_noise_i.Y * cloud_size
	) + world_cloud_origin_pos_f;

	for(s16 zi=-cloud_radius_i; zi<cloud_radius_i; zi++)
	for(s16 xi=-cloud_radius_i; xi<cloud_radius_i; xi++)
	{
		v2s16 p_in_noise_i(
			xi+center_of_drawing_in_noise_i.X,
			zi+center_of_drawing_in_noise_i.Y
		);

		/*if((p_in_noise_i.X + p_in_noise_i.Y)%2==0)
			continue;*/
		/*if((p_in_noise_i.X/2 + p_in_noise_i.Y/2)%2==0)
			continue;*/

		v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f;
		
		double noise = noise2d_perlin_abs(
				(float)p_in_noise_i.X*cloud_size/BS/200,
				(float)p_in_noise_i.Y*cloud_size/BS/200,
				m_seed, 3, 0.4);
		if(noise < 0.95)
			continue;

		float b = m_brightness;
		video::SColor c_top(128,b*240,b*240,b*255);
		video::SColor c_side_1(128,b*230,b*230,b*255);
		video::SColor c_side_2(128,b*220,b*220,b*245);
		video::SColor c_bottom(128,b*205,b*205,b*230);

		video::S3DVertex v[4] =
		{
			video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 1),
			video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 1),
			video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 0),
			video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 0)
		};

		f32 rx = cloud_size;
		f32 ry = 8*BS;
		f32 rz = cloud_size;

		for(int i=0; i<num_faces_to_draw; i++)
		{
			switch(i)
			{
				case 0:	// top
					v[0].Pos.X=-rx; v[0].Pos.Y= ry; v[0].Pos.Z=-rz;
					v[1].Pos.X=-rx; v[1].Pos.Y= ry; v[1].Pos.Z= rz;
					v[2].Pos.X= rx; v[2].Pos.Y= ry; v[2].Pos.Z= rz;
					v[3].Pos.X= rx; v[3].Pos.Y= ry, v[3].Pos.Z=-rz;
					break;
				case 1: // back
					for(int j=0;j<4;j++)
						v[j].Color=c_side_1;
					v[0].Pos.X=-rx; v[0].Pos.Y= ry; v[0].Pos.Z=-rz;
					v[1].Pos.X= rx; v[1].Pos.Y= ry; v[1].Pos.Z=-rz;
					v[2].Pos.X= rx; v[2].Pos.Y=-ry; v[2].Pos.Z=-rz;
					v[3].Pos.X=-rx; v[3].Pos.Y=-ry, v[3].Pos.Z=-rz;
					break;
				case 2: //right
					for(int j=0;j<4;j++)
						v[j].Color=c_side_2;
					v[0].Pos.X= rx; v[0].Pos.Y= ry; v[0].Pos.Z=-rz;
					v[1].Pos.X= rx; v[1].Pos.Y= ry; v[1].Pos.Z= rz;
					v[2].Pos.X= rx; v[2].Pos.Y=-ry; v[2].Pos.Z= rz;
					v[3].Pos.X= rx; v[3].Pos.Y=-ry, v[3].Pos.Z=-rz;
					break;
				case 3: // front
					for(int j=0;j<4;j++)
						v[j].Color=c_side_1;
					v[0].Pos.X= rx; v[0].Pos.Y= ry; v[0].Pos.Z= rz;
					v[1].Pos.X=-rx; v[1].Pos.Y= ry; v[1].Pos.Z= rz;
					v[2].Pos.X=-rx; v[2].Pos.Y=-ry; v[2].Pos.Z= rz;
					v[3].Pos.X= rx; v[3].Pos.Y=-ry, v[3].Pos.Z= rz;
					break;
				case 4: // left
					for(int j=0;j<4;j++)
						v[j].Color=c_side_2;
					v[0].Pos.X=-rx; v[0].Pos.Y= ry; v[0].Pos.Z= rz;
					v[1].Pos.X=-rx; v[1].Pos.Y= ry; v[1].Pos.Z=-rz;
					v[2].Pos.X=-rx; v[2].Pos.Y=-ry; v[2].Pos.Z=-rz;
					v[3].Pos.X=-rx; v[3].Pos.Y=-ry, v[3].Pos.Z= rz;
					break;
				case 5: // bottom
					for(int j=0;j<4;j++)
						v[j].Color=c_bottom;
					v[0].Pos.X= rx; v[0].Pos.Y=-ry; v[0].Pos.Z= rz;
					v[1].Pos.X=-rx; v[1].Pos.Y=-ry; v[1].Pos.Z= rz;
					v[2].Pos.X=-rx; v[2].Pos.Y=-ry; v[2].Pos.Z=-rz;
					v[3].Pos.X= rx; v[3].Pos.Y=-ry, v[3].Pos.Z=-rz;
					break;
			}

			v3f pos = v3f(p0.X,m_cloud_y,p0.Y);

			for(u16 i=0; i<4; i++)
				v[i].Pos += pos;
			u16 indices[] = {0,1,2,2,3,0};
			driver->drawVertexPrimitiveList(v, 4, indices, 2,
					video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT);
		}

	}
}