void SkBitmapDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::DrawBitmapRectFlags flags) { SkMatrix matrix; SkRect bitmapBounds, tmpSrc, tmpDst; SkBitmap tmpBitmap; bitmapBounds.isetWH(bitmap.width(), bitmap.height()); // Compute matrix from the two rectangles if (src) { tmpSrc = *src; } else { tmpSrc = bitmapBounds; } matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); const SkRect* dstPtr = &dst; const SkBitmap* bitmapPtr = &bitmap; // clip the tmpSrc to the bounds of the bitmap, and recompute dstRect if // needed (if the src was clipped). No check needed if src==null. if (src) { if (!bitmapBounds.contains(*src)) { if (!tmpSrc.intersect(bitmapBounds)) { return; // nothing to draw } // recompute dst, based on the smaller tmpSrc matrix.mapRect(&tmpDst, tmpSrc); dstPtr = &tmpDst; } // since we may need to clamp to the borders of the src rect within // the bitmap, we extract a subset. SkIRect srcIR; tmpSrc.roundOut(&srcIR); if (!bitmap.extractSubset(&tmpBitmap, srcIR)) { return; } bitmapPtr = &tmpBitmap; // Since we did an extract, we need to adjust the matrix accordingly SkScalar dx = 0, dy = 0; if (srcIR.fLeft > 0) { dx = SkIntToScalar(srcIR.fLeft); } if (srcIR.fTop > 0) { dy = SkIntToScalar(srcIR.fTop); } if (dx || dy) { matrix.preTranslate(dx, dy); } SkRect extractedBitmapBounds; extractedBitmapBounds.isetWH(bitmapPtr->width(), bitmapPtr->height()); if (extractedBitmapBounds == tmpSrc) { // no fractional part in src, we can just call drawBitmap goto USE_DRAWBITMAP; } } else { USE_DRAWBITMAP: // We can go faster by just calling drawBitmap, which will concat the // matrix with the CTM, and try to call drawSprite if it can. If not, // it will make a shader and call drawRect, as we do below. this->drawBitmap(draw, *bitmapPtr, matrix, paint); return; } // construct a shader, so we can call drawRect with the dst SkShader* s = SkShader::CreateBitmapShader(*bitmapPtr, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &matrix); if (NULL == s) { return; } SkPaint paintWithShader(paint); paintWithShader.setStyle(SkPaint::kFill_Style); paintWithShader.setShader(s)->unref(); // Call ourself, in case the subclass wanted to share this setup code // but handle the drawRect code themselves. this->drawRect(draw, *dstPtr, paintWithShader); }
void SkBitmapDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { SkMatrix matrix; SkRect bitmapBounds, tmpSrc, tmpDst; SkBitmap tmpBitmap; bitmapBounds.isetWH(bitmap.width(), bitmap.height()); // Compute matrix from the two rectangles if (src) { tmpSrc = *src; } else { tmpSrc = bitmapBounds; } matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); LogDrawScaleFactor(SkMatrix::Concat(*draw.fMatrix, matrix), paint.getFilterQuality()); const SkRect* dstPtr = &dst; const SkBitmap* bitmapPtr = &bitmap; // clip the tmpSrc to the bounds of the bitmap, and recompute dstRect if // needed (if the src was clipped). No check needed if src==null. if (src) { if (!bitmapBounds.contains(*src)) { if (!tmpSrc.intersect(bitmapBounds)) { return; // nothing to draw } // recompute dst, based on the smaller tmpSrc matrix.mapRect(&tmpDst, tmpSrc); dstPtr = &tmpDst; } } if (src && !src->contains(bitmapBounds) && SkCanvas::kFast_SrcRectConstraint == constraint && paint.getFilterQuality() != kNone_SkFilterQuality) { // src is smaller than the bounds of the bitmap, and we are filtering, so we don't know // how much more of the bitmap we need, so we can't use extractSubset or drawBitmap, // but we must use a shader w/ dst bounds (which can access all of the bitmap needed). goto USE_SHADER; } if (src) { // since we may need to clamp to the borders of the src rect within // the bitmap, we extract a subset. const SkIRect srcIR = tmpSrc.roundOut(); if (!bitmap.extractSubset(&tmpBitmap, srcIR)) { return; } bitmapPtr = &tmpBitmap; // Since we did an extract, we need to adjust the matrix accordingly SkScalar dx = 0, dy = 0; if (srcIR.fLeft > 0) { dx = SkIntToScalar(srcIR.fLeft); } if (srcIR.fTop > 0) { dy = SkIntToScalar(srcIR.fTop); } if (dx || dy) { matrix.preTranslate(dx, dy); } SkRect extractedBitmapBounds; extractedBitmapBounds.isetWH(bitmapPtr->width(), bitmapPtr->height()); if (extractedBitmapBounds == tmpSrc) { // no fractional part in src, we can just call drawBitmap goto USE_DRAWBITMAP; } } else { USE_DRAWBITMAP: // We can go faster by just calling drawBitmap, which will concat the // matrix with the CTM, and try to call drawSprite if it can. If not, // it will make a shader and call drawRect, as we do below. if (CanApplyDstMatrixAsCTM(matrix, paint)) { draw.drawBitmap(*bitmapPtr, matrix, dstPtr, paint); return; } } USE_SHADER: // Since the shader need only live for our stack-frame, pass in a custom allocator. This // can save malloc calls, and signals to SkMakeBitmapShader to not try to copy the bitmap // if its mutable, since that precaution is not needed (give the short lifetime of the shader). SkTBlitterAllocator allocator; // construct a shader, so we can call drawRect with the dst auto s = SkMakeBitmapShader(*bitmapPtr, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &matrix, kNever_SkCopyPixelsMode, &allocator); if (!s) { return; } // we deliberately add a ref, since the allocator wants to be the last owner s.get()->ref(); SkPaint paintWithShader(paint); paintWithShader.setStyle(SkPaint::kFill_Style); paintWithShader.setShader(s); // Call ourself, in case the subclass wanted to share this setup code // but handle the drawRect code themselves. this->drawRect(draw, *dstPtr, paintWithShader); }