示例#1
0
int main()
{
	int count = 0;

	for ( aint t=0; t>=0; ++t ) {
		aint ft = tri(t);

		aint p = 0;
		pair pr = solve_quad(3, -1, -2 * ft);
		if ( pr.a>=0 && pent(pr.a) == ft ) p = pr.a;
		if ( pr.b>=0 && pent(pr.b) == ft ) p = pr.b;
		if ( p == 0 ) continue;

		aint h = 0;
		pair hr = solve_quad(2, -1, -ft);
		if ( hr.a>=0 && hex(hr.a) == ft ) h = hr.a;
		if ( hr.b>=0 && hex(hr.b) == ft ) h = hr.b;
		if ( h == 0 ) continue;

		printf("T%d = P%d = H%d = %d\n", t, p, h, ft);

		if ( ++count >= 3 )
			break;
	}
}
示例#2
0
void renderPolygons(void) {
	// set clearing color 
	glClearColor(0.0, 0.0, 0.0, 0.0);
	glClear(GL_COLOR_BUFFER_BIT);

	// first polygon - triangle - yellow
	Point c1(100,50,0);
	Color fc1(1.0, 1.0, 0.0, 0.0);
	Polygon tri(40, c1, 3, 1, GL_LINE_LOOP, fc1);
	tri.draw();

	// square - hollow - light blue(cyan)
	Point c2(100,150,0);
	Color fc2(0.0, 1.0, 1.0, 0.0);
	Polygon squ(40, c2, 4, 8, GL_LINE_LOOP, fc2);
	squ.draw();

	// pentagon - hollow - gray
	Point c3(100,250,0);
	Color fc3(0.5, 0.5, 0.5, 0.0);
	Polygon pent(40, c3, 5, 3, GL_LINE_LOOP, fc3);
	pent.draw();

	//hexagon - not hollow - red
	Point c4(200,50,0);
	Color fc4(1.0, 0.0, 0.0, 0.0);
	Polygon hex(40, c4, 6, 3, GL_POLYGON, fc4);
	hex.draw();

	// nonagon - hollow - green
	Point c5(200,150,0);
	Color fc5(0.0, 1.0, 0.0, 0.0);
	Polygon nin(40, c5, 9, 5, GL_LINE_LOOP, fc5);
	nin.draw();

	// tridecagon - hollow - purple
	Point c6(300,300,0);
	Color fc6(1.0, 0.0, 1.0, 0.0);
	Polygon thri(90, c6, 13, 3, GL_LINE_LOOP, fc6);
	thri.draw();

	glutSwapBuffers();
}
示例#3
0
void CTriangle::Draw(CDC* pDC)
{
	if(m_nPtCount <= 0)
		return;

	Graphics graph(pDC->m_hDC);
	graph.SetSmoothingMode(SmoothingModeAntiAlias);

	Matrix mat;
	mat.RotateAt(m_fAngle,m_ptCenter);
	graph.SetTransform(&mat);

	Pen penDraw(m_crColor,(float)m_nWidth);
	penDraw.SetLineJoin(LineJoinRound);

	if(m_nPtCount == 2)
	{

		Pen pent(Color::Blue,2);
		pent.SetDashStyle(DashStyleDot);

		CPoint ptLT;
		CPoint ptRB;
		ptLT.x = (int)m_ptary[0].X;
		ptLT.y = (int)m_ptary[0].Y;
		ptRB.x = (int)m_ptary[1].X;
		ptRB.y = (int)m_ptary[1].Y;
		CRect rc(ptLT,ptRB);
		rc.NormalizeRect();
		graph.DrawRectangle(&pent,rc.left,rc.top,rc.Width(),rc.Height());
	}
	else if(m_nPtCount == 3)
	{
		PointF* pPt = m_ptary.GetData();
		graph.DrawPolygon(&penDraw,pPt,m_nPtCount);

		if(m_bSelected)
		{
			DrawHotShape(graph);
		}
	}
}
示例#4
0
文件: pentaBox.cpp 项目: apik/RoMB
int main()
{
  try
    {
  
      symbol k("k"),q("q"),p("p"),p1("p1"),p2("p2"),p3("p3"),ms("ms"),l("l"),s("s"),m1s("m1s"),m2s("m2s"),m3s("m3s");
      symbol l1("l1"),l2("l2"),l3("l3"),l4("l4"),t("t"),p4("p4"),p5("p5"),tp("tp"),v1("v1"),v2("v2"),l5("l5");
      symbol k1("k1"),k2("k2"),k3("k3"),k4("k4"),k5("k5"),ms1("ms1"),ms2("ms2"),ms3("ms3"),ms4("ms4");
      symbol s12("s12"),s23("s23"),s34("s34"),s45("s45"),s51("s51"),s13("s13"),s15("s15");

      lst inv_l =  lst(
                       p1*p1 == 0, 
                       p2*p2 == 0, 
                       p3*p3 == 0, 
                       p4*p4 == 0, 
                       p5*p5 == 0, 

                       p1*p2 == s12/2,
                       p1*p3 ==  (-s12-s23+s45)/2,
                       p1*p4 == (-s15+s23-s45)/2,
                       p1*p5 == s15/2,
                       p2* p3 ==s23/2,
                       p2* p4 ==(s15-s23-s34)/2,
                       p2* p5 ==(-s12-s15+s34)/2,
                       p3*p4 == s34/2,
                       p3*p5 == (s12-s34-s45)/2,
                       p4*p5 == s45/2);
#define topo 2
#if topo==1      

  /*                            1+eps normalization
   FRESULT for parameters: {s12==-2,s23==-3,s34==-4,s45==-5,s15==-6,ms==1}
   
    FRESULT anl :           = -0.010071141398715986043
     FRESULT num:           = -0.010071141398715986043
      eps^0 term: -0.010071141398715986043 +/- 7.5387750593540493467E-5
      */
      /*   Euler renormalization
       FRESULT for parameters: {s12==-2,s23==-3,s34==-4,s45==-5,s15==-6,ms==1}
       
        FRESULT anl :           = 0.020204464861409441711
         FRESULT num:           = 0.020204464861409441711
          eps^0 term: 0.020204464861409441711 +/- 2.9955911201888832611E-4
          */
      RoMB_loop_by_loop pent(lst(k1),lst(-pow(p1 + k1,2)+ms,-pow(p1 + p2 + k1,2)+ms,
                                         -pow(p1 + p2 + p3 + k1,2)+ms,-pow(p1 + p2 + p3 + p4 + k1,2)+ms,
                                         -pow(k1,2)+ms),
                             inv_l,
                             lst(1,1,1,1,1),false);
      pent.integrate_map(lst(s12==-2,s23==-3,s34==-4,s45==-5,s15==-6,ms==1));
#elif topo==2      
// M=0 with factor tgamma(1-eps)^2/tgamma(1-2eps)
/*      PJfry
*	1/eps^-2 :(-0.111111,0)
*	1/eps^-1 :(0.0856421,0)
*	1/eps^0 :(0.0513422,0)  -3.28987

*/
      RoMB_loop_by_loop pent(lst(k2,k1),lst(-pow(k1,2),-pow(k1 - k2 ,2),
                                         -pow(k1+p1 + p2,2),-pow(k1 - p4 - p5,2),
                                         -pow(k1-p5,2),-pow(k2,2),-pow(k2+p1,2),-pow(k2+p1+p2,2)),
                             inv_l,
                             lst(1,1,1,1,1,1,1,1),true);
      pent.integrate_map(lst(s12==-2,s23==-4,s34==-5,s45==-6,s15==-0.5,ms==1),0);
      
      
      
      
      /*
        FRESULT for parameters: {s12==-2,s23==-4,s34==-5,s45==-6,s15==-0.5,ms==1}
        
         FRESULT anl :           = 400.22174334151294225-(0.24583333333333333332)*log(4)^2*log(5)*log(2)-(3.3881317890172013563E-21)*Euler*log(5)^2+(7.284483346386982916E-20)*Euler*log(5)*log(6)*log(2)-(0.11210570324758033243)*log(4)*log(6)-(2.1006417091906648409E-19)*Euler*log(5)*log(6)-(8.470329472543003391E-21)*Euler+(1.4484263398048535798E-19)*Euler*log(5)^2*log(2)+(0.34079736377530644382)*log(4)*log(6)*log(2)-(0.17039868188765322194)*log(4)^2*log(2)+eps^(-2)*(-1.3333035413347974529-(0.12916666666666666666)*log(4)*log(6)+(1.9274705288631189937E-20)*Euler+(3.3730734255104582391E-20)*Euler*log(6)+(0.121354166666666666677)*Pi^2+(0.014440566261665527283)*log(4)+(0.054166666666666666667)*log(5)*log(6)+(3.08395284618099039E-19)*Euler^2+(0.24693368307448051649)*log(5)-(1.2046690805394493711E-20)*Euler*log(4)-(0.045833333333333333334)*log(4)*log(5)+(0.16666666666666666667)*log(2)^2-(0.0086643397569993163535)*log(6)-(0.025)*log(6)*log(2)-(1.9274705288631189937E-20)*Euler*log(5)+(0.0625)*log(6)^2-(0.27725887222397812377)*log(2)-(0.4)*log(5)*log(2)+(0.07708333333333333334)*log(4)^2+(0.178125)*log(5)^2+(0.029166666666666666667)*log(4)*log(2)+(7.709882115452475975E-20)*Euler*log(2))+(2.2022856628611808816E-20)*Euler*log(4)^3-(4.336808689942017736E-19)*Euler^2*log(2)-(0.066426604803661425496)*log(4)*log(5)^2+(0.014236111111111111113)*log(4)^4+(2.710505431213761085E-20)*Euler*log(6)-(1.1011428314305904408E-19)*Euler*log(6)*Pi^2-(0.25763888888888888888)*log(5)^3*log(2)+(0.09861111111111111112)*log(5)*log(6)^3+(0.07797905781299384727)*log(6)*log(2)^2+(2.168404344971008868E-19)*Euler*log(4)*log(5)-(3.3881317890172013563E-20)*Euler*log(4)^2+(0.058333333333333333313)*log(4)*log(5)^2*log(2)+(1.4696021634862110883E-19)*Euler*log(6)*log(2)-(1.2493735972000930001E-20)*Euler*log(5)^3-(0.32346868426130781108)*log(4)*log(5)*log(6)+(1.8223154162344101082-(1.9274705288631189937E-20)*Euler*log(5)^2-(0.17906302164465253826)*log(4)*log(6)-(3.252606517456513302E-20)*Euler+(0.275)*log(4)*log(6)*log(2)-(0.14166666666666666667)*log(4)^2*log(2)-(4.9030031577955589404E-19)*Euler^2*log(2)-(0.029166666666666666667)*log(4)*log(5)^2-(4.336808689942017736E-20)*Euler*log(6)+(0.03125)*log(6)*log(2)^2-(2.4093381610788987422E-20)*Euler*log(4)*log(5)+(2.379221434065412508E-20)*Euler*log(6)*log(2)-(0.25833333333333333333)*log(4)*log(5)*log(6)+(0.17641558449668052497)*Pi^2+(0.12916666666666666666)*log(5)*log(6)^2+(0.018016988021932553424)*log(4)-(0.35625)*log(5)^2*log(2)+(0.04043358553266347639)*log(5)*log(6)+(3.8549410577262379875E-20)*Euler*log(4)*log(6)+(3.2766998990673022894E-19)*Euler^2-(0.64791666666666666673)*zeta(3)-(0.11319444444444444446)*log(2)^3+(0.18467412722480867264)*log(5)+(0.09756944444444444444)*log(6)*Pi^2+(4.8186763221577974843E-21)*Euler*log(4)-(0.040433585532663476392)*log(4)*log(5)+(0.27725887222397812372)*log(2)^2-(0.018016988021932553429)*log(6)+(1.541976423090495195E-19)*Euler^3-(0.07509094456066074186)*log(6)*log(2)+(3.1321396094025683648E-20)*Euler*log(5)-(0.2375)*log(4)*log(6)^2+(0.08953151082232626913)*log(6)^2-(2.168404344971008868E-20)*Euler*log(2)^2+(0.12083333333333333333)*log(4)^2*log(5)-(0.14375)*log(6)^2*log(2)-(0.108333333333333333334)*log(5)*log(6)*log(2)-(0.17116138620835925754)*log(2)+(2.0238440553062749435E-19)*Euler^2*log(5)-(0.025)*log(4)*log(2)^2-(0.22395833333333333336)*log(2)*Pi^2+(0.23229166666666666667)*log(5)*Pi^2+(0.029166666666666666667)*log(5)^2*log(6)-(2.4093381610788987422E-20)*Euler*log(4)*log(2)-(0.49386736614896103298)*log(5)*log(2)+(0.08541666666666666667)*log(6)^3+(0.08375528431766005821)*log(4)^2+(3.8549410577262379875E-20)*Euler*Pi^2+(0.128125)*log(5)^3+(0.108333333333333333334)*log(4)*log(5)*log(2)+(0.4)*log(5)*log(2)^2-(0.09409722222222222222)*log(4)*Pi^2+(7.709882115452475975E-20)*Euler*log(5)*log(2)+(0.26642844752772897827)*log(5)^2+(0.0750909445606607419)*log(4)*log(2)+(0.22916666666666666667)*log(4)^2*log(6)-(0.080555555555555555553)*log(4)^3+(1.1594939900192200198E-19)*Euler*log(2))*eps^(-1)-(3.1509625637859972613E-19)*Euler^2*log(5)*log(2)-(1.5246593050577406103E-20)*Euler^2*Pi^2+(0.44166666666666666666)*zeta(3)*log(6)+(0.12361655670603724154)*Pi^2+(0.062586805555555555545)*log(5)^4-(2.5410988417629010172E-20)*Euler*log(4)*log(6)^2-(0.020138888888888888871)*log(6)*log(2)^3+(0.164622455382987011)*log(5)*log(6)^2+(0.3583333333333333334)*log(5)^2*log(2)^2-(0.22152777777777777779)*log(4)*log(6)*Pi^2+(0.10729166666666666671)*log(4)^2*Pi^2-(0.031944444444444444437)*log(4)*log(5)^3+(0.0041628081498616184988)*log(4)-(9.5714723039735938315E-20)*Euler*log(4)*log(5)*log(2)+(3.9954857837891737475E-20)*Euler*log(4)^2*log(2)-(0.53574500830779106205)*log(5)^2*log(2)-(2.5199230180815435087E-19)*Euler*zeta(3)+(0.048045301391820142482)*log(5)*log(6)-(4.7433845046240818988E-20)*Euler*log(4)*log(6)-(0.06249999999999999996)*log(5)^2*log(6)*log(2)+(6.168313523040288406E-19)*Euler^2-(0.9097222222222222222)*zeta(3)*log(5)-(1.0464597017620285435)*zeta(3)-(4.539037806098981942E-19)*Euler^3*log(2)-(0.18580195256676311766)*log(2)^3-(2.710505431213761085E-20)*Euler*log(6)^3+(0.08337179655695074824)*log(5)+(0.12755833531137882431)*log(6)*Pi^2+(2.2022856628611808816E-20)*Euler*log(4)*log(5)^2-(1.3552527156068805425E-20)*Euler*log(4)+(0.012326388888888888894)*log(6)^4-(0.4125)*log(4)*zeta(3)-(0.30416666666666666667)*log(4)*log(5)*log(6)^2+(0.49166666666666666665)*log(4)*log(5)*log(6)*log(2)-(0.066666666666666666677)*log(4)*log(6)^3+(4.7433845046240818988E-20)*Euler*log(6)*log(2)^2+(0.14305555555555555555)*log(4)^3*log(2)-(0.046043413833827636543)*log(4)*log(5)-(2.168404344971008868E-19)*Euler*log(6)^2+(0.1721623299873555105)*log(2)^2-(0.0037002739109881053319)*log(6)-(2.3039296165316969223E-19)*Euler^2*log(2)^2+(1.0062751413381088028E-18)*Euler^3-(2.168404344971008868E-19)*Euler^2*log(4)*log(2)-(0.25)*log(5)*log(6)^2*log(2)+(0.20505604272398455968-(2.8912057932946784908E-20)*Euler+(0.00625)*log(4)+(0.19583333333333333331)*log(5)-(0.018750000000000000007)*log(6)-(0.16875)*log(2))*eps^(-3)-(0.030028313369887589065)*log(6)*log(2)-(0.275)*log(4)*log(6)*log(2)^2+(0.13125)*log(4)^2*log(2)^2+(4.0657581468206416275E-20)*Euler*log(5)*log(6)^2-(8.131516293641283255E-20)*Euler*log(5)-(0.2570420794576463856)*log(4)*log(6)^2-(0.47430555555555555555)*log(5)*log(2)*Pi^2+(0.2350694444444444444)*log(5)^2*Pi^2+(0.22569444444444444447)*log(2)^2*Pi^2+(0.05705379540278641918)*log(6)^2+(1.5814418841144177812E-20)*Euler*log(2)^2+(0.16173434213065390554)*log(4)^2*log(5)+(1.5585406229479126239E-19)*Euler^2*log(6)^2-(0.17328679513998632736)*log(6)^2*log(2)+(7.030373462210692814E-20)*Euler*log(4)*log(6)*log(2)-(0.086643397569993163665)*log(5)*log(6)*log(2)-(0.08580010131103669233)*log(2)+(2.2700482986415249087E-19)*Euler^2*log(5)+(0.09999999999999999998)*log(4)^2*log(6)^2-(0.07509094456066074196)*log(4)*log(2)^2-(6.7762635780344027125E-20)*Euler*log(5)*log(2)^2-(0.32876355855725183764)*log(2)*Pi^2+(8.1950437646853557805E-20)*Euler^4-(1.1858461261560204747E-20)*Euler*log(4)*Pi^2+(0.3258754453049187323)*log(5)*Pi^2+(0.06931471805599453092)*log(5)^2*log(6)+(3.642241673193491458E-20)*Euler*log(4)^2*log(6)-(1.7194768829262296883E-19)*Euler*log(4)*log(2)-(0.37135014200760985115)*log(5)*log(2)+(1.1011428314305904408E-19)*Euler*log(2)^3+(0.08375528431766005824)*log(6)^3+(1.8431436932253575378E-18)*Euler^3*log(6)+(0.056423611111111111103)*log(2)^4-(4.0826988057657276343E-19)*Euler^2*log(4)+(0.112499999999999999984)*log(6)^2*Pi^2+(0.18402777777777777775)*log(5)*log(6)*Pi^2-(0.061111111111111111102)*log(4)^3*log(6)-(0.108333333333333333294)*log(4)*log(5)*log(2)^2+(0.020833333333333333319)*log(4)*log(2)^3-(8.131516293641283255E-20)*Euler^2*log(4)^2-(6.7762635780344027125E-21)*Euler*log(4)^2*log(5)+(0.056052851623790166215)*log(4)^2-(2.6893296075324035765E-19)*Euler^2*log(5)*log(6)-(1.626303258728256651E-19)*Euler^3*log(5)+(4.2986922073155742208E-20)*Euler*Pi^2+(0.66666666666666666706)*zeta(3)*log(2)-(0.4083333333333333333)*log(4)^2*log(6)*log(2)+(0.17352747124434741951)*log(5)^3-(0.23333333333333333333)*log(4)*log(5)^2*log(6)+(0.080867171065326952724)*log(4)*log(5)*log(2)-(1.6940658945086006781E-20)*Euler*log(6)^2*log(2)-(0.13125)*log(6)^3*log(2)+(0.49675547940129413833)*log(5)*log(2)^2-(1.3552527156068805425E-20)*Euler*log(4)*log(2)^2+(0.11874999999999999999)*log(5)^2*log(6)^2+(0.140625)*eps^(-4)+(3.8963515573697815597E-20)*Euler*log(5)*Pi^2-(0.10416666666666666666)*log(4)^3*log(5)-(0.1208194043892682449)*log(4)*Pi^2-(7.284483346386982916E-20)*Euler*log(2)*Pi^2+(8.131516293641283255E-20)*Euler*log(5)*log(2)+(0.18042011616407459749)*log(5)^2+(0.40833333333333333333)*log(4)*log(6)^2*log(2)+(0.028026425811895083111)*log(4)*log(2)+(1.6940658945086006781E-19)*Euler^2*log(5)^2+(0.26570641921464570196)*log(4)^2*log(6)-(1.0164395367051604069E-20)*Euler*log(5)^2*log(6)+(1.084202172485504434E-19)*Euler^2*log(6)*log(2)+(0.31666666666666666664)*log(4)^2*log(5)*log(6)+(1.176528763736223171E-18)*Euler^3*log(4)+(3.0323779511703952139E-19)*Euler^2*log(4)*log(5)-(0.19861111111111111116)*log(6)*log(2)*Pi^2-(0.08760610198743753216)*log(4)^3+(0.19513888888888888883)*log(4)*log(2)*Pi^2-(0.17430555555555555551)*log(4)*log(5)*Pi^2+(0.11666666666666666666)*log(4)^2*log(5)^2-(1.084202172485504434E-19)*Euler^2*log(6)+(1.3044307387716225222E-19)*Euler*log(2)+(0.11249999999999999996)*log(5)*log(6)*log(2)^2-(0.26805555555555555557)*log(5)*log(2)^3+(0.13645833333333333334)*log(6)^2*log(2)^2+(0.09795428240740740744)*Pi^4+(0.033333333333333333352)*log(5)^3*log(6)
          FRESULT num:           = 415.68016240483728552+(5.9729895535000929493)*eps^(-1)+(0.24826188972445505333)*eps^(-2)+(0.37833789689847839715)*eps^(-3)+(0.140625)*eps^(-4)
           eps^-4 term: 0.140625 +/- 0
            eps^-3 term: 0.20505604272398455968-(2.8912057932946784908E-20)*Euler+(0.00625)*log(4)+(0.19583333333333333331)*log(5)-(0.018750000000000000007)*log(6)-(0.16875)*log(2) +/- 5.7595906625256782043E-11
             eps^-2 term: -1.3333035413347974529-(0.12916666666666666666)*log(4)*log(6)+(1.9274705288631189937E-20)*Euler+(3.3730734255104582391E-20)*Euler*log(6)+(0.121354166666666666677)*Pi^2+(0.014440566261665527283)*log(4)+(0.054166666666666666667)*log(5)*log(6)+(3.08395284618099039E-19)*Euler^2+(0.24693368307448051649)*log(5)-(1.2046690805394493711E-20)*Euler*log(4)-(0.045833333333333333334)*log(4)*log(5)+(0.16666666666666666667)*log(2)^2-(0.0086643397569993163535)*log(6)-(0.025)*log(6)*log(2)-(1.9274705288631189937E-20)*Euler*log(5)+(0.0625)*log(6)^2-(0.27725887222397812377)*log(2)-(0.4)*log(5)*log(2)+(0.07708333333333333334)*log(4)^2+(0.178125)*log(5)^2+(0.029166666666666666667)*log(4)*log(2)+(7.709882115452475975E-20)*Euler*log(2) +/- 2.38034674326464079E-6
              eps^-1 term: 1.8223154162344101082-(1.9274705288631189937E-20)*Euler*log(5)^2-(0.17906302164465253826)*log(4)*log(6)-(3.252606517456513302E-20)*Euler+(0.275)*log(4)*log(6)*log(2)-(0.14166666666666666667)*log(4)^2*log(2)-(4.9030031577955589404E-19)*Euler^2*log(2)-(0.029166666666666666667)*log(4)*log(5)^2-(4.336808689942017736E-20)*Euler*log(6)+(0.03125)*log(6)*log(2)^2-(2.4093381610788987422E-20)*Euler*log(4)*log(5)+(2.379221434065412508E-20)*Euler*log(6)*log(2)-(0.25833333333333333333)*log(4)*log(5)*log(6)+(0.17641558449668052497)*Pi^2+(0.12916666666666666666)*log(5)*log(6)^2+(0.018016988021932553424)*log(4)-(0.35625)*log(5)^2*log(2)+(0.04043358553266347639)*log(5)*log(6)+(3.8549410577262379875E-20)*Euler*log(4)*log(6)+(3.2766998990673022894E-19)*Euler^2-(0.64791666666666666673)*zeta(3)-(0.11319444444444444446)*log(2)^3+(0.18467412722480867264)*log(5)+(0.09756944444444444444)*log(6)*Pi^2+(4.8186763221577974843E-21)*Euler*log(4)-(0.040433585532663476392)*log(4)*log(5)+(0.27725887222397812372)*log(2)^2-(0.018016988021932553429)*log(6)+(1.541976423090495195E-19)*Euler^3-(0.07509094456066074186)*log(6)*log(2)+(3.1321396094025683648E-20)*Euler*log(5)-(0.2375)*log(4)*log(6)^2+(0.08953151082232626913)*log(6)^2-(2.168404344971008868E-20)*Euler*log(2)^2+(0.12083333333333333333)*log(4)^2*log(5)-(0.14375)*log(6)^2*log(2)-(0.108333333333333333334)*log(5)*log(6)*log(2)-(0.17116138620835925754)*log(2)+(2.0238440553062749435E-19)*Euler^2*log(5)-(0.025)*log(4)*log(2)^2-(0.22395833333333333336)*log(2)*Pi^2+(0.23229166666666666667)*log(5)*Pi^2+(0.029166666666666666667)*log(5)^2*log(6)-(2.4093381610788987422E-20)*Euler*log(4)*log(2)-(0.49386736614896103298)*log(5)*log(2)+(0.08541666666666666667)*log(6)^3+(0.08375528431766005821)*log(4)^2+(3.8549410577262379875E-20)*Euler*Pi^2+(0.128125)*log(5)^3+(0.108333333333333333334)*log(4)*log(5)*log(2)+(0.4)*log(5)*log(2)^2-(0.09409722222222222222)*log(4)*Pi^2+(7.709882115452475975E-20)*Euler*log(5)*log(2)+(0.26642844752772897827)*log(5)^2+(0.0750909445606607419)*log(4)*log(2)+(0.22916666666666666667)*log(4)^2*log(6)-(0.080555555555555555553)*log(4)^3+(1.1594939900192200198E-19)*Euler*log(2) +/- 4.3702165714070080051E-4
               eps^0 term: 400.22174334151294225-(0.24583333333333333332)*log(4)^2*log(5)*log(2)-(3.3881317890172013563E-21)*Euler*log(5)^2+(7.284483346386982916E-20)*Euler*log(5)*log(6)*log(2)-(0.11210570324758033243)*log(4)*log(6)-(2.1006417091906648409E-19)*Euler*log(5)*log(6)-(8.470329472543003391E-21)*Euler+(1.4484263398048535798E-19)*Euler*log(5)^2*log(2)+(0.34079736377530644382)*log(4)*log(6)*log(2)-(0.17039868188765322194)*log(4)^2*log(2)+(2.2022856628611808816E-20)*Euler*log(4)^3-(4.336808689942017736E-19)*Euler^2*log(2)-(0.066426604803661425496)*log(4)*log(5)^2+(0.014236111111111111113)*log(4)^4+(2.710505431213761085E-20)*Euler*log(6)-(1.1011428314305904408E-19)*Euler*log(6)*Pi^2-(0.25763888888888888888)*log(5)^3*log(2)+(0.09861111111111111112)*log(5)*log(6)^3+(0.07797905781299384727)*log(6)*log(2)^2+(2.168404344971008868E-19)*Euler*log(4)*log(5)-(3.3881317890172013563E-20)*Euler*log(4)^2+(0.058333333333333333313)*log(4)*log(5)^2*log(2)+(1.4696021634862110883E-19)*Euler*log(6)*log(2)-(1.2493735972000930001E-20)*Euler*log(5)^3-(0.32346868426130781108)*log(4)*log(5)*log(6)-(3.1509625637859972613E-19)*Euler^2*log(5)*log(2)-(1.5246593050577406103E-20)*Euler^2*Pi^2+(0.44166666666666666666)*zeta(3)*log(6)+(0.12361655670603724154)*Pi^2+(0.062586805555555555545)*log(5)^4-(2.5410988417629010172E-20)*Euler*log(4)*log(6)^2-(0.020138888888888888871)*log(6)*log(2)^3+(0.164622455382987011)*log(5)*log(6)^2+(0.3583333333333333334)*log(5)^2*log(2)^2-(0.22152777777777777779)*log(4)*log(6)*Pi^2+(0.10729166666666666671)*log(4)^2*Pi^2-(0.031944444444444444437)*log(4)*log(5)^3+(0.0041628081498616184988)*log(4)-(9.5714723039735938315E-20)*Euler*log(4)*log(5)*log(2)+(3.9954857837891737475E-20)*Euler*log(4)^2*log(2)-(0.53574500830779106205)*log(5)^2*log(2)-(2.5199230180815435087E-19)*Euler*zeta(3)+(0.048045301391820142482)*log(5)*log(6)-(4.7433845046240818988E-20)*Euler*log(4)*log(6)-(0.06249999999999999996)*log(5)^2*log(6)*log(2)+(6.168313523040288406E-19)*Euler^2-(0.9097222222222222222)*zeta(3)*log(5)-(1.0464597017620285435)*zeta(3)-(4.539037806098981942E-19)*Euler^3*log(2)-(0.18580195256676311766)*log(2)^3-(2.710505431213761085E-20)*Euler*log(6)^3+(0.08337179655695074824)*log(5)+(0.12755833531137882431)*log(6)*Pi^2+(2.2022856628611808816E-20)*Euler*log(4)*log(5)^2-(1.3552527156068805425E-20)*Euler*log(4)+(0.012326388888888888894)*log(6)^4-(0.4125)*log(4)*zeta(3)-(0.30416666666666666667)*log(4)*log(5)*log(6)^2+(0.49166666666666666665)*log(4)*log(5)*log(6)*log(2)-(0.066666666666666666677)*log(4)*log(6)^3+(4.7433845046240818988E-20)*Euler*log(6)*log(2)^2+(0.14305555555555555555)*log(4)^3*log(2)-(0.046043413833827636543)*log(4)*log(5)-(2.168404344971008868E-19)*Euler*log(6)^2+(0.1721623299873555105)*log(2)^2-(0.0037002739109881053319)*log(6)-(2.3039296165316969223E-19)*Euler^2*log(2)^2+(1.0062751413381088028E-18)*Euler^3-(2.168404344971008868E-19)*Euler^2*log(4)*log(2)-(0.25)*log(5)*log(6)^2*log(2)-(0.030028313369887589065)*log(6)*log(2)-(0.275)*log(4)*log(6)*log(2)^2+(0.13125)*log(4)^2*log(2)^2+(4.0657581468206416275E-20)*Euler*log(5)*log(6)^2-(8.131516293641283255E-20)*Euler*log(5)-(0.2570420794576463856)*log(4)*log(6)^2-(0.47430555555555555555)*log(5)*log(2)*Pi^2+(0.2350694444444444444)*log(5)^2*Pi^2+(0.22569444444444444447)*log(2)^2*Pi^2+(0.05705379540278641918)*log(6)^2+(1.5814418841144177812E-20)*Euler*log(2)^2+(0.16173434213065390554)*log(4)^2*log(5)+(1.5585406229479126239E-19)*Euler^2*log(6)^2-(0.17328679513998632736)*log(6)^2*log(2)+(7.030373462210692814E-20)*Euler*log(4)*log(6)*log(2)-(0.086643397569993163665)*log(5)*log(6)*log(2)-(0.08580010131103669233)*log(2)+(2.2700482986415249087E-19)*Euler^2*log(5)+(0.09999999999999999998)*log(4)^2*log(6)^2-(0.07509094456066074196)*log(4)*log(2)^2-(6.7762635780344027125E-20)*Euler*log(5)*log(2)^2-(0.32876355855725183764)*log(2)*Pi^2+(8.1950437646853557805E-20)*Euler^4-(1.1858461261560204747E-20)*Euler*log(4)*Pi^2+(0.3258754453049187323)*log(5)*Pi^2+(0.06931471805599453092)*log(5)^2*log(6)+(3.642241673193491458E-20)*Euler*log(4)^2*log(6)-(1.7194768829262296883E-19)*Euler*log(4)*log(2)-(0.37135014200760985115)*log(5)*log(2)+(1.1011428314305904408E-19)*Euler*log(2)^3+(0.08375528431766005824)*log(6)^3+(1.8431436932253575378E-18)*Euler^3*log(6)+(0.056423611111111111103)*log(2)^4-(4.0826988057657276343E-19)*Euler^2*log(4)+(0.112499999999999999984)*log(6)^2*Pi^2+(0.18402777777777777775)*log(5)*log(6)*Pi^2-(0.061111111111111111102)*log(4)^3*log(6)-(0.108333333333333333294)*log(4)*log(5)*log(2)^2+(0.020833333333333333319)*log(4)*log(2)^3-(8.131516293641283255E-20)*Euler^2*log(4)^2-(6.7762635780344027125E-21)*Euler*log(4)^2*log(5)+(0.056052851623790166215)*log(4)^2-(2.6893296075324035765E-19)*Euler^2*log(5)*log(6)-(1.626303258728256651E-19)*Euler^3*log(5)+(4.2986922073155742208E-20)*Euler*Pi^2+(0.66666666666666666706)*zeta(3)*log(2)-(0.4083333333333333333)*log(4)^2*log(6)*log(2)+(0.17352747124434741951)*log(5)^3-(0.23333333333333333333)*log(4)*log(5)^2*log(6)+(0.080867171065326952724)*log(4)*log(5)*log(2)-(1.6940658945086006781E-20)*Euler*log(6)^2*log(2)-(0.13125)*log(6)^3*log(2)+(0.49675547940129413833)*log(5)*log(2)^2-(1.3552527156068805425E-20)*Euler*log(4)*log(2)^2+(0.11874999999999999999)*log(5)^2*log(6)^2+(3.8963515573697815597E-20)*Euler*log(5)*Pi^2-(0.10416666666666666666)*log(4)^3*log(5)-(0.1208194043892682449)*log(4)*Pi^2-(7.284483346386982916E-20)*Euler*log(2)*Pi^2+(8.131516293641283255E-20)*Euler*log(5)*log(2)+(0.18042011616407459749)*log(5)^2+(0.40833333333333333333)*log(4)*log(6)^2*log(2)+(0.028026425811895083111)*log(4)*log(2)+(1.6940658945086006781E-19)*Euler^2*log(5)^2+(0.26570641921464570196)*log(4)^2*log(6)-(1.0164395367051604069E-20)*Euler*log(5)^2*log(6)+(1.084202172485504434E-19)*Euler^2*log(6)*log(2)+(0.31666666666666666664)*log(4)^2*log(5)*log(6)+(1.176528763736223171E-18)*Euler^3*log(4)+(3.0323779511703952139E-19)*Euler^2*log(4)*log(5)-(0.19861111111111111116)*log(6)*log(2)*Pi^2-(0.08760610198743753216)*log(4)^3+(0.19513888888888888883)*log(4)*log(2)*Pi^2-(0.17430555555555555551)*log(4)*log(5)*Pi^2+(0.11666666666666666666)*log(4)^2*log(5)^2-(1.084202172485504434E-19)*Euler^2*log(6)+(1.3044307387716225222E-19)*Euler*log(2)+(0.11249999999999999996)*log(5)*log(6)*log(2)^2-(0.26805555555555555557)*log(5)*log(2)^3+(0.13645833333333333334)*log(6)^2*log(2)^2+(0.09795428240740740744)*Pi^4+(0.033333333333333333352)*log(5)^3*log(6) +/- 0.010448924004628639662
               
      
      */
#endif      
       
    }
  catch(std::exception &p)
    {
      std::cerr<<"******************************************************************"<<endl;
      std::cerr<<"   >>>ERROR:  "<<p.what()<<endl;
      std::cerr<<"******************************************************************"<<endl;
      return 1;
    }
  return 0;
}