int test_perfmonstop_nostart() { CpuInfo_t cpuinfo; int cpu = 0; int group; topology_init(); cpuinfo = get_cpuInfo(); if (cpuinfo->isIntel == 0) { topology_finalize(); return 1; } int ret = perfmon_init(1, &cpu); if (ret != 0) goto fail; ret = perfmon_addEventSet(eventset_ok); if (ret != 0) goto fail; group = ret; ret = perfmon_setupCounters(group); if (ret != 0) goto fail; ret = perfmon_stopCounters(); if (ret == 0) goto fail; perfmon_finalize(); topology_finalize(); return 1; fail: perfmon_finalize(); topology_finalize(); return 0; }
int test_perfmonstop_noadd() { CpuInfo_t cpuinfo; int cpu = 0; int group; topology_init(); cpuinfo = get_cpuInfo(); if (cpuinfo->isIntel == 0) { topology_finalize(); return 1; } int ret = perfmon_init(1, &cpu); if (ret != 0) goto fail; ret = perfmon_stopCounters(); if (ret == 0) goto fail; perfmon_finalize(); topology_finalize(); return 1; fail: perfmon_finalize(); topology_finalize(); return 0; }
void daemon_stop(int sig) { printf("DAEMON: EXIT on %d\n", sig); perfmon_stopCounters(); signal(SIGINT, SIG_DFL); kill(getpid(), SIGINT); }
int main(int argc, char* argv[]) { int i; int* cpus; int gid; double result = 0.0; // Load the topology module and print some values. topology_init(); // CpuInfo_t contains global information like name, CPU family, ... CpuInfo_t info = get_cpuInfo(); // CpuTopology_t contains information about the topology of the CPUs. CpuTopology_t topo = get_cpuTopology(); printf("Likwid example on a %s with %d CPUs\n", info->name, topo->numHWThreads); cpus = malloc(topo->numHWThreads * sizeof(int)); if (!cpus) return 1; for (i=0;i<topo->numHWThreads;i++) { cpus[i] = topo->threadPool[i].apicId; } // Must be called before perfmon_init() but only if you want to use another // access mode as the pre-configured one. For direct access (0) you have to // be root. //accessClient_setaccessmode(0); // Initialize the perfmon module. perfmon_init(topo->numHWThreads, cpus); // Add eventset string to the perfmon module. gid = perfmon_addEventSet(EVENTSET); // Setup the eventset identified by group ID (gid). perfmon_setupCounters(gid); // Start all counters in the previously set up event set. perfmon_startCounters(); // Perform something sleep(2); // Stop all counters in the previously started event set. perfmon_stopCounters(); // Print the result of every thread/CPU. for (i = 0;i < topo->numHWThreads; i++) { result = perfmon_getResult(gid, 0, i); printf("Measurement result for event set %s at CPU %d: %f\n", EVENTSET, cpus[i], result); } // Uninitialize the perfmon module. perfmon_finalize(); // Uninitialize the topology module. topology_finalize(); return 0; }
int test_perfmonstop_noinit() { int ret = perfmon_stopCounters(); if (ret == 0) goto fail; return 1; fail: return 0; }
static int lua_likwid_stopCounters(lua_State* L) { int ret; if (perfmon_isInitialized == 0) { return 0; } ret = perfmon_stopCounters(); lua_pushnumber(L,ret); return 1; }
void multiplex_stop() { struct itimerval val; val.it_interval.tv_sec = 0; val.it_interval.tv_usec = 0; val.it_value.tv_sec = 0; val.it_value.tv_usec = 0; timer_stopCycles(&timeData); setitimer(ITIMER_REAL, &val,0); perfmon_stopCounters(); multiplex_set->time = timer_printCyclesTime(&timeData); }
void daemon_interrupt(int sig) { if (daemon_run) { perfmon_stopCounters(); daemon_run = 0; printf("DAEMON: STOP on %d\n",sig); } else { perfmon_setupEventSet(eventString, NULL); perfmon_startCounters(); daemon_run = 1; printf("DAEMON: START\n"); } }
int test_perfmonresult() { CpuInfo_t cpuinfo; int cpu = 0; int group; topology_init(); cpuinfo = get_cpuInfo(); if (cpuinfo->isIntel == 0) { topology_finalize(); return 1; } int ret = perfmon_init(1, &cpu); if (ret != 0) goto fail; ret = perfmon_addEventSet(eventset_ok); if (ret != 0) goto fail; group = ret; ret = perfmon_setupCounters(group); if (ret != 0) goto fail; ret = perfmon_startCounters(); if (ret != 0) goto fail; sleep(1); ret = perfmon_stopCounters(); if (ret != 0) goto fail; if ((perfmon_getResult(group,0,0) == 0)||(perfmon_getResult(group,1,0) == 0)) goto fail; if (perfmon_getTimeOfGroup(group) == 0) goto fail; perfmon_finalize(); topology_finalize(); return 1; fail: perfmon_finalize(); topology_finalize(); return 0; }
int main(int argn, char** argc) { int err, i ,j; int numCPUs = 0; int gid; DATATYPE *a,*b,*c,*d; TimeData timer; double triad_time, copy_time, scale_time, stream_time; char estr[1024]; double result, scalar = 3.0; char* ptr; if (argn != 3) { printf("Usage: %s <cpustr> <events>\n", argc[0]); return 1; } strcpy(estr, argc[2]); allocate_vector(&a, SIZE); allocate_vector(&b, SIZE); allocate_vector(&c, SIZE); allocate_vector(&d, SIZE); err = topology_init(); if (err < 0) { printf("Failed to initialize LIKWID's topology module\n"); return 1; } CpuTopology_t topo = get_cpuTopology(); affinity_init(); int* cpus = (int*)malloc(topo->numHWThreads * sizeof(int)); if (!cpus) return 1; numCPUs = cpustr_to_cpulist(argc[1], cpus, topo->numHWThreads); omp_set_num_threads(numCPUs); err = perfmon_init(numCPUs, cpus); if (err < 0) { printf("Failed to initialize LIKWID's performance monitoring module\n"); affinity_finalize(); topology_finalize(); return 1; } gid = perfmon_addEventSet(estr); if (gid < 0) { printf("Failed to add event string %s to LIKWID's performance monitoring module\n", estr); perfmon_finalize(); affinity_finalize(); topology_finalize(); return 1; } err = perfmon_setupCounters(gid); if (err < 0) { printf("Failed to setup group %d in LIKWID's performance monitoring module\n", gid); perfmon_finalize(); affinity_finalize(); topology_finalize(); return 1; } #ifdef _OPENMP printf(HLINE); #pragma omp parallel { #pragma omp master { printf ("Number of Threads requested = %i\n",omp_get_num_threads()); } likwid_pinThread(cpus[omp_get_thread_num()]); printf ("Thread %d running on processor %d ....\n",omp_get_thread_num(),sched_getcpu()); } #endif #pragma omp parallel for for (int j=0; j<SIZE; j++) { a[j] = 1.0; b[j] = 2.0; c[j] = 0.0; d[j] = 1.0; } err = perfmon_startCounters(); if (err < 0) { printf("Failed to start counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } time_start(&timer); #pragma omp parallel { for (int k=0; k<ITER; k++) { LIKWID_MARKER_START("copy"); #pragma omp for for (int j=0; j<SIZE; j++) { c[j] = a[j]; } LIKWID_MARKER_STOP("copy"); } } time_stop(&timer); err = perfmon_stopCounters(); copy_time = time_print(&timer)/(double)ITER; if (err < 0) { printf("Failed to stop counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } printf("Processed %.1f Mbyte at copy benchmark in %.4f seconds: %.2f MByte/s\n", 1E-6*(2*SIZE*sizeof(DATATYPE)), copy_time, 1E-6*((2*SIZE*sizeof(DATATYPE))/copy_time)); ptr = strtok(estr,","); j = 0; while (ptr != NULL) { for (i = 0;i < numCPUs; i++) { result = perfmon_getResult(gid, j, cpus[i]); printf("Measurement result for event set %s at CPU %d: %f\n", ptr, cpus[i], result); } ptr = strtok(NULL,","); j++; } strcpy(estr, argc[2]); perfmon_setupCounters(gid); err = perfmon_startCounters(); if (err < 0) { printf("Failed to start counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } time_start(&timer); #pragma omp parallel { for (int k=0; k<ITER; k++) { LIKWID_MARKER_START("scale"); #pragma omp for for (int j=0; j<SIZE; j++) { b[j] = scalar*c[j]; } LIKWID_MARKER_STOP("scale"); } } time_stop(&timer); err = perfmon_stopCounters(); scale_time = time_print(&timer)/(double)ITER; if (err < 0) { printf("Failed to stop counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } printf("Processed %.1f Mbyte at scale benchmark in %.4f seconds: %.2f MByte/s\n", 1E-6*(2*SIZE*sizeof(DATATYPE)), copy_time, 1E-6*((2*SIZE*sizeof(DATATYPE))/copy_time)); ptr = strtok(estr,","); j = 0; while (ptr != NULL) { for (i = 0;i < numCPUs; i++) { result = perfmon_getResult(gid, j, cpus[i]); printf("Measurement result for event set %s at CPU %d: %f\n", ptr, cpus[i], result); } ptr = strtok(NULL,","); j++; } strcpy(estr, argc[2]); perfmon_setupCounters(gid); err = perfmon_startCounters(); if (err < 0) { printf("Failed to start counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } time_start(&timer); #pragma omp parallel { for (int k=0; k<ITER; k++) { LIKWID_MARKER_START("stream"); #pragma omp for for (int j=0; j<SIZE; j++) { c[j] = a[j] + b[j]; } LIKWID_MARKER_STOP("stream"); } } time_stop(&timer); err = perfmon_stopCounters(); stream_time = time_print(&timer)/(double)ITER; if (err < 0) { printf("Failed to stop counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } printf("Processed %.1f Mbyte at stream benchmark in %.4f seconds: %.2f MByte/s\n", 1E-6*(2*SIZE*sizeof(DATATYPE)), copy_time, 1E-6*((2*SIZE*sizeof(DATATYPE))/copy_time)); ptr = strtok(estr,","); j = 0; while (ptr != NULL) { for (i = 0;i < numCPUs; i++) { result = perfmon_getResult(gid, j, cpus[i]); printf("Measurement result for event set %s at CPU %d: %f\n", ptr, cpus[i], result); } ptr = strtok(NULL,","); j++; } strcpy(estr, argc[2]); perfmon_setupCounters(gid); err = perfmon_startCounters(); if (err < 0) { printf("Failed to start counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } time_start(&timer); #pragma omp parallel { for (int k=0; k<ITER; k++) { LIKWID_MARKER_START("triad"); #pragma omp for for (int j=0; j<SIZE; j++) { a[j] = b[j] + c[j] * scalar; } LIKWID_MARKER_STOP("triad"); } } time_stop(&timer); err = perfmon_stopCounters(); triad_time = time_print(&timer)/(double)ITER; if (err < 0) { printf("Failed to stop counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } printf("Processed %.1f Mbyte at triad benchmark in %.4f seconds: %.2f MByte/s\n", 1E-6*(4*SIZE*sizeof(DATATYPE)), triad_time, 1E-6*((4*SIZE*sizeof(DATATYPE))/triad_time)); ptr = strtok(estr,","); j = 0; while (ptr != NULL) { for (i = 0;i < numCPUs; i++) { result = perfmon_getResult(gid, j, cpus[i]); printf("Measurement result for event set %s at CPU %d: %f\n", ptr, cpus[i], result); } ptr = strtok(NULL,","); j++; } perfmon_finalize(); affinity_finalize(); topology_finalize(); return 0; }
int main (int argc, char** argv) { int socket_fd = -1; int optInfo = 0; int optClock = 0; int optStethoscope = 0; int optSockets = 0; double runtime; int hasDRAM = 0; int c; bstring argString; bstring eventString = bfromcstr("CLOCK"); int numSockets=1; int numThreads=0; int threadsSockets[MAX_NUM_NODES*2]; int threads[MAX_NUM_THREADS]; threadsSockets[0] = 0; if (argc == 1) { HELP_MSG; exit (EXIT_SUCCESS); } while ((c = getopt (argc, argv, "+c:hiM:ps:v")) != -1) { switch (c) { case 'c': CHECK_OPTION_STRING; numSockets = bstr_to_cpuset_physical((uint32_t*) threadsSockets, argString); bdestroy(argString); optSockets = 1; break; case 'h': HELP_MSG; exit (EXIT_SUCCESS); case 'i': optInfo = 1; break; case 'M': /* Set MSR Access mode */ CHECK_OPTION_STRING; accessClient_setaccessmode(str2int((char*) argString->data)); bdestroy(argString); break; case 'p': optClock = 1; break; case 's': CHECK_OPTION_STRING; optStethoscope = str2int((char*) argString->data); bdestroy(argString); break; case 'v': VERSION_MSG; exit (EXIT_SUCCESS); case '?': if (optopt == 's' || optopt == 'M' || optopt == 'c') { HELP_MSG; } else if (isprint (optopt)) { fprintf (stderr, "Unknown option `-%c'.\n", optopt); } else { fprintf (stderr, "Unknown option character `\\x%x'.\n", optopt); } exit( EXIT_FAILURE); default: HELP_MSG; exit (EXIT_SUCCESS); } } if (!lock_check()) { fprintf(stderr,"Access to performance counters is locked.\n"); exit(EXIT_FAILURE); } if (optClock && optind == argc) { fprintf(stderr,"Commandline option -p requires an executable.\n"); exit(EXIT_FAILURE); } if (optSockets && !optStethoscope && optind == argc) { fprintf(stderr,"Commandline option -c requires an executable if not used in combination with -s.\n"); exit(EXIT_FAILURE); } if (cpuid_init() == EXIT_FAILURE) { fprintf(stderr, "CPU not supported\n"); exit(EXIT_FAILURE); } if (numSockets > cpuid_topology.numSockets) { fprintf(stderr, "System has only %d sockets but %d are given on commandline\n", cpuid_topology.numSockets, numSockets); exit(EXIT_FAILURE); } numa_init(); /* consider NUMA node as power unit for the moment */ accessClient_init(&socket_fd); msr_init(socket_fd); timer_init(); /* check for supported processors */ if ((cpuid_info.model == SANDYBRIDGE_EP) || (cpuid_info.model == SANDYBRIDGE) || (cpuid_info.model == IVYBRIDGE) || (cpuid_info.model == IVYBRIDGE_EP) || (cpuid_info.model == HASWELL) || (cpuid_info.model == NEHALEM_BLOOMFIELD) || (cpuid_info.model == NEHALEM_LYNNFIELD) || (cpuid_info.model == NEHALEM_WESTMERE)) { power_init(numa_info.nodes[0].processors[0]); } else { fprintf (stderr, "Query Turbo Mode only supported on Intel Nehalem/Westmere/SandyBridge/IvyBridge/Haswell processors!\n"); exit(EXIT_FAILURE); } double clock = (double) timer_getCpuClock(); printf(HLINE); printf("CPU name:\t%s \n",cpuid_info.name); printf("CPU clock:\t%3.2f GHz \n", (float) clock * 1.E-09); printf(HLINE); if (optInfo) { if (power_info.turbo.numSteps != 0) { printf("Base clock:\t%.2f MHz \n", power_info.baseFrequency ); printf("Minimal clock:\t%.2f MHz \n", power_info.minFrequency ); printf("Turbo Boost Steps:\n"); for (int i=0; i < power_info.turbo.numSteps; i++ ) { printf("C%d %.2f MHz \n",i+1, power_info.turbo.steps[i] ); } } printf(HLINE); } if (cpuid_info.model == SANDYBRIDGE_EP) { hasDRAM = 1; } else if ((cpuid_info.model != SANDYBRIDGE) && (cpuid_info.model != SANDYBRIDGE_EP) && (cpuid_info.model != IVYBRIDGE) && (cpuid_info.model != IVYBRIDGE_EP) && (cpuid_info.model != HASWELL)) { fprintf (stderr, "RAPL not supported on this processor!\n"); exit(EXIT_FAILURE); } if (optInfo) { printf("Thermal Spec Power: %g Watts \n", power_info.tdp ); printf("Minimum Power: %g Watts \n", power_info.minPower); printf("Maximum Power: %g Watts \n", power_info.maxPower); printf("Maximum Time Window: %g micro sec \n", power_info.maxTimeWindow); printf(HLINE); exit(EXIT_SUCCESS); } if (optClock) { affinity_init(); argString = bformat("S%u:0-%u", threadsSockets[0], cpuid_topology.numCoresPerSocket-1); for (int i=1; i<numSockets; i++) { bstring tExpr = bformat("@S%u:0-%u", threadsSockets[i], cpuid_topology.numCoresPerSocket-1); bconcat(argString, tExpr); } numThreads = bstr_to_cpuset(threads, argString); bdestroy(argString); perfmon_init(numThreads, threads, stdout); perfmon_setupEventSet(eventString, NULL); } { PowerData pDataPkg[MAX_NUM_NODES*2]; PowerData pDataDram[MAX_NUM_NODES*2]; printf("Measure on sockets: %d", threadsSockets[0]); for (int i=1; i<numSockets; i++) { printf(", %d", threadsSockets[i]); } printf("\n"); if (optStethoscope) { if (optClock) { perfmon_startCounters(); } else { for (int i=0; i<numSockets; i++) { int cpuId = numa_info.nodes[threadsSockets[i]].processors[0]; if (hasDRAM) power_start(pDataDram+i, cpuId, DRAM); power_start(pDataPkg+i, cpuId, PKG); } } sleep(optStethoscope); if (optClock) { perfmon_stopCounters(); perfmon_printCounterResults(); perfmon_finalize(); } else { for (int i=0; i<numSockets; i++) { int cpuId = numa_info.nodes[threadsSockets[i]].processors[0]; power_stop(pDataPkg+i, cpuId, PKG); if (hasDRAM) power_stop(pDataDram+i, cpuId, DRAM); } } runtime = (double) optStethoscope; } else { TimerData time; argv += optind; bstring exeString = bfromcstr(argv[0]); for (int i=1; i<(argc-optind); i++) { bconchar(exeString, ' '); bcatcstr(exeString, argv[i]); } printf("%s\n",bdata(exeString)); if (optClock) { perfmon_startCounters(); } else { for (int i=0; i<numSockets; i++) { int cpuId = numa_info.nodes[threadsSockets[i]].processors[0]; if (hasDRAM) power_start(pDataDram+i, cpuId, DRAM); power_start(pDataPkg+i, cpuId, PKG); } timer_start(&time); } if (system(bdata(exeString)) == EOF) { fprintf(stderr, "Failed to execute %s!\n", bdata(exeString)); exit(EXIT_FAILURE); } if (optClock) { perfmon_stopCounters(); perfmon_printCounterResults(); perfmon_finalize(); } else { timer_stop(&time); for (int i=0; i<numSockets; i++) { int cpuId = numa_info.nodes[threadsSockets[i]].processors[0]; power_stop(pDataPkg+i, cpuId, PKG); if (hasDRAM) power_stop(pDataDram+i, cpuId, DRAM); } runtime = timer_print(&time); } } if (!optClock) { printf("Runtime: %g second \n",runtime); printf(HLINE); for (int i=0; i<numSockets; i++) { printf("Socket %d\n",threadsSockets[i]); printf("Domain: PKG \n"); printf("Energy consumed: %g Joules \n", power_printEnergy(pDataPkg+i)); printf("Power consumed: %g Watts \n", power_printEnergy(pDataPkg+i) / runtime ); if (hasDRAM) { printf("Domain: DRAM \n"); printf("Energy consumed: %g Joules \n", power_printEnergy(pDataDram+i)); printf("Power consumed: %g Watts \n", power_printEnergy(pDataDram+i) / runtime ); } printf("\n"); } } } #if 0 if ( cpuid_hasFeature(TM2) ) { thermal_init(0); printf("Current core temperatures:\n"); for (uint32_t i = 0; i < cpuid_topology.numCoresPerSocket; i++ ) { printf("Core %d: %u C\n", numa_info.nodes[socketId].processors[i], thermal_read(numa_info.nodes[socketId].processors[i])); } } #endif msr_finalize(); return EXIT_SUCCESS; }
int main(int argc, char* argv[]) { int i, j; int err; int* cpus; int gid; double result = 0.0; char estr[] = "INSTR_RETIRED_ANY:FIXC0,CPU_CLK_UNHALTED_CORE:FIXC1,CPU_CLK_UNHALTED_REF:FIXC2,TEMP_CORE:TMP0"; // Load the topology module and print some values. err = topology_init(); if (err < 0) { printf("Failed to initialize LIKWID's topology module\n"); return 1; } // CpuInfo_t contains global information like name, CPU family, ... CpuInfo_t info = get_cpuInfo(); // CpuTopology_t contains information about the topology of the CPUs. CpuTopology_t topo = get_cpuTopology(); // Create affinity domains. Commonly only needed when reading Uncore counters //affinity_init(); printf("Likwid example on a %s with %d CPUs\n", info->name, topo->numHWThreads); cpus = (int*)malloc(topo->numHWThreads * sizeof(int)); if (!cpus) return 1; for (i=0;i<topo->numHWThreads;i++) { cpus[i] = topo->threadPool[i].apicId; } // Must be called before perfmon_init() but only if you want to use another // access mode as the pre-configured one. For direct access (0) you have to // be root. //accessClient_setaccessmode(0); // Initialize the perfmon module. err = perfmon_init(topo->numHWThreads, cpus); if (err < 0) { printf("Failed to initialize LIKWID's performance monitoring module\n"); topology_finalize(); return 1; } // Add eventset string to the perfmon module. gid = perfmon_addEventSet(estr); if (gid < 0) { printf("Failed to add event string %s to LIKWID's performance monitoring module\n", estr); perfmon_finalize(); topology_finalize(); return 1; } // Setup the eventset identified by group ID (gid). err = perfmon_setupCounters(gid); if (err < 0) { printf("Failed to setup group %d in LIKWID's performance monitoring module\n", gid); perfmon_finalize(); topology_finalize(); return 1; } // Start all counters in the previously set up event set. err = perfmon_startCounters(); if (err < 0) { printf("Failed to start counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } // Perform something sleep(2); // Stop all counters in the previously started event set. err = perfmon_stopCounters(); if (err < 0) { printf("Failed to stop counters for group %d for thread %d\n",gid, (-1*err)-1); perfmon_finalize(); topology_finalize(); return 1; } // Print the result of every thread/CPU for all events in estr. char* ptr = strtok(estr,","); j = 0; while (ptr != NULL) { for (i = 0;i < topo->numHWThreads; i++) { result = perfmon_getResult(gid, j, cpus[i]); printf("Measurement result for event set %s at CPU %d: %f\n", ptr, cpus[i], result); } ptr = strtok(NULL,","); j++; } // Uninitialize the perfmon module. perfmon_finalize(); // Uninitialize the topology module. topology_finalize(); return 0; }