/* Subroutine */ int dlasda_(integer *icompq, integer *smlsiz, integer *n, integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal *poles, integer *givptr, integer *givcol, integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static doublereal beta; static integer idxq, nlvl, i__, j, m; static doublereal alpha; static integer inode, ndiml, ndimr, idxqi, itemp; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer sqrei, i1; extern /* Subroutine */ int dlasd6_(integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *); static integer ic, nwork1, lf, nd, nwork2, ll, nl, vf, nr, vl; extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dlasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *), dlaset_( char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); static integer im1, smlszp, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1; #define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1] #define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1] #define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1] #define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1] #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] #define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1] #define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1] #define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1] /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1999 Purpose ======= Using a divide and conquer approach, DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes the singular values in the SVD B = U * S * VT. The orthogonal matrices U and VT are optionally computed in compact form. A related subroutine, DLASD0, computes the singular values and the singular vectors in explicit form. Arguments ========= ICOMPQ (input) INTEGER Specifies whether singular vectors are to be computed in compact form, as follows = 0: Compute singular values only. = 1: Compute singular vectors of upper bidiagonal matrix in compact form. SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array D. SQRE (input) INTEGER Specifies the column dimension of the bidiagonal matrix. = 0: The bidiagonal matrix has column dimension M = N; = 1: The bidiagonal matrix has column dimension M = N + 1. D (input/output) DOUBLE PRECISION array, dimension ( N ) On entry D contains the main diagonal of the bidiagonal matrix. On exit D, if INFO = 0, contains its singular values. E (input) DOUBLE PRECISION array, dimension ( M-1 ) Contains the subdiagonal entries of the bidiagonal matrix. On exit, E has been destroyed. U (output) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (output) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (output) INTEGER array, dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th secular equation on the computation tree. DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), where NLVL = floor(log_2 (N/SMLSIZ))). DIFR (output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(1:N, 2 * I ) contains the normalizing factors for the right singular vector matrix. See DLASD8 for details. Z (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. The first K elements of Z(1, I) contain the components of the deflation-adjusted updating row vector for subproblems on the I-th level. POLES (output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and POLES(1, 2*I) contain the new and old singular values involved in the secular equations on the I-th level. GIVPTR (output) INTEGER array, dimension ( N ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (output) INTEGER array, dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records permutations done on the I-th level of the computation tree. GIVNUM (output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (output) DOUBLE PRECISION array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (output) DOUBLE PRECISION array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. WORK (workspace) DOUBLE PRECISION array, dimension (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). IWORK (workspace) INTEGER array. Dimension must be at least (7 * N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an singular value did not converge Further Details =============== Based on contributions by Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ --d__; --e; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1 * 1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1 * 1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; --c__; --s; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*sqre < 0 || *sqre > 1) { *info = -4; } else if (*ldu < *n + *sqre) { *info = -8; } else if (*ldgcol < *n) { *info = -17; } if (*info != 0) { i__1 = -(*info); xerbla_("DLASDA", &i__1); return 0; } m = *n + *sqre; /* If the input matrix is too small, call DLASDQ to find the SVD. */ if (*n <= *smlsiz) { if (*icompq == 0) { dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[ vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, & work[1], info); } else { dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset] , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info); } return 0; } /* Book-keeping and set up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; idxq = ndimr + *n; iwk = idxq + *n; ncc = 0; nru = 0; smlszp = *smlsiz + 1; vf = 1; vl = vf + m; nwork1 = vl + m; nwork2 = nwork1 + smlszp * smlszp; dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* for the nodes on bottom level of the tree, solve their subproblems by DLASDQ. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nlp1 = nl + 1; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; idxqi = idxq + nlf - 2; vfi = vf + nlf - 1; vli = vl + nlf - 1; sqrei = 1; if (*icompq == 0) { dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp); dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], & work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], &nl, &work[nwork2], info); itemp = nwork1 + nl * smlszp; dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1); dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1); } else { dlaset_("A", &nl, &nl, &c_b11, &c_b12, &u_ref(nlf, 1), ldu); dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt_ref(nlf, 1), ldu); dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], & vt_ref(nlf, 1), ldu, &u_ref(nlf, 1), ldu, &u_ref(nlf, 1), ldu, &work[nwork1], info); dcopy_(&nlp1, &vt_ref(nlf, 1), &c__1, &work[vfi], &c__1); dcopy_(&nlp1, &vt_ref(nlf, nlp1), &c__1, &work[vli], &c__1); } if (*info != 0) { return 0; } i__2 = nl; for (j = 1; j <= i__2; ++j) { iwork[idxqi + j] = j; /* L10: */ } if (i__ == nd && *sqre == 0) { sqrei = 0; } else { sqrei = 1; } idxqi += nlp1; vfi += nlp1; vli += nlp1; nrp1 = nr + sqrei; if (*icompq == 0) { dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp); dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], & work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], &nr, &work[nwork2], info); itemp = nwork1 + (nrp1 - 1) * smlszp; dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1); dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1); } else { dlaset_("A", &nr, &nr, &c_b11, &c_b12, &u_ref(nrf, 1), ldu); dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt_ref(nrf, 1), ldu); dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], & vt_ref(nrf, 1), ldu, &u_ref(nrf, 1), ldu, &u_ref(nrf, 1), ldu, &work[nwork1], info); dcopy_(&nrp1, &vt_ref(nrf, 1), &c__1, &work[vfi], &c__1); dcopy_(&nrp1, &vt_ref(nrf, nrp1), &c__1, &work[vli], &c__1); } if (*info != 0) { return 0; } i__2 = nr; for (j = 1; j <= i__2; ++j) { iwork[idxqi + j] = j; /* L20: */ } /* L30: */ } /* Now conquer each subproblem bottom-up. */ j = pow_ii(&c__2, &nlvl); for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqrei = *sqre; } else { sqrei = 1; } vfi = vf + nlf - 1; vli = vl + nlf - 1; idxqi = idxq + nlf - 1; alpha = d__[ic]; beta = e[ic]; if (*icompq == 0) { dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & work[vli], &alpha, &beta, &iwork[idxqi], &perm[ perm_offset], &givptr[1], &givcol[givcol_offset], ldgcol, &givnum[givnum_offset], ldu, &poles[ poles_offset], &difl[difl_offset], &difr[difr_offset], &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1], &iwork[iwk], info); } else { --j; dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & work[vli], &alpha, &beta, &iwork[idxqi], &perm_ref( nlf, lvl), &givptr[j], &givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), & difl_ref(nlf, lvl), &difr_ref(nlf, lvl2), &z___ref( nlf, lvl), &k[j], &c__[j], &s[j], &work[nwork1], & iwork[iwk], info); } if (*info != 0) { return 0; } /* L40: */ } /* L50: */ } return 0; /* End of DLASDA */ } /* dlasda_ */
/* Subroutine */ int clalsa_(integer *icompq, integer *smlsiz, integer *n, integer *nrhs, complex *b, integer *ldb, complex *bx, integer *ldbx, real *u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real *z__, real *poles, integer *givptr, integer *givcol, integer * ldgcol, integer *perm, real *givnum, real *c__, real *s, real *rwork, integer *iwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CLALSA is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form (The singular vectors are computed as products of simple orthorgonal matrices.). If ICOMPQ = 0, CLALSA applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if ICOMPQ = 1, CLALSA applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in compact form by CLALSA. Arguments ========= ICOMPQ (input) INTEGER Specifies whether the left or the right singular vector matrix is involved. = 0: Left singular vector matrix = 1: Right singular vector matrix SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row and column dimensions of the upper bidiagonal matrix. NRHS (input) INTEGER The number of columns of B and BX. NRHS must be at least 1. B (input) COMPLEX array, dimension ( LDB, NRHS ) On input, B contains the right hand sides of the least squares problem in rows 1 through M. On output, B contains the solution X in rows 1 through N. LDB (input) INTEGER The leading dimension of B in the calling subprogram. LDB must be at least max(1,MAX( M, N ) ). BX (output) COMPLEX array, dimension ( LDBX, NRHS ) On exit, the result of applying the left or right singular vector matrix to B. LDBX (input) INTEGER The leading dimension of BX. U (input) REAL array, dimension ( LDU, SMLSIZ ). On entry, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ). On entry, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (input) INTEGER array, dimension ( N ). DIFL (input) REAL array, dimension ( LDU, NLVL ). where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(*, 2 * I) record the normalizing factors of the right singular vectors matrices of subproblems on I-th level. Z (input) REAL array, dimension ( LDU, NLVL ). On entry, Z(1, I) contains the components of the deflation- adjusted updating row vector for subproblems on the I-th level. POLES (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old singular values involved in the secular equations on the I-th level. GIVPTR (input) INTEGER array, dimension ( N ). On entry, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). On entry, PERM(*, I) records permutations done on the I-th level of the computation tree. GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (input) REAL array, dimension ( N ). On entry, if the I-th subproblem is not square, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (input) REAL array, dimension ( N ). On entry, if the I-th subproblem is not square, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. RWORK (workspace) REAL array, dimension at least max ( N, (SMLSZ+1)*NRHS*3 ). IWORK (workspace) INTEGER array. The dimension must be at least 3 * N INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== Based on contributions by Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Osni Marques, LBNL/NERSC, USA ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static real c_b9 = 1.f; static real c_b10 = 0.f; static integer c__2 = 2; /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5, i__6; complex q__1; /* Builtin functions */ double r_imag(complex *); integer pow_ii(integer *, integer *); /* Local variables */ static integer jcol, nlvl, sqre, jrow, i__, j, jimag, jreal, inode, ndiml; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer ndimr; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); static integer i1; extern /* Subroutine */ int clals0_(integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, real *, real *, real *, integer *, real *, real *, real *, integer *); static integer ic, lf, nd, ll, nl, nr; extern /* Subroutine */ int xerbla_(char *, integer *), slasdt_( integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1; #define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1] #define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1] #define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1] #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] #define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1] #define bx_subscr(a_1,a_2) (a_2)*bx_dim1 + a_1 #define bx_ref(a_1,a_2) bx[bx_subscr(a_1,a_2)] #define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1] #define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1] b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1 * 1; bx -= bx_offset; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1 * 1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1 * 1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; --c__; --s; --rwork; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < *smlsiz) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < *n) { *info = -6; } else if (*ldbx < *n) { *info = -8; } else if (*ldu < *n) { *info = -10; } else if (*ldgcol < *n) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("CLALSA", &i__1); return 0; } /* Book-keeping and setting up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* The following code applies back the left singular vector factors. For applying back the right singular vector factors, go to 170. */ if (*icompq == 1) { goto L170; } /* The nodes on the bottom level of the tree were solved by SLASDQ. The corresponding left and right singular vector matrices are in explicit form. First apply back the left singular vector matrices. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */ j = nl * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L10: */ } /* L20: */ } sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u_ref(nlf, 1), ldu, &rwork[( nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[1], &nl); j = nl * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L30: */ } /* L40: */ } sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u_ref(nlf, 1), ldu, &rwork[( nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[nl * *nrhs + 1], & nl); jreal = 0; jimag = nl * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L50: */ } /* L60: */ } /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */ j = nr * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L70: */ } /* L80: */ } sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u_ref(nrf, 1), ldu, &rwork[( nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[1], &nr); j = nr * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L90: */ } /* L100: */ } sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u_ref(nrf, 1), ldu, &rwork[( nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[nr * *nrhs + 1], & nr); jreal = 0; jimag = nr * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L110: */ } /* L120: */ } /* L130: */ } /* Next copy the rows of B that correspond to unchanged rows in the bidiagonal matrix to BX. */ i__1 = nd; for (i__ = 1; i__ <= i__1; ++i__) { ic = iwork[inode + i__ - 1]; ccopy_(nrhs, &b_ref(ic, 1), ldb, &bx_ref(ic, 1), ldbx); /* L140: */ } /* Finally go through the left singular vector matrices of all the other subproblems bottom-up on the tree. */ j = pow_ii(&c__2, &nlvl); sqre = 0; for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* find the first node LF and last node LL on the current level LVL */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; --j; clals0_(icompq, &nl, &nr, &sqre, nrhs, &bx_ref(nlf, 1), ldbx, & b_ref(nlf, 1), ldb, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &rwork[1], info); /* L150: */ } /* L160: */ } goto L330; /* ICOMPQ = 1: applying back the right singular vector factors. */ L170: /* First now go through the right singular vector matrices of all the tree nodes top-down. */ j = 0; i__1 = nlvl; for (lvl = 1; lvl <= i__1; ++lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__2 = lvl - 1; lf = pow_ii(&c__2, &i__2); ll = (lf << 1) - 1; } i__2 = lf; for (i__ = ll; i__ >= i__2; --i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqre = 0; } else { sqre = 1; } ++j; clals0_(icompq, &nl, &nr, &sqre, nrhs, &b_ref(nlf, 1), ldb, & bx_ref(nlf, 1), ldbx, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &rwork[1], info); /* L180: */ } /* L190: */ } /* The nodes on the bottom level of the tree were solved by SLASDQ. The corresponding right singular vector matrices are in explicit form. Apply them back. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlp1 = nl + 1; if (i__ == nd) { nrp1 = nr; } else { nrp1 = nr + 1; } nlf = ic - nl; nrf = ic + 1; /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */ j = nlp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L200: */ } /* L210: */ } sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt_ref(nlf, 1), ldu, & rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[1], & nlp1); j = nlp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L220: */ } /* L230: */ } sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt_ref(nlf, 1), ldu, & rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[nlp1 * * nrhs + 1], &nlp1); jreal = 0; jimag = nlp1 * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L240: */ } /* L250: */ } /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */ j = nrp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L260: */ } /* L270: */ } sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt_ref(nrf, 1), ldu, & rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[1], & nrp1); j = nrp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L280: */ } /* L290: */ } sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt_ref(nrf, 1), ldu, & rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[nrp1 * * nrhs + 1], &nrp1); jreal = 0; jimag = nrp1 * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L300: */ } /* L310: */ } /* L320: */ } L330: return 0; /* End of CLALSA */ } /* clalsa_ */
/* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n, integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer * ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal * poles, integer *givptr, integer *givcol, integer *ldgcol, integer * perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal * work, integer *iwork, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static integer nlvl, sqre, i__, j; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static integer inode, ndiml, ndimr; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer i1; extern /* Subroutine */ int dlals0_(integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dopbl3_(char *, integer *, integer *, integer *) ; static integer ic, lf, nd, ll, nl, nr; extern /* Subroutine */ int dlasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *), xerbla_(char *, integer *); static integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1; #define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1] #define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1] #define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1] #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] #define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1] #define bx_ref(a_1,a_2) bx[(a_2)*bx_dim1 + a_1] #define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1] #define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1] /* -- LAPACK routine (instrumented to count ops, version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DLALSA is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form (The singular vectors are computed as products of simple orthorgonal matrices.). If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if ICOMPQ = 1, DLALSA applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in compact form by DLALSA. Arguments ========= ICOMPQ (input) INTEGER Specifies whether the left or the right singular vector matrix is involved. = 0: Left singular vector matrix = 1: Right singular vector matrix SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row and column dimensions of the upper bidiagonal matrix. NRHS (input) INTEGER The number of columns of B and BX. NRHS must be at least 1. B (input) DOUBLE PRECISION array, dimension ( LDB, NRHS ) On input, B contains the right hand sides of the least squares problem in rows 1 through M. On output, B contains the solution X in rows 1 through N. LDB (input) INTEGER The leading dimension of B in the calling subprogram. LDB must be at least max(1,MAX( M, N ) ). BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) On exit, the result of applying the left or right singular vector matrix to B. LDBX (input) INTEGER The leading dimension of BX. U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). On entry, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). On entry, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (input) INTEGER array, dimension ( N ). DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(*, 2 * I) record the normalizing factors of the right singular vectors matrices of subproblems on I-th level. Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). On entry, Z(1, I) contains the components of the deflation- adjusted updating row vector for subproblems on the I-th level. POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old singular values involved in the secular equations on the I-th level. GIVPTR (input) INTEGER array, dimension ( N ). On entry, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). On entry, PERM(*, I) records permutations done on the I-th level of the computation tree. GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (input) DOUBLE PRECISION array, dimension ( N ). On entry, if the I-th subproblem is not square, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (input) DOUBLE PRECISION array, dimension ( N ). On entry, if the I-th subproblem is not square, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. WORK (workspace) DOUBLE PRECISION array. The dimension must be at least N. IWORK (workspace) INTEGER array. The dimension must be at least 3 * N INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. ===================================================================== Test the input parameters. Parameter adjustments */ b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1 * 1; bx -= bx_offset; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1 * 1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1 * 1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; --c__; --s; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < *smlsiz) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < *n) { *info = -6; } else if (*ldbx < *n) { *info = -8; } else if (*ldu < *n) { *info = -10; } else if (*ldgcol < *n) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("DLALSA", &i__1); return 0; } /* Book-keeping and setting up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* The following code applies back the left singular vector factors. For applying back the right singular vector factors, go to 50. */ if (*icompq == 1) { goto L50; } /* The nodes on the bottom level of the tree were solved by DLASDQ. The corresponding left and right singular vector matrices are in explicit form. First apply back the left singular vector matrices. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; latime_1.ops += dopbl3_("DGEMM ", &nl, nrhs, &nl); latime_1.ops += dopbl3_("DGEMM ", &nr, nrhs, &nr); dgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u_ref(nlf, 1), ldu, &b_ref( nlf, 1), ldb, &c_b10, &bx_ref(nlf, 1), ldbx); dgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u_ref(nrf, 1), ldu, &b_ref( nrf, 1), ldb, &c_b10, &bx_ref(nrf, 1), ldbx); /* L10: */ } /* Next copy the rows of B that correspond to unchanged rows in the bidiagonal matrix to BX. */ i__1 = nd; for (i__ = 1; i__ <= i__1; ++i__) { ic = iwork[inode + i__ - 1]; dcopy_(nrhs, &b_ref(ic, 1), ldb, &bx_ref(ic, 1), ldbx); /* L20: */ } /* Finally go through the left singular vector matrices of all the other subproblems bottom-up on the tree. */ j = pow_ii(&c__2, &nlvl); sqre = 0; for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* find the first node LF and last node LL on the current level LVL */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; --j; dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx_ref(nlf, 1), ldbx, & b_ref(nlf, 1), ldb, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &work[1], info); /* L30: */ } /* L40: */ } goto L90; /* ICOMPQ = 1: applying back the right singular vector factors. */ L50: /* First now go through the right singular vector matrices of all the tree nodes top-down. */ j = 0; i__1 = nlvl; for (lvl = 1; lvl <= i__1; ++lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__2 = lvl - 1; lf = pow_ii(&c__2, &i__2); ll = (lf << 1) - 1; } i__2 = lf; for (i__ = ll; i__ >= i__2; --i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqre = 0; } else { sqre = 1; } ++j; dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b_ref(nlf, 1), ldb, & bx_ref(nlf, 1), ldbx, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &work[1], info); /* L60: */ } /* L70: */ } /* The nodes on the bottom level of the tree were solved by DLASDQ. The corresponding right singular vector matrices are in explicit form. Apply them back. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlp1 = nl + 1; if (i__ == nd) { nrp1 = nr; } else { nrp1 = nr + 1; } nlf = ic - nl; nrf = ic + 1; latime_1.ops += dopbl3_("DGEMM ", &nlp1, nrhs, &nlp1); latime_1.ops += dopbl3_("DGEMM ", &nrp1, nrhs, &nrp1); dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt_ref(nlf, 1), ldu, & b_ref(nlf, 1), ldb, &c_b10, &bx_ref(nlf, 1), ldbx); dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt_ref(nrf, 1), ldu, & b_ref(nrf, 1), ldb, &c_b10, &bx_ref(nrf, 1), ldbx); /* L80: */ } L90: return 0; /* End of DLALSA */ } /* dlalsa_ */