示例#1
0
l_int32 main(int    argc,
             char **argv)
{
PIX          *pixs, *pixd;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    fprintf(stderr, "Test binary image:\n");
    pixs = pixRead(BINARY_IMAGE);
    RotateTest(pixs, 1.0, rp);
    pixDestroy(&pixs);

    fprintf(stderr, "Test 2 bpp cmapped image with filled cmap:\n");
    pixs = pixRead(TWO_BPP_IMAGE);
    RotateTest(pixs, 1.0, rp);
    pixDestroy(&pixs);

    fprintf(stderr, "Test 4 bpp cmapped image with unfilled cmap:\n");
    pixs = pixRead(FOUR_BPP_IMAGE1);
    RotateTest(pixs, 1.0, rp);
    pixDestroy(&pixs);

    fprintf(stderr, "Test 4 bpp cmapped image with filled cmap:\n");
    pixs = pixRead(FOUR_BPP_IMAGE2);
    RotateTest(pixs, 1.0, rp);
    pixDestroy(&pixs);

    fprintf(stderr, "Test 8 bpp grayscale image:\n");
    pixs = pixRead(EIGHT_BPP_IMAGE);
    RotateTest(pixs, 1.0, rp);
    pixDestroy(&pixs);

    fprintf(stderr, "Test 8 bpp grayscale cmap image:\n");
    pixs = pixRead(EIGHT_BPP_CMAP_IMAGE1);
    RotateTest(pixs, 1.0, rp);
    pixDestroy(&pixs);

    fprintf(stderr, "Test 8 bpp color cmap image:\n");
    pixs = pixRead(EIGHT_BPP_CMAP_IMAGE2);
    pixd = pixOctreeColorQuant(pixs, 200, 0);
    RotateTest(pixs, 0.25, rp);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

    fprintf(stderr, "Test rgb image:\n");
    pixs = pixRead(RGB_IMAGE);
    RotateTest(pixs, 1.0, rp);
    pixDestroy(&pixs);

    return regTestCleanup(rp);
}
示例#2
0
int main(int    argc,
         char **argv)
{
l_uint8      *data;
l_int32       w, h, n1, n2, n, i, minval, maxval;
l_int32       ncolors, rval, gval, bval, equal;
l_int32      *rmap, *gmap, *bmap;
l_uint32      color;
l_float32     gamma;
BOX          *box;
FILE         *fp;
PIX          *pix1, *pix2, *pix3, *pix4, *pix5, *pix6;
PIX          *pixs, *pixb, *pixg, *pixc, *pixd;
PIX          *pixg2, *pixcs1, *pixcs2, *pixd1, *pixd2;
PIXA         *pixa, *pixa2, *pixa3;
PIXCMAP      *cmap, *cmap2;
RGBA_QUAD    *cta;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    /* ------------------------ (1) ----------------------------*/
        /* Blend with a white background */
    pix1 = pixRead("books_logo.png");
    pixDisplayWithTitle(pix1, 100, 0, NULL, rp->display);
    pix2 = pixAlphaBlendUniform(pix1, 0xffffff00);
    pixDisplayWithTitle(pix2, 100, 150, NULL, rp->display);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 0 */
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 1 */

        /* Generate an alpha layer based on the white background */
    pix3 = pixSetAlphaOverWhite(pix2);
    pixSetSpp(pix3, 3);
    pixWrite("/tmp/alphaops.2.png", pix3, IFF_PNG);  /* without alpha */
    regTestCheckFile(rp, "/tmp/alphaops.2.png");   /* 2 */
    pixSetSpp(pix3, 4);
    regTestWritePixAndCheck(rp, pix3, IFF_PNG);  /* 3, with alpha */
    pixDisplayWithTitle(pix3, 100, 300, NULL, rp->display);

        /* Render on a light yellow background */
    pix4 = pixAlphaBlendUniform(pix3, 0xffffe000);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pix4, 100, 450, NULL, rp->display);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);

    /* ------------------------ (2) ----------------------------*/
    lept_rmdir("alpha");
    lept_mkdir("alpha");
        /* Make the transparency (alpha) layer.
         * pixs is the mask.  We turn it into a transparency (alpha)
         * layer by converting to 8 bpp.  A small convolution fuzzes
         * the mask edges so that you don't see the pixels. */
    pixs = pixRead("feyn-fract.tif");
    pixGetDimensions(pixs, &w, &h, NULL);
    pixg = pixConvert1To8(NULL, pixs, 0, 255);
    pixg2 = pixBlockconvGray(pixg, NULL, 1, 1);
    regTestWritePixAndCheck(rp, pixg2, IFF_JFIF_JPEG);  /* 5 */
    pixDisplayWithTitle(pixg2, 0, 0, "alpha", rp->display);

        /* Make the viewable image.
         * pixc is the image that we see where the alpha layer is
         * opaque -- i.e., greater than 0.  Scale it to the same
         * size as the mask.  To visualize what this will look like
         * when displayed over a black background, create the black
         * background image, pixb, and do the blending with pixcs1
         * explicitly using the alpha layer pixg2. */
    pixc = pixRead("tetons.jpg");
    pixcs1 = pixScaleToSize(pixc, w, h);
    regTestWritePixAndCheck(rp, pixcs1, IFF_JFIF_JPEG);  /* 6 */
    pixDisplayWithTitle(pixcs1, 300, 0, "viewable", rp->display);
    pixb = pixCreateTemplate(pixcs1);  /* black */
    pixd1 = pixBlendWithGrayMask(pixb, pixcs1, pixg2, 0, 0);
    regTestWritePixAndCheck(rp, pixd1, IFF_JFIF_JPEG);  /* 7 */
    pixDisplayWithTitle(pixd1, 600, 0, "alpha-blended 1", rp->display);

        /* Embed the alpha layer pixg2 into the color image pixc.
         * Write it out as is.  Then clean pixcs1 (to 0) under the fully
         * transparent part of the alpha layer, and write that result
         * out as well. */
    pixSetRGBComponent(pixcs1, pixg2, L_ALPHA_CHANNEL);
    pixWrite("/tmp/alpha/pixcs1.png", pixcs1, IFF_PNG);
    pixcs2 = pixSetUnderTransparency(pixcs1, 0, 0);
    pixWrite("/tmp/alpha/pixcs2.png", pixcs2, IFF_PNG);

        /* What will this look like over a black background?
         * Do the blending explicitly and display.  It should
         * look identical to the blended result pixd1 before cleaning. */
    pixd2 = pixBlendWithGrayMask(pixb, pixcs2, pixg2, 0, 0);
    regTestWritePixAndCheck(rp, pixd2, IFF_JFIF_JPEG);  /* 8 */
    pixDisplayWithTitle(pixd2, 0, 400, "alpha blended 2", rp->display);

        /* Read the two images back, ignoring the transparency layer.
         * The uncleaned image will come back identical to pixcs1.
         * However, the cleaned image will be black wherever
         * the alpha layer was fully transparent.  It will
         * look the same when viewed through the alpha layer,
         * but have much better compression. */
    pix1 = pixRead("/tmp/alpha/pixcs1.png");  /* just pixcs1 */
    pix2 = pixRead("/tmp/alpha/pixcs2.png");  /* cleaned under transparent */
    n1 = nbytesInFile("/tmp/alpha/pixcs1.png");
    n2 = nbytesInFile("/tmp/alpha/pixcs2.png");
    fprintf(stderr, " Original: %d bytes\n Cleaned: %d bytes\n", n1, n2);
    regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG);  /* 9 */
    regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 10 */
    pixDisplayWithTitle(pix1, 300, 400, "without alpha", rp->display);
    pixDisplayWithTitle(pix2, 600, 400, "cleaned under transparent",
                        rp->display);

    pixa = pixaCreate(0);
    pixSaveTiled(pixg2, pixa, 1.0, 1, 20, 32);
    pixSaveTiled(pixcs1, pixa, 1.0, 1, 20, 0);
    pixSaveTiled(pix1, pixa, 1.0, 0, 20, 0);
    pixSaveTiled(pixd1, pixa, 1.0, 1, 20, 0);
    pixSaveTiled(pixd2, pixa, 1.0, 0, 20, 0);
    pixSaveTiled(pix2, pixa, 1.0, 1, 20, 0);
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 11 */
    pixDisplayWithTitle(pixd, 200, 200, "composite", rp->display);
    pixWrite("/tmp/alpha/alpha.png", pixd, IFF_JFIF_JPEG);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    pixDestroy(&pixs);
    pixDestroy(&pixb);
    pixDestroy(&pixg);
    pixDestroy(&pixg2);
    pixDestroy(&pixc);
    pixDestroy(&pixcs1);
    pixDestroy(&pixcs2);
    pixDestroy(&pixd);
    pixDestroy(&pixd1);
    pixDestroy(&pixd2);
    pixDestroy(&pix1);
    pixDestroy(&pix2);

    /* ------------------------ (3) ----------------------------*/
    color = 0xffffa000;
    gamma = 1.0;
    minval = 0;
    maxval = 200;
    box = boxCreate(0, 85, 600, 100);
    pixa = pixaCreate(6);
    pix1 = pixRead("blend-green1.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-green2.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-green3.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-orange.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-yellow.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-red.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    n = pixaGetCount(pixa);
    pixa2 = pixaCreate(n);
    pixa3 = pixaCreate(n);
    for (i = 0; i < n; i++) {
        pix1 = pixaGetPix(pixa, i, L_CLONE);
        pix2 = DoBlendTest(pix1, box, color, gamma, minval, maxval, 1);
        regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 12, 14, ... 22 */
        pixDisplayWithTitle(pix2, 150 * i, 0, NULL, rp->display);
        pixaAddPix(pixa2, pix2, L_INSERT);
        pix2 = DoBlendTest(pix1, box, color, gamma, minval, maxval, 2);
        regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 13, 15, ... 23 */
        pixDisplayWithTitle(pix2, 150 * i, 200, NULL, rp->display);
        pixaAddPix(pixa3, pix2, L_INSERT);
        pixDestroy(&pix1);
    }
    if (rp->display) {
        pixaConvertToPdf(pixa2, 0, 0.75, L_FLATE_ENCODE, 0, "blend 1 test",
                         "/tmp/alpha/blending1.pdf");
        pixaConvertToPdf(pixa3, 0, 0.75, L_FLATE_ENCODE, 0, "blend 2 test",
                         "/tmp/alpha/blending2.pdf");
    }
    pixaDestroy(&pixa);
    pixaDestroy(&pixa2);
    pixaDestroy(&pixa3);
    boxDestroy(&box);

    /* ------------------------ (4) ----------------------------*/
        /* Use one image as the alpha component for a second image */
    pix1 = pixRead("test24.jpg");
    pix2 = pixRead("marge.jpg");
    pix3 = pixScale(pix2, 1.9, 2.2);
    pix4 = pixConvertTo8(pix3, 0);
    pixSetRGBComponent(pix1, pix4, L_ALPHA_CHANNEL);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 24 */
    pixDisplayWithTitle(pix1, 600, 0, NULL, rp->display);

        /* Set the alpha value in a colormap to bval */
    pix5 = pixOctreeColorQuant(pix1, 128, 0);
    cmap = pixGetColormap(pix5);
    pixcmapToArrays(cmap, &rmap, &gmap, &bmap, NULL);
    n = pixcmapGetCount(cmap);
    for (i = 0; i < n; i++) {
        pixcmapGetColor(cmap, i, &rval, &gval, &bval);
        cta = (RGBA_QUAD *)cmap->array;
        cta[i].alpha = bval;
    }

        /* Test binary serialization/deserialization of colormap with alpha */
    pixcmapSerializeToMemory(cmap, 4, &ncolors, &data);
    cmap2 = pixcmapDeserializeFromMemory(data, 4, ncolors);
    CmapEqual(cmap, cmap2, &equal);
    regTestCompareValues(rp, TRUE, equal, 0.0);  /* 25 */
    pixcmapDestroy(&cmap2);
    lept_free(data);

        /* Test ascii serialization/deserialization of colormap with alpha */
    fp = fopenWriteStream("/tmp/alpha/cmap.4", "w");
    pixcmapWriteStream(fp, cmap);
    fclose(fp);
    fp = fopenReadStream("/tmp/alpha/cmap.4");
    cmap2 = pixcmapReadStream(fp);
    fclose(fp);
    CmapEqual(cmap, cmap2, &equal);
    regTestCompareValues(rp, TRUE, equal, 0.0);  /* 26 */
    pixcmapDestroy(&cmap2);

        /* Test r/w for cmapped pix with non-opaque alpha */
    pixDisplayWithTitle(pix5, 900, 0, NULL, rp->display);
    regTestWritePixAndCheck(rp, pix5, IFF_PNG);  /* 27 */
    pixWrite("/tmp/alpha/fourcomp.png", pix5, IFF_PNG);
    pix6 = pixRead("/tmp/alpha/fourcomp.png");
    regTestComparePix(rp, pix5, pix6);  /* 28 */
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    lept_free(rmap);
    lept_free(gmap);
    lept_free(bmap);
    return regTestCleanup(rp);
}
示例#3
0
static l_int32
TestImage(const char   *filename,
          l_int32       i,
          L_REGPARAMS  *rp)
{
char       buf[256];
l_int32    w, h;
l_float32  factor;
PIX       *pix, *pixs, *pixc, *pix32, *pixt, *pixd;
PIXA      *pixa;

    PROCNAME("TestImage");

    if ((pix = pixRead(filename)) == NULL) {
        rp->success = FALSE;
        return ERROR_INT("pix not made", procName, 1);
    }
    pixGetDimensions(pix, &w, &h, NULL);
    if (w > MAX_WIDTH) {
        factor = (l_float32)MAX_WIDTH / (l_float32)w;
        pixs = pixScale(pix, factor, factor);
    }
    else
        pixs = pixClone(pix);
    pixDestroy(&pix);

    pixa = pixaCreate(0);

        /* Median cut quantizer (no dither; 5 sigbits) */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 32);
    pixc = pixMedianCutQuantGeneral(pixs, 0, 0, 16, 5, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 0, 0, 128, 5, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 0, 0, 256, 5, 1, 1);
    PixSave32(pixa, pixc, rp);

        /* Median cut quantizer (with dither; 5 sigbits) */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 0);
    pixc = pixMedianCutQuantGeneral(pixs, 1, 0, 16, 5, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 1, 0, 128, 5, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 1, 0, 256, 5, 1, 1);
    PixSave32(pixa, pixc, rp);

        /* Median cut quantizer (no dither; 6 sigbits) */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 32);
    pixc = pixMedianCutQuantGeneral(pixs, 0, 0, 16, 6, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 0, 0, 128, 6, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 0, 0, 256, 6, 1, 1);
    PixSave32(pixa, pixc, rp);

        /* Median cut quantizer (with dither; 6 sigbits) */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 0);
    pixc = pixMedianCutQuantGeneral(pixs, 1, 0, 16, 6, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 1, 0, 128, 6, 1, 1);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantGeneral(pixs, 1, 0, 256, 6, 10, 1);
    PixSave32(pixa, pixc, rp);

        /* Median cut quantizer (mixed color/gray) */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 0);
    pixc = pixMedianCutQuantMixed(pixs, 20, 10, 0, 0, 0);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantMixed(pixs, 60, 20, 0, 0, 0);
    PixSave32(pixa, pixc, rp);
    pixc = pixMedianCutQuantMixed(pixs, 180, 40, 0, 0, 0);
    PixSave32(pixa, pixc, rp);

        /* Simple 256 cube octcube quantizer */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 0);
    pixc = pixFixedOctcubeQuant256(pixs, 0);  /* no dither */
    PixSave32(pixa, pixc, rp);
    pixc = pixFixedOctcubeQuant256(pixs, 1);  /* dither */
    PixSave32(pixa, pixc, rp);

        /* 2-pass octree quantizer */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 0);
    pixc = pixOctreeColorQuant(pixs, 128, 0);  /* no dither */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeColorQuant(pixs, 240, 0);  /* no dither */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeColorQuant(pixs, 128, 1);  /* dither */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeColorQuant(pixs, 240, 1);  /* dither */
    PixSave32(pixa, pixc, rp);

        /* Simple adaptive quantization to 4 or 8 bpp, specifying ncolors */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 0);
    pixc = pixOctreeQuantNumColors(pixs, 8, 0);    /* fixed: 8 colors */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeQuantNumColors(pixs, 16, 0);   /* fixed: 16 colors */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeQuantNumColors(pixs, 64, 0);   /* fixed: 64 colors */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeQuantNumColors(pixs, 256, 0);   /* fixed: 256 colors */
    PixSave32(pixa, pixc, rp);

        /* Quantize to fully populated octree (RGB) at given level */
    pixSaveTiled(pixs, pixa, 1.0, 1, SPACE, 0);
    pixc = pixFixedOctcubeQuantGenRGB(pixs, 2);  /* level 2 */
    PixSave32(pixa, pixc, rp);
    pixc = pixFixedOctcubeQuantGenRGB(pixs, 3);  /* level 3 */
    PixSave32(pixa, pixc, rp);
    pixc = pixFixedOctcubeQuantGenRGB(pixs, 4);  /* level 4 */
    PixSave32(pixa, pixc, rp);
    pixc = pixFixedOctcubeQuantGenRGB(pixs, 5);  /* level 5 */
    PixSave32(pixa, pixc, rp);

        /* Generate 32 bpp RGB image with num colors <= 256 */
    pixt = pixOctreeQuantNumColors(pixs, 256, 0);   /* cmapped version */
    pix32 = pixRemoveColormap(pixt, REMOVE_CMAP_BASED_ON_SRC);

        /* Quantize image with few colors at fixed octree leaf level */
    pixSaveTiled(pixt, pixa, 1.0, 1, SPACE, 0);
    pixc = pixFewColorsOctcubeQuant1(pix32, 2);   /* level 2 */
    PixSave32(pixa, pixc, rp);
    pixc = pixFewColorsOctcubeQuant1(pix32, 3);   /* level 3 */
    PixSave32(pixa, pixc, rp);
    pixc = pixFewColorsOctcubeQuant1(pix32, 4);   /* level 4 */
    PixSave32(pixa, pixc, rp);
    pixc = pixFewColorsOctcubeQuant1(pix32, 5);   /* level 5 */
    PixSave32(pixa, pixc, rp);

        /* Quantize image by population */
    pixSaveTiled(pixt, pixa, 1.0, 1, SPACE, 0);
    pixc = pixOctreeQuantByPopulation(pixs, 3, 0);  /* level 3, no dither */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeQuantByPopulation(pixs, 3, 1);  /* level 3, dither */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeQuantByPopulation(pixs, 4, 0);  /* level 4, no dither */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctreeQuantByPopulation(pixs, 4, 1);  /* level 4, dither */
    PixSave32(pixa, pixc, rp);

        /* Mixed color/gray octree quantizer */
    pixSaveTiled(pixt, pixa, 1.0, 1, SPACE, 0);
    pixc = pixOctcubeQuantMixedWithGray(pix32, 8, 64, 10);  /* max delta = 10 */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctcubeQuantMixedWithGray(pix32, 8, 64, 30);  /* max delta = 30 */
    PixSave32(pixa, pixc, rp);
    pixc = pixOctcubeQuantMixedWithGray(pix32, 8, 64, 50);  /* max delta = 50 */
    PixSave32(pixa, pixc, rp);

        /* Run the high-level converter */
    pixSaveTiled(pixt, pixa, 1.0, 1, SPACE, 0);
    pixc = pixConvertRGBToColormap(pix32, 1);
    PixSave32(pixa, pixc, rp);

    pixDestroy(&pix32);
    pixDestroy(&pixt);

    pixd = pixaDisplay(pixa, 0, 0);
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    sprintf(buf, "/tmp/regout/disp.%d.jpg", i);
    pixWrite(buf, pixd, IFF_JFIF_JPEG);

    pixDestroy(&pixs);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

    return 0;
}
示例#4
0
l_int32 main(int    argc,
             char **argv)
{
l_int32       index;
PIX          *pixs, *pixc, *pixd;
PIXCMAP      *cmap;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    fprintf(stderr, "Test binary image:\n");
    pixs = pixRead(BINARY_IMAGE);
    pixd = shearTest(pixs, 1);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 0 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

        /* We change the black to dark red so that we can see
         * that the IP shear does brings in that color.  It
         * can't bring in black because the cmap is filled. */
    fprintf(stderr, "Test 2 bpp cmapped image with filled cmap:\n");
    pixs = pixRead(TWO_BPP_IMAGE);
    cmap = pixGetColormap(pixs);
    pixcmapGetIndex(cmap, 40, 44, 40, &index);
    pixcmapResetColor(cmap, index, 100, 0, 0);
    pixd = shearTest(pixs, 1);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 1 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

    fprintf(stderr, "Test 4 bpp cmapped image with unfilled cmap:\n");
    pixs = pixRead(FOUR_BPP_IMAGE1);
    pixd = shearTest(pixs, 1);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 2 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

    fprintf(stderr, "Test 4 bpp cmapped image with filled cmap:\n");
    pixs = pixRead(FOUR_BPP_IMAGE2);
    pixd = shearTest(pixs, 1);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 3 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

    fprintf(stderr, "Test 8 bpp grayscale image:\n");
    pixs = pixRead(EIGHT_BPP_IMAGE);
    pixd = shearTest(pixs, 2);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 4 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

    fprintf(stderr, "Test 8 bpp grayscale cmap image:\n");
    pixs = pixRead(EIGHT_BPP_CMAP_IMAGE1);
    pixd = shearTest(pixs, 1);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 5 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

    fprintf(stderr, "Test 8 bpp color cmap image:\n");
    pixs = pixRead(EIGHT_BPP_CMAP_IMAGE2);
    pixd = pixOctreeColorQuant(pixs, 200, 0);
    pixc = shearTest(pixd, 3);
    regTestWritePixAndCheck(rp, pixc, IFF_JFIF_JPEG);  /* 6 */
    pixDisplayWithTitle(pixc, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);
    pixDestroy(&pixc);

    fprintf(stderr, "Test rgb image:\n");
    pixs = pixRead(RGB_IMAGE);
    pixd = shearTest(pixs, 2);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 7 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixd);

    return regTestCleanup(rp);
}
示例#5
0
int main(int argc, char** argv) {
	char* filename;
	int scaleFullScreen = 0;
	Console co;
	Console* t = &co;
	int cx; int cy;
	int w, h;
	int iterX, iterY;

	struct Pix* pngfile;
	struct Pix* ping;
	struct Pix* palette;
	struct Pix* pix32;
	int i, ix, iy;
	int c;
	
	for (i = 1; i<argc; i++) {
		if (strlen(argv[i]) > 1 && !memcmp(argv[i], "-f", 2)) 
			scaleFullScreen=1;
		else filename = argv[i];
	}

	if (access(filename, R_OK)) {
		puts("file not found!");
		puts("c0npix by rofl0r");
		puts("================");
		printf("arguments: %s [-f] somefile.[jpg|png|bmp|tiff]\n", argv[0]);
		puts("where -f means scale to fullscreen");
		puts("export TERM=xterm-256color before usage is recommended.");
		exit(1);
	}

	console_init(t);
	point reso = {800, 600};
	console_init_graphics(&co, reso, FONT);

	console_getbounds(t, &cx, &cy);

	pngfile = pixRead(filename);

	pixGetDimensions(pngfile, &w, &h, NULL);

	ping = pixScale(pngfile, 2.0, 1.0 );
	
	pixDestroy(&pngfile);
	
	palette = pixOctreeColorQuant(ping, 240, 1);
	
	if (palette == NULL) { puts("palette is nul"); goto finish_him; }

	pix32 = pixConvertTo32(palette);

	iterX = pix32->w;
	iterY = pix32->h;

	int* bufptr = (int*) pix32->data;
	if (bufptr == NULL) {
		puts("bufptr is null");
		goto finish_him;
	}
	
	int startx = 0;
	int starty = 0;
	
	paint:
	for(iy = starty; iy < starty + cy; iy++) {
		bufptr = (int*) pix32->data + (iy * pix32->w) + startx;
		for(ix = startx; ix < startx + cx; ix++) {
			console_setcolor(t, 0, *((rgb_t*) bufptr));
			console_goto(t, ix - startx, iy - starty);
			console_addchar(t, ' ', 0);
			bufptr++;
		}
	}
	console_draw(t);
	//console_printfxy(t, 0, 0, "%d", (int) c);
	
	while ((c = console_getkey(t)) != 'q') {

		console_setcolor(t, 0, RGB(0,0,0));
		
		switch(c) {
			case CK_CURSOR_UP: 
				if(starty > 0) starty--;
				break;
			case CK_CURSOR_DOWN:
				if(starty < (int) pix32->h - cy)
					starty++;
				break;
			case CK_CURSOR_LEFT:
				if(startx > 0)
					startx--;
				break;
			case CK_CURSOR_RIGHT:
				if(startx < (int) pix32->w - cx)
					startx++;
				break;
			default:
				goto loopend; // ignore mouse movement and similar stuff
				break;
		}
		goto paint;
		loopend: ;
	}
	
	pixDestroy(&palette);
	pixDestroy(&pix32);

	console_refresh(t);
	
	finish_him:
	//console_getkey(t);
	
	console_cleanup(t);

	return 0;
}
示例#6
0
int main(int    argc,
         char **argv)
{
char          textstr[256];
l_int32       w, h, d, i;
l_uint32      srcval, dstval;
l_float32     scalefact, sat, fract;
L_BMF        *bmf8;
L_KERNEL     *kel;
NUMA         *na;
PIX          *pix, *pixs, *pixs1, *pixs2, *pixd;
PIX          *pixt0, *pixt1, *pixt2, *pixt3, *pixt4;
PIXA         *pixa, *pixaf;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pix = pixRead(filein);
    pixGetDimensions(pix, &w, &h, &d);
    if (d != 32)
        return ERROR_INT("file not 32 bpp", argv[0], 1);
    scalefact = (l_float32)WIDTH / (l_float32)w;
    pixs = pixScale(pix, scalefact, scalefact);
    w = pixGetWidth(pixs);
    pixaf = pixaCreate(5);

        /* TRC: vary gamma */
    pixa = pixaCreate(20);
    for (i = 0; i < 20; i++) {
        pixt0 = pixGammaTRC(NULL, pixs, 0.3 + 0.15 * i, 0, 255);
        pixaAddPix(pixa, pixt0, L_INSERT);
    }
    pixt1 = pixaDisplayTiledAndScaled(pixa, 32, w, 5, 0, 10, 2);
    pixSaveTiled(pixt1, pixaf, 1.0, 1, 20, 32);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 0 */
    pixDisplayWithTitle(pixt1, 0, 100, "TRC Gamma", rp->display);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);

        /* TRC: vary black point */
    pixa = pixaCreate(20);
    for (i = 0; i < 20; i++) {
        pixt0 = pixGammaTRC(NULL, pixs, 1.0, 5 * i, 255);
        pixaAddPix(pixa, pixt0, L_INSERT);
    }
    pixt1 = pixaDisplayTiledAndScaled(pixa, 32, w, 5, 0, 10, 2);
    pixSaveTiled(pixt1, pixaf, 1.0, 1, 20, 0);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 1 */
    pixDisplayWithTitle(pixt1, 300, 100, "TRC", rp->display);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);

        /* Vary hue */
    pixa = pixaCreate(20);
    for (i = 0; i < 20; i++) {
        pixt0 = pixModifyHue(NULL, pixs, 0.01 + 0.05 * i);
        pixaAddPix(pixa, pixt0, L_INSERT);
    }
    pixt1 = pixaDisplayTiledAndScaled(pixa, 32, w, 5, 0, 10, 2);
    pixSaveTiled(pixt1, pixaf, 1.0, 1, 20, 0);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 2 */
    pixDisplayWithTitle(pixt1, 600, 100, "Hue", rp->display);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);

        /* Vary saturation */
    pixa = pixaCreate(20);
    na = numaCreate(20);
    for (i = 0; i < 20; i++) {
        pixt0 = pixModifySaturation(NULL, pixs, -0.9 + 0.1 * i);
        pixMeasureSaturation(pixt0, 1, &sat);
        pixaAddPix(pixa, pixt0, L_INSERT);
        numaAddNumber(na, sat);
    }
    pixt1 = pixaDisplayTiledAndScaled(pixa, 32, w, 5, 0, 10, 2);
    pixSaveTiled(pixt1, pixaf, 1.0, 1, 20, 0);
    gplotSimple1(na, GPLOT_PNG, "/tmp/regout/enhance.7", "Average Saturation");
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 3 */
    pixDisplayWithTitle(pixt1, 900, 100, "Saturation", rp->display);
    numaDestroy(&na);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);

        /* Vary contrast */
    pixa = pixaCreate(20);
    for (i = 0; i < 20; i++) {
        pixt0 = pixContrastTRC(NULL, pixs, 0.1 * i);
        pixaAddPix(pixa, pixt0, L_INSERT);
    }
    pixt1 = pixaDisplayTiledAndScaled(pixa, 32, w, 5, 0, 10, 2);
    pixSaveTiled(pixt1, pixaf, 1.0, 1, 20, 0);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pixt1, 0, 400, "Contrast", rp->display);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);

        /* Vary sharpening */
    pixa = pixaCreate(20);
    for (i = 0; i < 20; i++) {
        pixt0 = pixUnsharpMasking(pixs, 3, 0.01 + 0.15 * i);
        pixaAddPix(pixa, pixt0, L_INSERT);
    }
    pixt1 = pixaDisplayTiledAndScaled(pixa, 32, w, 5, 0, 10, 2);
    pixSaveTiled(pixt1, pixaf, 1.0, 1, 20, 0);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 5 */
    pixDisplayWithTitle(pixt1, 300, 400, "Sharp", rp->display);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);

        /* Hue constant mapping to lighter background */
    pixa = pixaCreate(11);
    bmf8 = bmfCreate("fonts", 8);
    pixt0 = pixRead("candelabrum-11.jpg");
    composeRGBPixel(230, 185, 144, &srcval);  /* select typical bg pixel */
    for (i = 0; i <= 10; i++) {
        fract = 0.10 * i;
        pixelFractionalShift(230, 185, 144, fract, &dstval);
        pixt1 = pixLinearMapToTargetColor(NULL, pixt0, srcval, dstval);
        snprintf(textstr, 50, "Fract = %5.1f", fract);
        pixt2 = pixAddSingleTextblock(pixt1, bmf8, textstr, 0xff000000,
                                      L_ADD_BELOW, NULL);
        pixSaveTiledOutline(pixt2, pixa, 1.0, (i % 4 == 0) ? 1 : 0, 30, 2, 32);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
    }
    pixDestroy(&pixt0);

    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 6 */
    pixDisplayWithTitle(pixd, 600, 400, "Constant hue", rp->display);
    bmfDestroy(&bmf8);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);

        /* Delayed testing of saturation plot */
    regTestCheckFile(rp, "/tmp/regout/enhance.7.png");  /* 7 */

        /* Display results */
    pixd = pixaDisplay(pixaf, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 8 */
    pixDisplayWithTitle(pixd, 100, 100, "All", rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixaf);

    pixDestroy(&pix);
    pixDestroy(&pixs);

    /* -----------------------------------------------*
     *           Test global color transforms         *
     * -----------------------------------------------*/
        /* Make identical cmap and rgb images */
    pix = pixRead("wet-day.jpg");
    pixs1 = pixOctreeColorQuant(pix, 200, 0);
    pixs2 = pixRemoveColormap(pixs1, REMOVE_CMAP_TO_FULL_COLOR);
    regTestComparePix(rp, pixs1, pixs2);  /* 9 */

        /* Make a diagonal color transform matrix */
    kel = kernelCreate(3, 3);
    kernelSetElement(kel, 0, 0, 0.7);
    kernelSetElement(kel, 1, 1, 0.4);
    kernelSetElement(kel, 2, 2, 1.3);

        /* Apply to both cmap and rgb images. */
    pixt1 = pixMultMatrixColor(pixs1, kel);
    pixt2 = pixMultMatrixColor(pixs2, kel);
    regTestComparePix(rp, pixt1, pixt2);  /* 10 */
    kernelDestroy(&kel);

        /* Apply the same transform in the simpler interface */
    pixt3 = pixMultConstantColor(pixs1, 0.7, 0.4, 1.3);
    pixt4 = pixMultConstantColor(pixs2, 0.7, 0.4, 1.3);
    regTestComparePix(rp, pixt3, pixt4);  /* 11 */
    regTestComparePix(rp, pixt1, pixt3);  /* 12 */
    regTestWritePixAndCheck(rp, pixt1, IFF_JFIF_JPEG);  /* 13 */

    pixDestroy(&pix);
    pixDestroy(&pixs1);
    pixDestroy(&pixs2);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    return regTestCleanup(rp);
}