示例#1
0
/*!
 *  pixGenHalftoneMask()
 *
 *      Input:  pixs (1 bpp, assumed to be 150 to 200 ppi)
 *              &pixtext (<optional return> text part of pixs)
 *              &htfound (<optional return> 1 if the mask is not empty)
 *              debug (flag: 1 for debug output)
 *      Return: pixd (halftone mask), or null on error
 */
PIX *
pixGenHalftoneMask(PIX      *pixs,
                   PIX     **ppixtext,
                   l_int32  *phtfound,
                   l_int32   debug)
{
l_int32  empty;
PIX     *pixt1, *pixt2, *pixhs, *pixhm, *pixd;

    PROCNAME("pixGenHalftoneMask");

    if (ppixtext) *ppixtext = NULL;
    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (pixGetDepth(pixs) != 1)
        return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);

        /* Compute seed for halftone parts at 8x reduction */
    pixt1 = pixReduceRankBinaryCascade(pixs, 4, 4, 3, 0);
    pixt2 = pixOpenBrick(NULL, pixt1, 5, 5);
    pixhs = pixExpandReplicate(pixt2, 8);  /* back to 2x reduction */
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDisplayWriteFormat(pixhs, debug, IFF_PNG);

        /* Compute mask for connected regions */
    pixhm = pixCloseSafeBrick(NULL, pixs, 4, 4);
    pixDisplayWriteFormat(pixhm, debug, IFF_PNG);

        /* Fill seed into mask to get halftone mask */
    pixd = pixSeedfillBinary(NULL, pixhs, pixhm, 4);

#if 0
        /* Moderate opening to remove thin lines, etc. */
    pixOpenBrick(pixd, pixd, 10, 10);
    pixDisplayWrite(pixd, debug);
#endif

        /* Check if mask is empty */
    pixZero(pixd, &empty);
    if (phtfound) {
        *phtfound = 0;
        if (!empty)
            *phtfound = 1;
    }

        /* Optionally, get all pixels that are not under the halftone mask */
    if (ppixtext) {
        if (empty)
            *ppixtext = pixCopy(NULL, pixs);
        else
            *ppixtext = pixSubtract(NULL, pixs, pixd);
        pixDisplayWriteFormat(*ppixtext, debug, IFF_PNG);
    }

    pixDestroy(&pixhs);
    pixDestroy(&pixhm);
    return pixd;
}
示例#2
0
/*!
 * \brief   pixCountConnComp()
 *
 * \param[in]    pixs 1 bpp
 * \param[in]    connectivity 4 or 8
 * \param[out]   pcount
 * \return  0 if OK, 1 on error
 *
 * Notes:
 *     (1 This is the top-level call for getting the number of
 *         4- or 8-connected components in a 1 bpp image.
 *     2 It works on a copy of the input pix.  The c.c. are located
 *         in raster order and erased one at a time.
 */
l_int32
pixCountConnComp(PIX      *pixs,
                 l_int32   connectivity,
                 l_int32  *pcount)
{
    l_int32   h, iszero;
    l_int32   x, y, xstart, ystart;
    PIX      *pixt;
    L_STACK  *stack, *auxstack;

    PROCNAME("pixCountConnComp");

    if (!pcount)
        return ERROR_INT("&count not defined", procName, 1);
    *pcount = 0;  /* initialize the count to 0 */
    if (!pixs || pixGetDepth(pixs) != 1)
        return ERROR_INT("pixs not defined or not 1 bpp", procName, 1);
    if (connectivity != 4 && connectivity != 8)
        return ERROR_INT("connectivity not 4 or 8", procName, 1);

    pixt = NULL;
    stack = NULL;

    pixZero(pixs, &iszero);
    if (iszero)
        return 0;

    if ((pixt = pixCopy(NULL, pixs)) == NULL)
        return ERROR_INT("pixt not made", procName, 1);

    h = pixGetHeight(pixs);
    if ((stack = lstackCreate(h)) == NULL) {
        L_ERROR("stack not made\n", procName);
        goto cleanup;
    }
    auxstack = lstackCreate(0);
    stack->auxstack = auxstack;

    xstart = 0;
    ystart = 0;
    while (1) {
        if (!nextOnPixelInRaster(pixt, xstart, ystart, &x, &y))
            break;

        pixSeedfill(pixt, stack, x, y, connectivity);
        (*pcount)++;
        xstart = x;
        ystart = y;
    }

    /* Cleanup, freeing the fillsegs on each stack */
cleanup:
    lstackDestroy(&stack, TRUE);
    pixDestroy(&pixt);

    return 0;
}
示例#3
0
/*!
 *  pixSelectByWidthHeightRatio()
 *
 *      Input:  pixs (1 bpp)
 *              thresh (threshold ratio of width/height)
 *              connectivity (4 or 8)
 *              type (L_SELECT_IF_LT, L_SELECT_IF_GT,
 *                    L_SELECT_IF_LTE, L_SELECT_IF_GTE)
 *              &changed (<optional return> 1 if changed; 0 if clone returned)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) The args specify constraints on the width-to-height ratio
 *          for components that are kept.
 *      (2) If unchanged, returns a copy of pixs.  Otherwise,
 *          returns a new pix with the filtered components.
 *      (3) This filters components based on the width-to-height ratios.
 *      (4) Use L_SELECT_IF_LT or L_SELECT_IF_LTE to save components
 *          with less than the threshold ratio, and
 *          L_SELECT_IF_GT or L_SELECT_IF_GTE to remove them.
 */
PIX *
pixSelectByWidthHeightRatio(PIX       *pixs,
                            l_float32  thresh,
                            l_int32    connectivity,
                            l_int32    type,
                            l_int32   *pchanged)
{
l_int32  w, h, empty, changed, count;
BOXA    *boxa;
PIX     *pixd;
PIXA    *pixas, *pixad;

    PROCNAME("pixSelectByWidthHeightRatio");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (connectivity != 4 && connectivity != 8)
        return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL);
    if (type != L_SELECT_IF_LT && type != L_SELECT_IF_GT &&
        type != L_SELECT_IF_LTE && type != L_SELECT_IF_GTE)
        return (PIX *)ERROR_PTR("invalid type", procName, NULL);
    if (pchanged) *pchanged = FALSE;
    
        /* Check if any components exist */
    pixZero(pixs, &empty);
    if (empty)
        return pixCopy(NULL, pixs);

        /* Filter components */
    boxa = pixConnComp(pixs, &pixas, connectivity); 
    pixad = pixaSelectByWidthHeightRatio(pixas, thresh, type, &changed);
    boxaDestroy(&boxa);
    pixaDestroy(&pixas);

        /* Render the result */
    if (!changed) {
        pixaDestroy(&pixad);
        return pixCopy(NULL, pixs);
    }
    else {
        if (pchanged) *pchanged = TRUE;
        pixGetDimensions(pixs, &w, &h, NULL);
        count = pixaGetCount(pixad);
        if (count == 0)  /* return empty pix */
            pixd = pixCreateTemplate(pixs);
        else {
            pixd = pixaDisplay(pixad, w, h);
            pixCopyResolution(pixd, pixs);
            pixCopyColormap(pixd, pixs);
            pixCopyText(pixd, pixs);
            pixCopyInputFormat(pixd, pixs);
        }
        pixaDestroy(&pixad);
        return pixd;
    }
}
示例#4
0
/*!
 * \brief   pixConnCompIncrInit()
 *
 * \param[in]     pixs 1 bpp
 * \param[in]     conn connectivity: 4 or 8
 * \param[out]    ppixd 32 bpp, with c.c. labelled
 * \param[out]    pptaa with pixel locations indexed by c.c.
 * \param[out]    pncc initial number of c.c.
 * \return   0 if OK, 1 on error
 *
 * <pre>
 * Notes:
 *      (1) This labels the connected components in a 1 bpp pix, and
 *          additionally sets up a ptaa that lists the locations of pixels
 *          in each of the components.
 *      (2) It can be used to initialize the output image and arrays for
 *          an application that maintains information about connected
 *          components incrementally as pixels are added.
 *      (3) pixs can be empty or have some foreground pixels.
 *      (4) The connectivity is stored in pixd->special.
 *      (5) Always initialize with the first pta in ptaa being empty
 *          and representing the background value (index 0) in the pix.
 * </pre>
 */
l_int32
pixConnCompIncrInit(PIX     *pixs,
                    l_int32  conn,
                    PIX    **ppixd,
                    PTAA   **pptaa,
                    l_int32 *pncc)
{
l_int32  empty, w, h, ncc;
PIX     *pixd;
PTA     *pta;
PTAA    *ptaa;

    PROCNAME("pixConnCompIncrInit");

    if (ppixd) *ppixd = NULL;
    if (pptaa) *pptaa = NULL;
    if (pncc) *pncc = 0;
    if (!ppixd || !pptaa || !pncc)
        return ERROR_INT("&pixd, &ptaa, &ncc not all defined", procName, 1);
    if (!pixs || pixGetDepth(pixs) != 1)
        return ERROR_INT("pixs undefined or not 1 bpp", procName, 1);
    if (conn != 4 && conn != 8)
        return ERROR_INT("connectivity must be 4 or 8", procName, 1);

    pixGetDimensions(pixs, &w, &h, NULL);
    pixZero(pixs, &empty);
    if (empty) {
        *ppixd = pixCreate(w, h, 32);
        pixSetSpp(*ppixd, 1);
        pixSetSpecial(*ppixd, conn);
        *pptaa = ptaaCreate(0);
        pta = ptaCreate(1);
        ptaaAddPta(*pptaa, pta, L_INSERT);  /* reserve index 0 for background */
        return 0;
    }

        /* Set up the initial labeled image and indexed pixel arrays */
    if ((pixd = pixConnCompTransform(pixs, conn, 32)) == NULL)
        return ERROR_INT("pixd not made", procName, 1);
    pixSetSpecial(pixd, conn);
    *ppixd = pixd;
    if ((ptaa = ptaaIndexLabeledPixels(pixd, &ncc)) == NULL)
        return ERROR_INT("ptaa not made", procName, 1);
    *pptaa = ptaa;
    *pncc = ncc;
    return 0;
}
示例#5
0
/*!
 * \brief   pixConnCompBB()
 *
 * \param[in]    pixs 1 bpp
 * \param[in]    connectivity 4 or 8
 * \return  boxa, or NULL on error
 *
 * <pre>
 * Notes:
 *     (1) Finds bounding boxes of 4- or 8-connected components
 *         in a binary image.
 *     (2) This works on a copy of the input pix.  The c.c. are located
 *         in raster order and erased one at a time.  In the process,
 *         the b.b. is computed and saved.
 * </pre>
 */
BOXA *
pixConnCompBB(PIX     *pixs,
              l_int32  connectivity)
{
    l_int32   h, iszero;
    l_int32   x, y, xstart, ystart;
    PIX      *pixt;
    BOX      *box;
    BOXA     *boxa;
    L_STACK  *stack, *auxstack;

    PROCNAME("pixConnCompBB");

    if (!pixs || pixGetDepth(pixs) != 1)
        return (BOXA *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL);
    if (connectivity != 4 && connectivity != 8)
        return (BOXA *)ERROR_PTR("connectivity not 4 or 8", procName, NULL);

    boxa = NULL;
    pixt = NULL;
    stack = NULL;

    pixZero(pixs, &iszero);
    if (iszero)
        return boxaCreate(1);  /* return empty boxa */

    if ((pixt = pixCopy(NULL, pixs)) == NULL)
        return (BOXA *)ERROR_PTR("pixt not made", procName, NULL);

    h = pixGetHeight(pixs);
    if ((stack = lstackCreate(h)) == NULL) {
        L_ERROR("stack not made\n", procName);
        goto cleanup;
    }
    auxstack = lstackCreate(0);
    stack->auxstack = auxstack;
    boxa = boxaCreate(0);

    xstart = 0;
    ystart = 0;
    while (1) {
        if (!nextOnPixelInRaster(pixt, xstart, ystart, &x, &y))
            break;

        if ((box = pixSeedfillBB(pixt, stack, x, y, connectivity)) == NULL) {
            L_ERROR("box not made\n", procName);
            boxaDestroy(&boxa);
            goto cleanup;
        }
        boxaAddBox(boxa, box, L_INSERT);

        xstart = x;
        ystart = y;
    }

#if  DEBUG
    pixCountPixels(pixt, &iszero, NULL);
    fprintf(stderr, "Number of remaining pixels = %d\n", iszero);
    pixWrite("junkremain", pixt1, IFF_PNG);
#endif  /* DEBUG */

    /* Cleanup, freeing the fillsegs on each stack */
cleanup:
    lstackDestroy(&stack, TRUE);
    pixDestroy(&pixt);
    return boxa;
}
示例#6
0
/*!
 * \brief   pixConnCompPixa()
 *
 * \param[in]    pixs 1 bpp
 * \param[out]   ppixa pixa of each c.c.
 * \param[in]    connectivity 4 or 8
 * \return  boxa, or NULL on error
 *
 * <pre>
 * Notes:
 *      (1) This finds bounding boxes of 4- or 8-connected components
 *          in a binary image, and saves images of each c.c
 *          in a pixa array.
 *      (2) It sets up 2 temporary pix, and for each c.c. that is
 *          located in raster order, it erases the c.c. from one pix,
 *          then uses the b.b. to extract the c.c. from the two pix using
 *          an XOR, and finally erases the c.c. from the second pix.
 *      (3) A clone of the returned boxa (where all boxes in the array
 *          are clones) is inserted into the pixa.
 *      (4) If the input is valid, this always returns a boxa and a pixa.
 *          If pixs is empty, the boxa and pixa will be empty.
 * </pre>
 */
BOXA *
pixConnCompPixa(PIX     *pixs,
                PIXA   **ppixa,
                l_int32  connectivity)
{
    l_int32   h, iszero;
    l_int32   x, y, xstart, ystart;
    PIX      *pix1, *pix2, *pix3, *pix4;
    PIXA     *pixa;
    BOX      *box;
    BOXA     *boxa;
    L_STACK  *stack, *auxstack;

    PROCNAME("pixConnCompPixa");

    if (!ppixa)
        return (BOXA *)ERROR_PTR("&pixa not defined", procName, NULL);
    *ppixa = NULL;
    if (!pixs || pixGetDepth(pixs) != 1)
        return (BOXA *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL);
    if (connectivity != 4 && connectivity != 8)
        return (BOXA *)ERROR_PTR("connectivity not 4 or 8", procName, NULL);

    boxa = NULL;
    pix1 = pix2 = pix3 = pix4 = NULL;
    stack = NULL;

    pixZero(pixs, &iszero);
    if (iszero)
        return boxaCreate(1);  /* return empty boxa */

    pix1 = pixCopy(NULL, pixs);
    pix2 = pixCopy(NULL, pixs);
    if (!pix1 || !pix2) {
        L_ERROR("pix1 or pix2 not made\n", procName);
        goto cleanup;
    }

    h = pixGetHeight(pixs);
    if ((stack = lstackCreate(h)) == NULL) {
        L_ERROR("stack not made\n", procName);
        goto cleanup;
    }
    auxstack = lstackCreate(0);
    stack->auxstack = auxstack;
    pixa = pixaCreate(0);
    boxa = boxaCreate(0);

    xstart = 0;
    ystart = 0;
    while (1) {
        if (!nextOnPixelInRaster(pix1, xstart, ystart, &x, &y))
            break;

        if ((box = pixSeedfillBB(pix1, stack, x, y, connectivity)) == NULL) {
            L_ERROR("box not made\n", procName);
            pixaDestroy(&pixa);
            boxaDestroy(&boxa);
            goto cleanup;
        }
        boxaAddBox(boxa, box, L_INSERT);

        /* Save the c.c. and remove from pix2 as well */
        pix3 = pixClipRectangle(pix1, box, NULL);
        pix4 = pixClipRectangle(pix2, box, NULL);
        pixXor(pix3, pix3, pix4);
        pixRasterop(pix2, box->x, box->y, box->w, box->h, PIX_SRC ^ PIX_DST,
                    pix3, 0, 0);
        pixaAddPix(pixa, pix3, L_INSERT);
        pixDestroy(&pix4);

        xstart = x;
        ystart = y;
    }

#if  DEBUG
    pixCountPixels(pix1, &iszero, NULL);
    fprintf(stderr, "Number of remaining pixels = %d\n", iszero);
    pixWrite("junkremain", pix1, IFF_PNG);
#endif  /* DEBUG */

    /* Remove old boxa of pixa and replace with a clone copy */
    boxaDestroy(&pixa->boxa);
    pixa->boxa = boxaCopy(boxa, L_CLONE);
    *ppixa = pixa;

    /* Cleanup, freeing the fillsegs on each stack */
cleanup:
    lstackDestroy(&stack, TRUE);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    return boxa;
}
示例#7
0
int main(int argc,
         char **argv) {
    l_int32 i, j, w, h, empty;
    l_uint32 redval, greenval;
    l_float32 f;
    L_WSHED *wshed;
    PIX *pixs, *pixc, *pixd;
    PIX *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7, *pix8;
    PIXA *pixac;
    PTA *pta;
    static char mainName[] = "watershedtest";

    if (argc != 1)
        return ERROR_INT(" Syntax:  watershedtest", mainName, 1);

    pixac = pixaCreate(0);
    pixs = pixCreate(500, 500, 8);
    pixGetDimensions(pixs, &w, &h, NULL);
    for (i = 0; i < 500; i++) {
        for (j = 0; j < 500; j++) {
#if 1
            f = 128.0 + 26.3 * sin(0.0438 * (l_float32) i);
            f += 33.4 * cos(0.0712 * (l_float32) i);
            f += 18.6 * sin(0.0561 * (l_float32) j);
            f += 23.6 * cos(0.0327 * (l_float32) j);
#else
            f = 128.0 + 26.3 * sin(0.0238 * (l_float32)i);
            f += 33.4 * cos(0.0312 * (l_float32)i);
            f += 18.6 * sin(0.0261 * (l_float32)j);
            f += 23.6 * cos(0.0207 * (l_float32)j);
#endif
            pixSetPixel(pixs, j, i, (l_int32) f);
        }
    }
    pixSaveTiled(pixs, pixac, 1.0, 1, 10, 32);
    pixWrite("/tmp/pattern.png", pixs, IFF_PNG);
    startTimer();
    pixLocalExtrema(pixs, 0, 0, &pix1, &pix2);
    fprintf(stderr, "Time for extrema: %7.3f\n", stopTimer());
    pixSetOrClearBorder(pix1, 2, 2, 2, 2, PIX_CLR);
    composeRGBPixel(255, 0, 0, &redval);
    composeRGBPixel(0, 255, 0, &greenval);
    pixc = pixConvertTo32(pixs);
    pixPaintThroughMask(pixc, pix2, 0, 0, greenval);
    pixPaintThroughMask(pixc, pix1, 0, 0, redval);
    pixSaveTiled(pixc, pixac, 1.0, 0, 10, 32);
    pixWrite("/tmp/pixc.png", pixc, IFF_PNG);
    pixSaveTiled(pix1, pixac, 1.0, 0, 10, 32);
    pixSelectMinInConnComp(pixs, pix1, &pta, NULL);
/*    ptaWriteStream(stderr, pta, 1); */
    pix3 = pixGenerateFromPta(pta, w, h);
    pixSaveTiled(pix3, pixac, 1.0, 1, 10, 32);

    pix4 = pixConvertTo32(pixs);
    pixPaintThroughMask(pix4, pix3, 0, 0, greenval);
    pixSaveTiled(pix4, pixac, 1.0, 0, 10, 32);
    pix5 = pixRemoveSeededComponents(NULL, pix3, pix1, 8, 2);
    pixSaveTiled(pix5, pixac, 1.0, 0, 10, 32);
    pixZero(pix5, &empty);
    fprintf(stderr, "Is empty?  %d\n", empty);
    pixDestroy(&pix4);
    pixDestroy(&pix5);

    wshed = wshedCreate(pixs, pix3, 10, 0);
    startTimer();
    wshedApply(wshed);
    fprintf(stderr, "Time for wshed: %7.3f\n", stopTimer());
    pix6 = pixaDisplayRandomCmap(wshed->pixad, w, h);
    pixSaveTiled(pix6, pixac, 1.0, 1, 10, 32);
    numaWriteStream(stderr, wshed->nalevels);
    pix7 = wshedRenderFill(wshed);
    pixSaveTiled(pix7, pixac, 1.0, 0, 10, 32);
    pix8 = wshedRenderColors(wshed);
    pixSaveTiled(pix8, pixac, 1.0, 0, 10, 32);
    wshedDestroy(&wshed);

    pixd = pixaDisplay(pixac, 0, 0);
    pixDisplay(pixd, 100, 100);
    pixWrite("/tmp/wshed.png", pixd, IFF_PNG);
    pixDestroy(&pixd);
    pixaDestroy(&pixac);

    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix6);
    pixDestroy(&pix7);
    pixDestroy(&pix8);
    pixDestroy(&pixs);
    pixDestroy(&pixc);
    ptaDestroy(&pta);
    return 0;
}
示例#8
0
/*
 *  pixWriteSegmentedPageToPS()
 *
 *      Input:  pixs (all depths; colormap ok)
 *              pixm (<optional> 1 bpp segmentation mask over image region)
 *              textscale (scale of text output relative to pixs)
 *              imagescale (scale of image output relative to pixs)
 *              threshold (threshold for binarization; typ. 190)
 *              pageno (page number in set; use 1 for new output file)
 *              fileout (output ps file)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This generates the PS string for a mixed text/image page,
 *          and adds it to an existing file if @pageno > 1.
 *          The PS output is determined by fitting the result to
 *          a letter-size (8.5 x 11 inch) page.
 *      (2) The two images (pixs and pixm) are at the same resolution
 *          (typically 300 ppi).  They are used to generate two compressed
 *          images, pixb and pixc, that are put directly into the output
 *          PS file.
 *      (3) pixb is the text component.  In the PostScript world, we think of
 *          it as a mask through which we paint black.  It is produced by
 *          scaling pixs by @textscale, and thresholding to 1 bpp.
 *      (4) pixc is the image component, which is that part of pixs under
 *          the mask pixm.  It is scaled from pixs by @imagescale.
 *      (5) Typical values are textscale = 2.0 and imagescale = 0.5.
 *      (6) If pixm == NULL, the page has only text.  If it is all black,
 *          the page is all image and has no text.
 *      (7) This can be used to write a multi-page PS file, by using
 *          sequential page numbers with the same output file.  It can
 *          also be used to write separate PS files for each page,
 *          by using different output files with @pageno = 0 or 1.
 */
l_int32
pixWriteSegmentedPageToPS(PIX         *pixs,
                          PIX         *pixm,
                          l_float32    textscale,
                          l_float32    imagescale,
                          l_int32      threshold,
                          l_int32      pageno,
                          const char  *fileout)
{
l_int32    alltext, notext, d, ret;
l_uint32   val;
l_float32  scaleratio;
PIX       *pixmi, *pixmis, *pixt, *pixg, *pixsc, *pixb, *pixc;

    PROCNAME("pixWriteSegmentedPageToPS");

    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);
    if (!fileout)
        return ERROR_INT("fileout not defined", procName, 1);
    if (imagescale <= 0.0 || textscale <= 0.0)
        return ERROR_INT("relative scales must be > 0.0", procName, 1);

        /* Analyze the page.  Determine the ratio by which the
         * binary text mask is scaled relative to the image part.
         * If there is no image region (alltext == TRUE), the
         * text mask will be rendered directly to fit the page,
         * and scaleratio = 1.0.  */
    alltext = TRUE;
    notext = FALSE;
    scaleratio = 1.0;
    if (pixm) {
        pixZero(pixm, &alltext);  /* pixm empty: all text */
        if (alltext)
            pixm = NULL;  /* treat it as not existing here */
        else {
            pixmi = pixInvert(NULL, pixm);
            pixZero(pixmi, &notext);  /* pixm full; no text */
            pixDestroy(&pixmi);
            scaleratio = textscale / imagescale;
        }
    }

    if (pixGetDepth(pixs) == 1) {  /* render tiff g4 */
        pixb = pixClone(pixs);
        pixc = NULL;
    }
    else {
        pixt = pixConvertTo8Or32(pixs, 0, 0);  /* this can be a clone of pixs */

            /* Get the binary text mask.  Note that pixg cannot be a
             * clone of pixs, because it may be altered by pixSetMasked(). */
        pixb = NULL;
        if (notext == FALSE) {
            d = pixGetDepth(pixt);
            if (d == 8)
                pixg = pixCopy(NULL, pixt);
            else  /* d == 32 */
                pixg = pixConvertRGBToLuminance(pixt);
            if (pixm)  /* clear out the image parts */
                pixSetMasked(pixg, pixm, 255);
            if (textscale == 1.0)
                pixsc = pixClone(pixg);
            else if (textscale >= 0.7)
                pixsc = pixScaleGrayLI(pixg, textscale, textscale);
            else
                pixsc = pixScaleAreaMap(pixg, textscale, textscale);
            pixb = pixThresholdToBinary(pixsc, threshold);
            pixDestroy(&pixg);
            pixDestroy(&pixsc);
        }

            /* Get the scaled image region */
        pixc = NULL;
        if (pixm) {
            if (imagescale == 1.0)
                pixsc = pixClone(pixt);  /* can possibly be a clone of pixs */
            else
                pixsc = pixScale(pixt, imagescale, imagescale);

                /* If pixm is not full, clear the pixels in pixsc
                 * corresponding to bg in pixm, where there can be text
                 * that is written through the mask pixb.  Note that
                 * we could skip this and use pixsc directly in
                 * pixWriteMixedToPS(); however, clearing these
                 * non-image regions to a white background will reduce
                 * the size of pixc (relative to pixsc), and hence
                 * reduce the size of the PS file that is generated.
                 * Use a copy so that we don't accidentally alter pixs.  */
            if (notext == FALSE) {
                pixmis = pixScale(pixm, imagescale, imagescale);
                pixmi = pixInvert(NULL, pixmis);
                val = (d == 8) ? 0xff : 0xffffff00;
                pixc = pixCopy(NULL, pixsc);
                pixSetMasked(pixc, pixmi, val);  /* clear non-image part */
                pixDestroy(&pixmis);
                pixDestroy(&pixmi);
            }
            else
                pixc = pixClone(pixsc);
            pixDestroy(&pixsc);
        }
        pixDestroy(&pixt);
    }

    ret = pixWriteMixedToPS(pixb, pixc, scaleratio, pageno, fileout);
    pixDestroy(&pixb);
    pixDestroy(&pixc);
    return ret;
}
示例#9
0
void
RotateOrthTest(PIX          *pixs,
               L_REGPARAMS  *rp)
{
l_int32   zero, count;
PIX      *pixt, *pixd;
PIXCMAP  *cmap;

    cmap = pixGetColormap(pixs);

	/* Test 4 successive 90 degree rotations */
    pixt = pixRotate90(pixs, 1);
    pixd = pixRotate90(pixt, 1);
    pixDestroy(&pixt);
    pixt = pixRotate90(pixd, 1);
    pixDestroy(&pixd);
    pixd = pixRotate90(pixt, 1);
    pixDestroy(&pixt);
    regTestComparePix(rp, pixs, pixd);
    if (!cmap) {
        pixXor(pixd, pixd, pixs);
        pixZero(pixd, &zero);
        if (zero)
            fprintf(stderr, "OK.  Four 90-degree rotations gives I\n");
        else {
             pixCountPixels(pixd, &count, NULL);
             fprintf(stderr, "Failure for four 90-degree rots; count = %d\n",
                     count);
        }
    }
    pixDestroy(&pixd);

	/* Test 2 successive 180 degree rotations */
    pixt = pixRotate180(NULL, pixs);
    pixRotate180(pixt, pixt);
    regTestComparePix(rp, pixs, pixt);
    if (!cmap) {
        pixXor(pixt, pixt, pixs);
        pixZero(pixt, &zero);
        if (zero)
            fprintf(stderr, "OK.  Two 180-degree rotations gives I\n");
        else {
            pixCountPixels(pixt, &count, NULL);
            fprintf(stderr, "Failure for two 180-degree rots; count = %d\n",
                    count);
        }
    }
    pixDestroy(&pixt);

	/* Test 2 successive LR flips */
    pixt = pixFlipLR(NULL, pixs);
    pixFlipLR(pixt, pixt);
    regTestComparePix(rp, pixs, pixt);
    if (!cmap) {
        pixXor(pixt, pixt, pixs);
        pixZero(pixt, &zero);
        if (zero)
            fprintf(stderr, "OK.  Two LR flips gives I\n");
        else {
            pixCountPixels(pixt, &count, NULL);
            fprintf(stderr, "Failure for two LR flips; count = %d\n", count);
        }
    }
    pixDestroy(&pixt);

	/* Test 2 successive TB flips */
    pixt = pixFlipTB(NULL, pixs);
    pixFlipTB(pixt, pixt);
    regTestComparePix(rp, pixs, pixt);
    if (!cmap) {
        pixXor(pixt, pixt, pixs);
        pixZero(pixt, &zero);
        if (zero)
            fprintf(stderr, "OK.  Two TB flips gives I\n");
        else {
            pixCountPixels(pixt, &count, NULL);
            fprintf(stderr, "Failure for two TB flips; count = %d\n", count);
        }
    }
    pixDestroy(&pixt);
    return;
}
示例#10
0
l_int32
DoPageSegmentation(PIX     *pixs,   /* should be at least 300 ppi */
                   l_int32  which)  /* 1, 2, 3, 4 */
{
char         buf[256];
l_int32      zero;
BOXA        *boxatm, *boxahm;
PIX         *pixr;   /* image reduced to 150 ppi */
PIX         *pixhs;  /* image of halftone seed, 150 ppi */
PIX         *pixm;   /* image of mask of components, 150 ppi */
PIX         *pixhm1; /* image of halftone mask, 150 ppi */
PIX         *pixhm2; /* image of halftone mask, 300 ppi */
PIX         *pixht;  /* image of halftone components, 150 ppi */
PIX         *pixnht; /* image without halftone components, 150 ppi */
PIX         *pixi;   /* inverted image, 150 ppi */
PIX         *pixvws; /* image of vertical whitespace, 150 ppi */
PIX         *pixm1;  /* image of closed textlines, 150 ppi */
PIX         *pixm2;  /* image of refined text line mask, 150 ppi */
PIX         *pixm3;  /* image of refined text line mask, 300 ppi */
PIX         *pixb1;  /* image of text block mask, 150 ppi */
PIX         *pixb2;  /* image of text block mask, 300 ppi */
PIX         *pixnon; /* image of non-text or halftone, 150 ppi */
PIX         *pix1, *pix2, *pix3, *pix4;
PIXA        *pixa;
PIXCMAP     *cmap;
PTAA        *ptaa;
l_int32      ht_flag = 0;
l_int32      ws_flag = 0;
l_int32      text_flag = 0;
l_int32      block_flag = 0;

    PROCNAME("DoPageSegmentation");

    if (which == 1)
        ht_flag = 1;
    else if (which == 2)
        ws_flag = 1;
    else if (which == 3)
        text_flag = 1;
    else if (which == 4)
        block_flag = 1;
    else
        return ERROR_INT("invalid parameter: not in [1...4]", procName, 1);

    pixa = pixaCreate(0);
    lept_mkdir("lept/livre");

        /* Reduce to 150 ppi */
    pix1 = pixScaleToGray2(pixs);
    if (ws_flag || ht_flag || block_flag) pixaAddPix(pixa, pix1, L_COPY);
    if (which == 1)
        pixWrite("/tmp/lept/livre/orig.gray.150.png", pix1, IFF_PNG);
    pixDestroy(&pix1);
    pixr = pixReduceRankBinaryCascade(pixs, 1, 0, 0, 0);

        /* Get seed for halftone parts */
    pix1 = pixReduceRankBinaryCascade(pixr, 4, 4, 3, 0);
    pix2 = pixOpenBrick(NULL, pix1, 5, 5);
    pixhs = pixExpandBinaryPower2(pix2, 8);
    if (ht_flag) pixaAddPix(pixa, pixhs, L_COPY);
    if (which == 1)
        pixWrite("/tmp/lept/livre/htseed.150.png", pixhs, IFF_PNG);
    pixDestroy(&pix1);
    pixDestroy(&pix2);

        /* Get mask for connected regions */
    pixm = pixCloseSafeBrick(NULL, pixr, 4, 4);
    if (ht_flag) pixaAddPix(pixa, pixm, L_COPY);
    if (which == 1)
        pixWrite("/tmp/lept/livre/ccmask.150.png", pixm, IFF_PNG);

        /* Fill seed into mask to get halftone mask */
    pixhm1 = pixSeedfillBinary(NULL, pixhs, pixm, 4);
    if (ht_flag) pixaAddPix(pixa, pixhm1, L_COPY);
    if (which == 1) pixWrite("/tmp/lept/livre/htmask.150.png", pixhm1, IFF_PNG);
    pixhm2 = pixExpandBinaryPower2(pixhm1, 2);

        /* Extract halftone stuff */
    pixht = pixAnd(NULL, pixhm1, pixr);
    if (which == 1) pixWrite("/tmp/lept/livre/ht.150.png", pixht, IFF_PNG);

        /* Extract non-halftone stuff */
    pixnht = pixXor(NULL, pixht, pixr);
    if (text_flag) pixaAddPix(pixa, pixnht, L_COPY);
    if (which == 1) pixWrite("/tmp/lept/livre/text.150.png", pixnht, IFF_PNG);
    pixZero(pixht, &zero);
    if (zero)
        fprintf(stderr, "No halftone parts found\n");
    else
        fprintf(stderr, "Halftone parts found\n");

        /* Get bit-inverted image */
    pixi = pixInvert(NULL, pixnht);
    if (ws_flag) pixaAddPix(pixa, pixi, L_COPY);
    if (which == 1) pixWrite("/tmp/lept/livre/invert.150.png", pixi, IFF_PNG);

        /* The whitespace mask will break textlines where there
         * is a large amount of white space below or above.
         * We can prevent this by identifying regions of the
         * inverted image that have large horizontal (bigger than
         * the separation between columns) and significant
         * vertical extent (bigger than the separation between
         * textlines), and subtracting this from the whitespace mask. */
    pix1 = pixMorphCompSequence(pixi, "o80.60", 0);
    pix2 = pixSubtract(NULL, pixi, pix1);
    if (ws_flag) pixaAddPix(pixa, pix2, L_COPY);
    pixDestroy(&pix1);

        /* Identify vertical whitespace by opening inverted image */
    pix3 = pixOpenBrick(NULL, pix2, 5, 1);  /* removes thin vertical lines */
    pixvws = pixOpenBrick(NULL, pix3, 1, 200);  /* gets long vertical lines */
    if (text_flag || ws_flag) pixaAddPix(pixa, pixvws, L_COPY);
    if (which == 1) pixWrite("/tmp/lept/livre/vertws.150.png", pixvws, IFF_PNG);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

        /* Get proto (early processed) text line mask. */
        /* First close the characters and words in the textlines */
    pixm1 = pixCloseSafeBrick(NULL, pixnht, 30, 1);
    if (text_flag) pixaAddPix(pixa, pixm1, L_COPY);
    if (which == 1)
        pixWrite("/tmp/lept/livre/textmask1.150.png", pixm1, IFF_PNG);

        /* Next open back up the vertical whitespace corridors */
    pixm2 = pixSubtract(NULL, pixm1, pixvws);
    if (which == 1)
        pixWrite("/tmp/lept/livre/textmask2.150.png", pixm2, IFF_PNG);

        /* Do a small opening to remove noise */
    pixOpenBrick(pixm2, pixm2, 3, 3);
    if (text_flag) pixaAddPix(pixa, pixm2, L_COPY);
    if (which == 1)
         pixWrite("/tmp/lept/livre/textmask3.150.png", pixm2, IFF_PNG);
    pixm3 = pixExpandBinaryPower2(pixm2, 2);

        /* Join pixels vertically to make text block mask */
    pixb1 = pixMorphSequence(pixm2, "c1.10 + o4.1", 0);
    if (block_flag) pixaAddPix(pixa, pixb1, L_COPY);
    if (which == 1)
        pixWrite("/tmp/lept/livre/textblock1.150.png", pixb1, IFF_PNG);

        /* Solidify the textblock mask and remove noise:
         *  (1) For each c.c., close the blocks and dilate slightly
         *      to form a solid mask.
         *  (2) Small horizontal closing between components
         *  (3) Open the white space between columns, again
         *  (4) Remove small components */
    pix1 = pixMorphSequenceByComponent(pixb1, "c30.30 + d3.3", 8, 0, 0, NULL);
    pixCloseSafeBrick(pix1, pix1, 10, 1);
    if (block_flag) pixaAddPix(pixa, pix1, L_COPY);
    pix2 = pixSubtract(NULL, pix1, pixvws);
    pix3 = pixSelectBySize(pix2, 25, 5, 8, L_SELECT_IF_BOTH,
                            L_SELECT_IF_GTE, NULL);
    if (block_flag) pixaAddPix(pixa, pix3, L_COPY);
    if (which == 1)
        pixWrite("/tmp/lept/livre/textblock2.150.png", pix3, IFF_PNG);
    pixb2 = pixExpandBinaryPower2(pix3, 2);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

        /* Identify the outlines of each textblock */
    ptaa = pixGetOuterBordersPtaa(pixb2);
    pix1 = pixRenderRandomCmapPtaa(pixb2, ptaa, 1, 8, 1);
    cmap = pixGetColormap(pix1);
    pixcmapResetColor(cmap, 0, 130, 130, 130);  /* set interior to gray */
    if (which == 1)
        pixWrite("/tmp/lept/livre/textblock3.300.png", pix1, IFF_PNG);
    pixDisplayWithTitle(pix1, 480, 360, "textblock mask with outlines", DFLAG);
    ptaaDestroy(&ptaa);
    pixDestroy(&pix1);

        /* Fill line mask (as seed) into the original */
    pix1 = pixSeedfillBinary(NULL, pixm3, pixs, 8);
    pixOr(pixm3, pixm3, pix1);
    pixDestroy(&pix1);
    if (which == 1)
        pixWrite("/tmp/lept/livre/textmask.300.png", pixm3, IFF_PNG);
    pixDisplayWithTitle(pixm3, 480, 360, "textline mask 4", DFLAG);

        /* Fill halftone mask (as seed) into the original */
    pix1 = pixSeedfillBinary(NULL, pixhm2, pixs, 8);
    pixOr(pixhm2, pixhm2, pix1);
    pixDestroy(&pix1);
    if (which == 1)
        pixWrite("/tmp/lept/livre/htmask.300.png", pixhm2, IFF_PNG);
    pixDisplayWithTitle(pixhm2, 520, 390, "halftonemask 2", DFLAG);

        /* Find objects that are neither text nor halftones */
    pix1 = pixSubtract(NULL, pixs, pixm3);  /* remove text pixels */
    pixnon = pixSubtract(NULL, pix1, pixhm2);  /* remove halftone pixels */
    pixDestroy(&pix1);
    if (which == 1)
        pixWrite("/tmp/lept/livre/other.300.png", pixnon, IFF_PNG);
    pixDisplayWithTitle(pixnon, 540, 420, "other stuff", DFLAG);

        /* Write out b.b. for text line mask and halftone mask components */
    boxatm = pixConnComp(pixm3, NULL, 4);
    boxahm = pixConnComp(pixhm2, NULL, 8);
    if (which == 1) {
        boxaWrite("/tmp/lept/livre/textmask.boxa", boxatm);
        boxaWrite("/tmp/lept/livre/htmask.boxa", boxahm);
    }

    pix1 = pixaDisplayTiledAndScaled(pixa, 8, 250, 4, 0, 25, 2);
    pixDisplay(pix1, 0, 375 * (which - 1));
    snprintf(buf, sizeof(buf), "/tmp/lept/livre/segout.%d.png", which);
    pixWrite(buf, pix1, IFF_PNG);
    pixDestroy(&pix1);
    pixaDestroy(&pixa);

        /* clean up to test with valgrind */
    pixDestroy(&pixr);
    pixDestroy(&pixhs);
    pixDestroy(&pixm);
    pixDestroy(&pixhm1);
    pixDestroy(&pixhm2);
    pixDestroy(&pixht);
    pixDestroy(&pixi);
    pixDestroy(&pixnht);
    pixDestroy(&pixvws);
    pixDestroy(&pixm1);
    pixDestroy(&pixm2);
    pixDestroy(&pixm3);
    pixDestroy(&pixb1);
    pixDestroy(&pixb2);
    pixDestroy(&pixnon);
    boxaDestroy(&boxatm);
    boxaDestroy(&boxahm);
    return 0;
}
示例#11
0
/*!
 *  pixGenTextlineMask()
 *
 *      Input:  pixs (1 bpp, assumed to be 150 to 200 ppi)
 *              &pixvws (<return> vertical whitespace mask)
 *              &tlfound (<optional return> 1 if the mask is not empty)
 *              debug (flag: 1 for debug output)
 *      Return: pixd (textline mask), or null on error
 *
 *  Notes:
 *      (1) The input pixs should be deskewed.
 *      (2) pixs should have no halftone pixels.
 *      (3) Both the input image and the returned textline mask
 *          are at the same resolution.
 */
PIX *
pixGenTextlineMask(PIX      *pixs,
                   PIX     **ppixvws,
                   l_int32  *ptlfound,
                   l_int32   debug)
{
l_int32  empty;
PIX     *pixt1, *pixt2, *pixvws, *pixd;

    PROCNAME("pixGenTextlineMask");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (!ppixvws)
        return (PIX *)ERROR_PTR("&pixvws not defined", procName, NULL);
    if (pixGetDepth(pixs) != 1)
        return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);

        /* First we need a vertical whitespace mask.  Invert the image. */
    pixt1 = pixInvert(NULL, pixs);

        /* The whitespace mask will break textlines where there
         * is a large amount of white space below or above.
         * This can be prevented by identifying regions of the
         * inverted image that have large horizontal extent (bigger than
	 * the separation between columns) and significant
         * vertical extent (bigger than the separation between
	 * textlines), and subtracting this from the bg. */
    pixt2 = pixMorphCompSequence(pixt1, "o80.60", 0);
    pixSubtract(pixt1, pixt1, pixt2);
    pixDisplayWriteFormat(pixt1, debug, IFF_PNG);
    pixDestroy(&pixt2);

        /* Identify vertical whitespace by opening the remaining bg.
         * o5.1 removes thin vertical bg lines and o1.200 extracts
         * long vertical bg lines. */
    pixvws = pixMorphCompSequence(pixt1, "o5.1 + o1.200", 0);
    *ppixvws = pixvws;
    pixDisplayWriteFormat(pixvws, debug, IFF_PNG);
    pixDestroy(&pixt1);

        /* Three steps to getting text line mask:
         *   (1) close the characters and words in the textlines
         *   (2) open the vertical whitespace corridors back up
         *   (3) small opening to remove noise    */
    pixt1 = pixCloseSafeBrick(NULL, pixs, 30, 1);
    pixDisplayWrite(pixt1, debug);
    pixd = pixSubtract(NULL, pixt1, pixvws);
    pixOpenBrick(pixd, pixd, 3, 3);
    pixDisplayWriteFormat(pixd, debug, IFF_PNG);
    pixDestroy(&pixt1);

        /* Check if text line mask is empty */
    if (ptlfound) {
        *ptlfound = 0;
        pixZero(pixd, &empty);
        if (!empty)
            *ptlfound = 1;
    }

    return pixd;
}
示例#12
0
int main(int    argc,
         char **argv)
{
l_int32  w, h, n, i, sum, sumi, empty;
BOX     *box1, *box2, *box3, *box4;
BOXA    *boxa, *boxat;
NUMA    *na1, *na2, *na3, *na4, *na5;
NUMA    *na2i, *na3i, *na4i, *nat, *naw, *nah;
PIX     *pixs, *pixc, *pixt, *pixt2, *pixd, *pixcount;
PIXA    *pixas, *pixad, *pixac;

    pixDisplayWrite(NULL, -1);

        /* Draw 4 filled boxes of different sizes */
    pixs = pixCreate(200, 200, 1);
    box1 = boxCreate(10, 10, 20, 30);
    box2 = boxCreate(50, 10, 40, 20);
    box3 = boxCreate(110, 10, 35, 5);
    box4 = boxCreate(160, 10, 5, 15);
    boxa = boxaCreate(4);
    boxaAddBox(boxa, box1, L_INSERT);
    boxaAddBox(boxa, box2, L_INSERT);
    boxaAddBox(boxa, box3, L_INSERT);
    boxaAddBox(boxa, box4, L_INSERT);
    pixRenderBox(pixs, box1, 1, L_SET_PIXELS);
    pixRenderBox(pixs, box2, 1, L_SET_PIXELS);
    pixRenderBox(pixs, box3, 1, L_SET_PIXELS);
    pixRenderBox(pixs, box4, 1, L_SET_PIXELS);
    pixt = pixFillClosedBorders(pixs, 4);
    pixDisplayWrite(pixt, 1);
    pixt2 = pixCreateTemplate(pixs);
    pixRenderHashBox(pixt2, box1, 6, 4, L_POS_SLOPE_LINE, 1, L_SET_PIXELS);
    pixRenderHashBox(pixt2, box2, 7, 2, L_POS_SLOPE_LINE, 1, L_SET_PIXELS);
    pixRenderHashBox(pixt2, box3, 4, 2, L_VERTICAL_LINE, 1, L_SET_PIXELS);
    pixRenderHashBox(pixt2, box4, 3, 1, L_HORIZONTAL_LINE, 1, L_SET_PIXELS);
    pixDisplayWrite(pixt2, 1);

        /* Exercise the parameters */
    pixd = pixSelectBySize(pixt, 0, 22, 8, L_SELECT_HEIGHT,
                           L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 1);
    pixd = pixSelectBySize(pixt, 0, 30, 8, L_SELECT_HEIGHT,
                           L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 3);
    pixd = pixSelectBySize(pixt, 0, 5, 8, L_SELECT_HEIGHT,
                           L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 3);
    pixd = pixSelectBySize(pixt, 0, 6, 8, L_SELECT_HEIGHT,
                           L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 1);
    pixd = pixSelectBySize(pixt, 20, 0, 8, L_SELECT_WIDTH,
                           L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 2);
    pixd = pixSelectBySize(pixt, 31, 0, 8, L_SELECT_WIDTH,
                           L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 2);
    pixd = pixSelectBySize(pixt, 21, 10, 8, L_SELECT_IF_EITHER,
                           L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 3);
    pixd = pixSelectBySize(pixt, 20, 30, 8, L_SELECT_IF_EITHER,
                           L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 2);
    pixd = pixSelectBySize(pixt, 22, 32, 8, L_SELECT_IF_BOTH,
                           L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 2);
    pixd = pixSelectBySize(pixt, 6, 32, 8, L_SELECT_IF_BOTH,
                           L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 1);
    pixd = pixSelectBySize(pixt, 5, 25, 8, L_SELECT_IF_BOTH,
                           L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 1);
    pixd = pixSelectBySize(pixt, 25, 5, 8, L_SELECT_IF_BOTH,
                           L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 1);

    pixd = pixSelectByPerimToAreaRatio(pixt, 0.3, 8, L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 2);
    pixd = pixSelectByPerimToAreaRatio(pixt, 0.15, 8, L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 3);
    pixd = pixSelectByPerimToAreaRatio(pixt, 0.4, 8, L_SELECT_IF_LTE, NULL);
    count_pieces(pixd, 2);
    pixd = pixSelectByPerimToAreaRatio(pixt, 0.45, 8, L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 3);

    pixd = pixSelectByPerimSizeRatio(pixt2, 2.3, 8, L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 2);
    pixd = pixSelectByPerimSizeRatio(pixt2, 1.2, 8, L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 3);
    pixd = pixSelectByPerimSizeRatio(pixt2, 1.7, 8, L_SELECT_IF_LTE, NULL);
    count_pieces(pixd, 1);
    pixd = pixSelectByPerimSizeRatio(pixt2, 2.9, 8, L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 3);

    pixd = pixSelectByAreaFraction(pixt2, 0.3, 8, L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 0);
    pixd = pixSelectByAreaFraction(pixt2, 0.9, 8, L_SELECT_IF_LT, NULL);
    count_pieces(pixd, 4);
    pixd = pixSelectByAreaFraction(pixt2, 0.5, 8, L_SELECT_IF_GTE, NULL);
    count_pieces(pixd, 3);
    pixd = pixSelectByAreaFraction(pixt2, 0.7, 8, L_SELECT_IF_GT, NULL);
    count_pieces(pixd, 2);

    boxat = boxaSelectBySize(boxa, 21, 10, L_SELECT_IF_EITHER,
                             L_SELECT_IF_LT, NULL);
    count_pieces2(boxat, 3);
    boxat = boxaSelectBySize(boxa, 22, 32, L_SELECT_IF_BOTH,
                             L_SELECT_IF_LT, NULL);
    count_pieces2(boxat, 2);

    boxaDestroy(&boxa);
    pixDestroy(&pixt);
    pixDestroy(&pixt2);
    pixDestroy(&pixs);

        /* Here's the most general method for selecting components.
         * We do it for area fraction, but any combination of
         * size, area/perimeter ratio and area fraction can be used. */
    pixs = pixRead("feyn.tif");
/*    pixs = pixRead("rabi.png"); */
    pixc = pixCopy(NULL, pixs);  /* subtract bands from this */
    pixt = pixCreateTemplate(pixs);  /* add bands to this */
    pixGetDimensions(pixs, &w, &h, NULL);
    boxa = pixConnComp(pixs, &pixas, 8);
    n = boxaGetCount(boxa);
    fprintf(stderr, "total: %d\n", n);
    na1 = pixaFindAreaFraction(pixas);
    nat = numaCreate(0);
    numaSetCount(nat, n);  /* initialize to all 0 */
    sum = sumi = 0;
    pixac = pixaCreate(0);
    for (i = 0; i < 12; i++) {
            /* Compute within the intervals using an intersection. */
        na2 = numaMakeThresholdIndicator(na1, edges[i], L_SELECT_IF_GTE);
        if (i != 11)
            na3 = numaMakeThresholdIndicator(na1, edges[i + 1], L_SELECT_IF_LT);
        else
            na3 = numaMakeThresholdIndicator(na1, edges[i + 1],
                                             L_SELECT_IF_LTE);
        na4 = numaLogicalOp(NULL, na2, na3, L_INTERSECTION);
        sum += count_ones(na4, 0, 0, NULL);

            /* Compute outside the intervals using a union, and invert */
        na2i = numaMakeThresholdIndicator(na1, edges[i], L_SELECT_IF_LT);
        if (i != 11)
            na3i = numaMakeThresholdIndicator(na1, edges[i + 1],
                                              L_SELECT_IF_GTE);
        else
            na3i = numaMakeThresholdIndicator(na1, edges[i + 1],
                                              L_SELECT_IF_GT);
        na4i = numaLogicalOp(NULL, na3i, na2i, L_UNION);
        numaInvert(na4i, na4i);
        sumi += count_ones(na4i, 0, 0, NULL);

            /* Compare the two methods */
        if (sum == sumi)
            fprintf(stderr, "\nCorrect: sum = sumi = %d\n", sum);
        else
            fprintf(stderr, "\nWRONG: sum = %d, sumi = %d\n", sum, sumi);

            /* Reconstruct the image, band by band. */
        numaLogicalOp(nat, nat, na4, L_UNION);
        pixad = pixaSelectWithIndicator(pixas, na4, NULL);
        pixd = pixaDisplay(pixad, w, h);
        pixOr(pixt, pixt, pixd);  /* add them in */
        pixcount = pixCopy(NULL, pixt);  /* destroyed by count_pieces */
        count_ones(na4, band[i], i, "band");
        count_pieces(pixd, band[i]);
        count_ones(nat, total[i], i, "total");
        count_pieces(pixcount, total[i]);
        pixaDestroy(&pixad);

            /* Remove band successively from full image */
        pixRemoveWithIndicator(pixc, pixas, na4);
        pixSaveTiled(pixc, pixac, 0.25, 1 - i % 2, 25, 8);

        numaDestroy(&na2);
        numaDestroy(&na3);
        numaDestroy(&na4);
        numaDestroy(&na2i);
        numaDestroy(&na3i);
        numaDestroy(&na4i);
    }

        /* Did we remove all components from pixc? */
    pixZero(pixc, &empty);
    if (!empty)
        fprintf(stderr, "\nWRONG: not all pixels removed from pixc\n");

    pixDestroy(&pixs);
    pixDestroy(&pixc);
    pixDestroy(&pixt);
    boxaDestroy(&boxa);
    pixaDestroy(&pixas);
    numaDestroy(&na1);
    numaDestroy(&nat);

        /* One last extraction.  Get all components that have either
         * a height of at least 50 or a width of between 30 and 35,
         * and also have a relatively large perimeter/area ratio. */
    pixs = pixRead("feyn.tif");
    boxa = pixConnComp(pixs, &pixas, 8);
    n = boxaGetCount(boxa);
    pixaFindDimensions(pixas, &naw, &nah);
    na1 = pixaFindPerimToAreaRatio(pixas);
    na2 = numaMakeThresholdIndicator(nah, 50, L_SELECT_IF_GTE);
    na3 = numaMakeThresholdIndicator(naw, 30, L_SELECT_IF_GTE);
    na4 = numaMakeThresholdIndicator(naw, 35, L_SELECT_IF_LTE);
    na5 = numaMakeThresholdIndicator(na1, 0.4, L_SELECT_IF_GTE);
    numaLogicalOp(na3, na3, na4, L_INTERSECTION);
    numaLogicalOp(na2, na2, na3, L_UNION);
    numaLogicalOp(na2, na2, na5, L_INTERSECTION);
    numaInvert(na2, na2);  /* get components to be removed */
    pixRemoveWithIndicator(pixs, pixas, na2);
    pixSaveTiled(pixs, pixac, 0.25, 1, 25, 8);
    pixDestroy(&pixs);
    boxaDestroy(&boxa);
    pixaDestroy(&pixas);
    numaDestroy(&naw);
    numaDestroy(&nah);
    numaDestroy(&na1);
    numaDestroy(&na2);
    numaDestroy(&na3);
    numaDestroy(&na4);
    numaDestroy(&na5);

    pixDisplayMultiple("/tmp/display/file*");
    pixd = pixaDisplay(pixac, 0, 0);
    pixDisplay(pixd, 100, 100);
    pixWrite("/tmp/comp.jpg", pixd, IFF_JFIF_JPEG);
    pixDestroy(&pixd);
    pixaDestroy(&pixac);
    return 0;
}
示例#13
0
文件: skew.c 项目: vkbrad/AndroidOCR
/*!
 *  pixFindSkewSweepAndSearchScorePivot()
 *
 *      Input:  pixs  (1 bpp)
 *              &angle   (<return> angle required to deskew; in degrees)
 *              &conf    (<return> confidence given by ratio of max/min score)
 *              &endscore (<optional return> max score; use NULL to ignore)
 *              redsweep  (sweep reduction factor = 1, 2, 4 or 8)
 *              redsearch  (binary search reduction factor = 1, 2, 4 or 8;
 *                          and must not exceed redsweep)
 *              sweepcenter  (angle about which sweep is performed; in degrees)
 *              sweeprange   (half the full range, taken about sweepcenter;
 *                            in degrees)
 *              sweepdelta   (angle increment of sweep; in degrees)
 *              minbsdelta   (min binary search increment angle; in degrees)
 *              pivot  (L_SHEAR_ABOUT_CORNER, L_SHEAR_ABOUT_CENTER)
 *      Return: 0 if OK, 1 on error or if angle measurment not valid
 *
 *  Notes:
 *      (1) See notes in pixFindSkewSweepAndSearchScore().
 *      (2) This allows choice of shear pivoting from either the UL corner
 *          or the center.  For small angles, the ability to discriminate
 *          angles is better with shearing from the UL corner.  However,
 *          for large angles (say, greater than 20 degrees), it is better
 *          to shear about the center because a shear from the UL corner
 *          loses too much of the image.
 */
l_int32
pixFindSkewSweepAndSearchScorePivot(PIX        *pixs,
                                    l_float32  *pangle,
                                    l_float32  *pconf,
                                    l_float32  *pendscore,
                                    l_int32     redsweep,
                                    l_int32     redsearch,
                                    l_float32   sweepcenter,
                                    l_float32   sweeprange,
                                    l_float32   sweepdelta,
                                    l_float32   minbsdelta,
                                    l_int32     pivot)
{
l_int32    ret, bzero, i, nangles, n, ratio, maxindex, minloc;
l_int32    width, height;
l_float32  deg2rad, theta, delta;
l_float32  sum, maxscore, maxangle;
l_float32  centerangle, leftcenterangle, rightcenterangle;
l_float32  lefttemp, righttemp;
l_float32  bsearchscore[5];
l_float32  minscore, minthresh;
l_float32  rangeleft;
NUMA      *natheta, *nascore;
PIX       *pixsw, *pixsch, *pixt1, *pixt2;

    PROCNAME("pixFindSkewSweepAndSearchScorePivot");

    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);
    if (pixGetDepth(pixs) != 1)
        return ERROR_INT("pixs not 1 bpp", procName, 1);
    if (!pangle)
        return ERROR_INT("&angle not defined", procName, 1);
    if (!pconf)
        return ERROR_INT("&conf not defined", procName, 1);
    if (redsweep != 1 && redsweep != 2 && redsweep != 4 && redsweep != 8)
        return ERROR_INT("redsweep must be in {1,2,4,8}", procName, 1);
    if (redsearch != 1 && redsearch != 2 && redsearch != 4 && redsearch != 8)
        return ERROR_INT("redsearch must be in {1,2,4,8}", procName, 1);
    if (redsearch > redsweep)
        return ERROR_INT("redsearch must not exceed redsweep", procName, 1);
    if (pivot != L_SHEAR_ABOUT_CORNER && pivot != L_SHEAR_ABOUT_CENTER)
        return ERROR_INT("invalid pivot", procName, 1);

    *pangle = 0.0;
    *pconf = 0.0;
    deg2rad = 3.1415926535 / 180.;
    ret = 0;

        /* Generate reduced image for binary search, if requested */
    if (redsearch == 1)
        pixsch = pixClone(pixs);
    else if (redsearch == 2)
        pixsch = pixReduceRankBinaryCascade(pixs, 1, 0, 0, 0);
    else if (redsearch == 4)
        pixsch = pixReduceRankBinaryCascade(pixs, 1, 1, 0, 0);
    else  /* redsearch == 8 */
        pixsch = pixReduceRankBinaryCascade(pixs, 1, 1, 2, 0);

    pixZero(pixsch, &bzero);
    if (bzero) {
        pixDestroy(&pixsch);
        return 1;
    }

        /* Generate reduced image for sweep, if requested */
    ratio = redsweep / redsearch;
    if (ratio == 1) {
        pixsw = pixClone(pixsch);
    } else {  /* ratio > 1 */
        if (ratio == 2)
            pixsw = pixReduceRankBinaryCascade(pixsch, 1, 0, 0, 0);
        else if (ratio == 4)
            pixsw = pixReduceRankBinaryCascade(pixsch, 1, 2, 0, 0);
        else  /* ratio == 8 */
            pixsw = pixReduceRankBinaryCascade(pixsch, 1, 2, 2, 0);
    }

    pixt1 = pixCreateTemplate(pixsw);
    if (ratio == 1)
        pixt2 = pixClone(pixt1);
    else
        pixt2 = pixCreateTemplate(pixsch);

    nangles = (l_int32)((2. * sweeprange) / sweepdelta + 1);
    natheta = numaCreate(nangles);
    nascore = numaCreate(nangles);

    if (!pixsch || !pixsw) {
        ret = ERROR_INT("pixsch and pixsw not both made", procName, 1);
        goto cleanup;
    }
    if (!pixt1 || !pixt2) {
        ret = ERROR_INT("pixt1 and pixt2 not both made", procName, 1);
        goto cleanup;
    }
    if (!natheta || !nascore) {
        ret = ERROR_INT("natheta and nascore not both made", procName, 1);
        goto cleanup;
    }

        /* Do sweep */
    rangeleft = sweepcenter - sweeprange;
    for (i = 0; i < nangles; i++) {
        theta = rangeleft + i * sweepdelta;   /* degrees */

            /* Shear pix and put the result in pixt1 */
        if (pivot == L_SHEAR_ABOUT_CORNER)
            pixVShearCorner(pixt1, pixsw, deg2rad * theta, L_BRING_IN_WHITE);
        else
            pixVShearCenter(pixt1, pixsw, deg2rad * theta, L_BRING_IN_WHITE);

            /* Get score */
        pixFindDifferentialSquareSum(pixt1, &sum);

#if  DEBUG_PRINT_SCORES
        L_INFO("sum(%7.2f) = %7.0f\n", procName, theta, sum);
#endif  /* DEBUG_PRINT_SCORES */

            /* Save the result in the output arrays */
        numaAddNumber(nascore, sum);
        numaAddNumber(natheta, theta);
    }

        /* Find the largest of the set (maxscore at maxangle) */
    numaGetMax(nascore, &maxscore, &maxindex);
    numaGetFValue(natheta, maxindex, &maxangle);

#if  DEBUG_PRINT_SWEEP
    L_INFO(" From sweep: angle = %7.3f, score = %7.3f\n", procName,
           maxangle, maxscore);
#endif  /* DEBUG_PRINT_SWEEP */

#if  DEBUG_PLOT_SCORES
        /* Plot the sweep result -- the scores versus rotation angle --
         * using gnuplot with GPLOT_LINES (lines connecting data points). */
    {GPLOT  *gplot;
        gplot = gplotCreate("sweep_output", GPLOT_PNG,
                    "Sweep. Variance of difference of ON pixels vs. angle",
                    "angle (deg)", "score");
        gplotAddPlot(gplot, natheta, nascore, GPLOT_LINES, "plot1");
        gplotAddPlot(gplot, natheta, nascore, GPLOT_POINTS, "plot2");
        gplotMakeOutput(gplot);
        gplotDestroy(&gplot);
    }
#endif  /* DEBUG_PLOT_SCORES */

        /* Check if the max is at the end of the sweep. */
    n = numaGetCount(natheta);
    if (maxindex == 0 || maxindex == n - 1) {
        L_WARNING("max found at sweep edge\n", procName);
        goto cleanup;
    }

        /* Empty the numas for re-use */
    numaEmpty(nascore);
    numaEmpty(natheta);

        /* Do binary search to find skew angle.
         * First, set up initial three points. */
    centerangle = maxangle;
    if (pivot == L_SHEAR_ABOUT_CORNER) {
        pixVShearCorner(pixt2, pixsch, deg2rad * centerangle, L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[2]);
        pixVShearCorner(pixt2, pixsch, deg2rad * (centerangle - sweepdelta),
                        L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[0]);
        pixVShearCorner(pixt2, pixsch, deg2rad * (centerangle + sweepdelta),
                        L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[4]);
    } else {
        pixVShearCenter(pixt2, pixsch, deg2rad * centerangle, L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[2]);
        pixVShearCenter(pixt2, pixsch, deg2rad * (centerangle - sweepdelta),
                        L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[0]);
        pixVShearCenter(pixt2, pixsch, deg2rad * (centerangle + sweepdelta),
                        L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[4]);
    }

    numaAddNumber(nascore, bsearchscore[2]);
    numaAddNumber(natheta, centerangle);
    numaAddNumber(nascore, bsearchscore[0]);
    numaAddNumber(natheta, centerangle - sweepdelta);
    numaAddNumber(nascore, bsearchscore[4]);
    numaAddNumber(natheta, centerangle + sweepdelta);

        /* Start the search */
    delta = 0.5 * sweepdelta;
    while (delta >= minbsdelta)
    {
            /* Get the left intermediate score */
        leftcenterangle = centerangle - delta;
        if (pivot == L_SHEAR_ABOUT_CORNER)
            pixVShearCorner(pixt2, pixsch, deg2rad * leftcenterangle,
                            L_BRING_IN_WHITE);
        else
            pixVShearCenter(pixt2, pixsch, deg2rad * leftcenterangle,
                            L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[1]);
        numaAddNumber(nascore, bsearchscore[1]);
        numaAddNumber(natheta, leftcenterangle);

            /* Get the right intermediate score */
        rightcenterangle = centerangle + delta;
        if (pivot == L_SHEAR_ABOUT_CORNER)
            pixVShearCorner(pixt2, pixsch, deg2rad * rightcenterangle,
                            L_BRING_IN_WHITE);
        else
            pixVShearCenter(pixt2, pixsch, deg2rad * rightcenterangle,
                            L_BRING_IN_WHITE);
        pixFindDifferentialSquareSum(pixt2, &bsearchscore[3]);
        numaAddNumber(nascore, bsearchscore[3]);
        numaAddNumber(natheta, rightcenterangle);

            /* Find the maximum of the five scores and its location.
             * Note that the maximum must be in the center
             * three values, not in the end two. */
        maxscore = bsearchscore[1];
        maxindex = 1;
        for (i = 2; i < 4; i++) {
            if (bsearchscore[i] > maxscore) {
                maxscore = bsearchscore[i];
                maxindex = i;
            }
        }

            /* Set up score array to interpolate for the next iteration */
        lefttemp = bsearchscore[maxindex - 1];
        righttemp = bsearchscore[maxindex + 1];
        bsearchscore[2] = maxscore;
        bsearchscore[0] = lefttemp;
        bsearchscore[4] = righttemp;

            /* Get new center angle and delta for next iteration */
        centerangle = centerangle + delta * (maxindex - 2);
        delta = 0.5 * delta;
    }
    *pangle = centerangle;

#if  DEBUG_PRINT_SCORES
    L_INFO(" Binary search score = %7.3f\n", procName, bsearchscore[2]);
#endif  /* DEBUG_PRINT_SCORES */

    if (pendscore)  /* save if requested */
        *pendscore = bsearchscore[2];

        /* Return the ratio of Max score over Min score
         * as a confidence value.  Don't trust if the Min score
         * is too small, which can happen if the image is all black
         * with only a few white pixels interspersed.  In that case,
         * we get a contribution from the top and bottom edges when
         * vertically sheared, but this contribution becomes zero when
         * the shear angle is zero.  For zero shear angle, the only
         * contribution will be from the white pixels.  We expect that
         * the signal goes as the product of the (height * width^2),
         * so we compute a (hopefully) normalized minimum threshold as
         * a function of these dimensions.  */
    numaGetMin(nascore, &minscore, &minloc);
    width = pixGetWidth(pixsch);
    height = pixGetHeight(pixsch);
    minthresh = MINSCORE_THRESHOLD_CONSTANT * width * width * height;

#if  DEBUG_THRESHOLD
    L_INFO(" minthresh = %10.2f, minscore = %10.2f\n", procName,
           minthresh, minscore);
    L_INFO(" maxscore = %10.2f\n", procName, maxscore);
#endif  /* DEBUG_THRESHOLD */

    if (minscore > minthresh)
        *pconf = maxscore / minscore;
    else
        *pconf = 0.0;

        /* Don't trust it if too close to the edge of the sweep
         * range or if maxscore is small */
    if ((centerangle > rangeleft + 2 * sweeprange - sweepdelta) ||
        (centerangle < rangeleft + sweepdelta) ||
        (maxscore < MIN_VALID_MAXSCORE))
        *pconf = 0.0;

#if  DEBUG_PRINT_BINARY
    fprintf(stderr, "Binary search: angle = %7.3f, score ratio = %6.2f\n",
            *pangle, *pconf);
    fprintf(stderr, "               max score = %8.0f\n", maxscore);
#endif  /* DEBUG_PRINT_BINARY */

#if  DEBUG_PLOT_SCORES
        /* Plot the result -- the scores versus rotation angle --
         * using gnuplot with GPLOT_POINTS.  Because the data
         * points are not ordered by theta (increasing or decreasing),
         * using GPLOT_LINES would be confusing! */
    {GPLOT  *gplot;
        gplot = gplotCreate("search_output", GPLOT_PNG,
                "Binary search.  Variance of difference of ON pixels vs. angle",
                "angle (deg)", "score");
        gplotAddPlot(gplot, natheta, nascore, GPLOT_POINTS, "plot1");
        gplotMakeOutput(gplot);
        gplotDestroy(&gplot);
    }
#endif  /* DEBUG_PLOT_SCORES */

cleanup:
    pixDestroy(&pixsw);
    pixDestroy(&pixsch);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    numaDestroy(&nascore);
    numaDestroy(&natheta);
    return ret;
}
示例#14
0
文件: skew.c 项目: vkbrad/AndroidOCR
/*!
 *  pixFindSkewSweep()
 *
 *      Input:  pixs  (1 bpp)
 *              &angle   (<return> angle required to deskew, in degrees)
 *              reduction  (factor = 1, 2, 4 or 8)
 *              sweeprange   (half the full range; assumed about 0; in degrees)
 *              sweepdelta   (angle increment of sweep; in degrees)
 *      Return: 0 if OK, 1 on error or if angle measurment not valid
 *
 *  Notes:
 *      (1) This examines the 'score' for skew angles with equal intervals.
 *      (2) Caller must check the return value for validity of the result.
 */
l_int32
pixFindSkewSweep(PIX        *pixs,
                 l_float32  *pangle,
                 l_int32     reduction,
                 l_float32   sweeprange,
                 l_float32   sweepdelta)
{
l_int32    ret, bzero, i, nangles;
l_float32  deg2rad, theta;
l_float32  sum, maxscore, maxangle;
NUMA      *natheta, *nascore;
PIX       *pix, *pixt;

    PROCNAME("pixFindSkewSweep");

    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);
    if (pixGetDepth(pixs) != 1)
        return ERROR_INT("pixs not 1 bpp", procName, 1);
    if (!pangle)
        return ERROR_INT("&angle not defined", procName, 1);
    if (reduction != 1 && reduction != 2 && reduction != 4 && reduction != 8)
        return ERROR_INT("reduction must be in {1,2,4,8}", procName, 1);

    *pangle = 0.0;  /* init */
    deg2rad = 3.1415926535 / 180.;
    ret = 0;

        /* Generate reduced image, if requested */
    if (reduction == 1)
        pix = pixClone(pixs);
    else if (reduction == 2)
        pix = pixReduceRankBinaryCascade(pixs, 1, 0, 0, 0);
    else if (reduction == 4)
        pix = pixReduceRankBinaryCascade(pixs, 1, 1, 0, 0);
    else /* reduction == 8 */
        pix = pixReduceRankBinaryCascade(pixs, 1, 1, 2, 0);

    pixZero(pix, &bzero);
    if (bzero) {
        pixDestroy(&pix);
        return 1;
    }

    nangles = (l_int32)((2. * sweeprange) / sweepdelta + 1);
    natheta = numaCreate(nangles);
    nascore = numaCreate(nangles);
    pixt = pixCreateTemplate(pix);

    if (!pix || !pixt) {
        ret = ERROR_INT("pix and pixt not both made", procName, 1);
        goto cleanup;
    }
    if (!natheta || !nascore) {
        ret = ERROR_INT("natheta and nascore not both made", procName, 1);
        goto cleanup;
    }

    for (i = 0; i < nangles; i++) {
        theta = -sweeprange + i * sweepdelta;   /* degrees */

            /* Shear pix about the UL corner and put the result in pixt */
        pixVShearCorner(pixt, pix, deg2rad * theta, L_BRING_IN_WHITE);

            /* Get score */
        pixFindDifferentialSquareSum(pixt, &sum);

#if  DEBUG_PRINT_SCORES
        L_INFO("sum(%7.2f) = %7.0f\n", procName, theta, sum);
#endif  /* DEBUG_PRINT_SCORES */

            /* Save the result in the output arrays */
        numaAddNumber(nascore, sum);
        numaAddNumber(natheta, theta);
    }

        /* Find the location of the maximum (i.e., the skew angle)
         * by fitting the largest data point and its two neighbors
         * to a quadratic, using lagrangian interpolation.  */
    numaFitMax(nascore, &maxscore, natheta, &maxangle);
    *pangle = maxangle;

#if  DEBUG_PRINT_SWEEP
    L_INFO(" From sweep: angle = %7.3f, score = %7.3f\n", procName,
           maxangle, maxscore);
#endif  /* DEBUG_PRINT_SWEEP */

#if  DEBUG_PLOT_SCORES
        /* Plot the result -- the scores versus rotation angle --
         * using gnuplot with GPLOT_LINES (lines connecting data points).
         * The GPLOT data structure is first created, with the
         * appropriate data incorporated from the two input NUMAs,
         * and then the function gplotMakeOutput() uses gnuplot to
         * generate the output plot.  This can be either a .png file
         * or a .ps file, depending on whether you use GPLOT_PNG
         * or GPLOT_PS.  */
    {GPLOT  *gplot;
        gplot = gplotCreate("sweep_output", GPLOT_PNG,
                    "Sweep. Variance of difference of ON pixels vs. angle",
                    "angle (deg)", "score");
        gplotAddPlot(gplot, natheta, nascore, GPLOT_LINES, "plot1");
        gplotAddPlot(gplot, natheta, nascore, GPLOT_POINTS, "plot2");
        gplotMakeOutput(gplot);
        gplotDestroy(&gplot);
    }
#endif  /* DEBUG_PLOT_SCORES */

cleanup:
    pixDestroy(&pix);
    pixDestroy(&pixt);
    numaDestroy(&nascore);
    numaDestroy(&natheta);
    return ret;
}
示例#15
0
void
DoWatershed(L_REGPARAMS  *rp,
            PIX          *pixs)
{
l_uint8   *data;
size_t     size;
l_int32    w, h, empty;
l_uint32   redval, greenval;
L_WSHED   *wshed;
PIX       *pixc, *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7, *pix8, *pix9;
PIXA      *pixa;
PTA       *pta;

        /* Find local extrema */
    pixa = pixaCreate(0);
    pixGetDimensions(pixs, &w, &h, NULL);
    regTestWritePixAndCheck(rp, pixs, IFF_PNG);  /* 0 */
    pixSaveTiled(pixs, pixa, 1.0, 1, 10, 32);
    startTimer();
    pixLocalExtrema(pixs, 0, 0, &pix1, &pix2);
    fprintf(stderr, "Time for extrema: %7.3f\n", stopTimer());
    pixSetOrClearBorder(pix1, 2, 2, 2, 2, PIX_CLR);
    composeRGBPixel(255, 0, 0, &redval);
    composeRGBPixel(0, 255, 0, &greenval);
    pixc = pixConvertTo32(pixs);
    pixPaintThroughMask(pixc, pix2, 0, 0, greenval);
    pixPaintThroughMask(pixc, pix1, 0, 0, redval);
    regTestWritePixAndCheck(rp, pixc, IFF_PNG);  /* 1 */
    pixSaveTiled(pixc, pixa, 1.0, 0, 10, 32);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 2 */
    pixSaveTiled(pix1, pixa, 1.0, 0, 10, 32);

        /* Generate seeds for watershed */
    pixSelectMinInConnComp(pixs, pix1, &pta, NULL);
    pix3 = pixGenerateFromPta(pta, w, h);
    regTestWritePixAndCheck(rp, pix3, IFF_PNG);  /* 3 */
    pixSaveTiled(pix3, pixa, 1.0, 1, 10, 32);
    pix4 = pixConvertTo32(pixs);
    pixPaintThroughMask(pix4, pix3, 0, 0, greenval);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 4 */
    pixSaveTiled(pix4, pixa, 1.0, 0, 10, 32);
    pix5 = pixRemoveSeededComponents(NULL, pix3, pix1, 8, 2);
    regTestWritePixAndCheck(rp, pix5, IFF_PNG);  /* 5 */
    pixSaveTiled(pix5, pixa, 1.0, 0, 10, 32);
    pixZero(pix5, &empty);
    regTestCompareValues(rp, 1, empty, 0.0);  /* 6 */

        /* Make and display watershed */
    wshed = wshedCreate(pixs, pix3, 10, 0);
    startTimer();
    wshedApply(wshed);
    fprintf(stderr, "Time for wshed: %7.3f\n", stopTimer());
    pix6 = pixaDisplayRandomCmap(wshed->pixad, w, h);
    regTestWritePixAndCheck(rp, pix6, IFF_PNG);  /* 7 */
    pixSaveTiled(pix6, pixa, 1.0, 1, 10, 32);
    numaWriteMem(&data, &size, wshed->nalevels);
    regTestWriteDataAndCheck(rp, data, size, "na");  /* 8 */
    pix7 = wshedRenderFill(wshed);
    regTestWritePixAndCheck(rp, pix7, IFF_PNG);  /* 9 */
    pixSaveTiled(pix7, pixa, 1.0, 0, 10, 32);
    pix8 = wshedRenderColors(wshed);
    regTestWritePixAndCheck(rp, pix8, IFF_PNG);  /* 10 */
    pixSaveTiled(pix8, pixa, 1.0, 0, 10, 32);
    wshedDestroy(&wshed);

    pix9 = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pix9, IFF_PNG);  /* 11 */
    pixDisplayWithTitle(pix9, 100, 100, NULL, rp->display);

    lept_free(data);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    pixDestroy(&pix7);
    pixDestroy(&pix8);
    pixDestroy(&pix9);
    pixDestroy(&pixc);
    pixaDestroy(&pixa);
    ptaDestroy(&pta);
}