示例#1
0
int 
main(int argc, char **argv) 
{
    PLFLT minx, maxx, miny, maxy;
    int c;

/* Parse and process command line arguments */

    (void) plparseopts(&argc, argv, PL_PARSE_FULL);

/* Longitude (x) and latitude (y) */

    miny = -70;
    maxy = 80;

    plinit();

/* Cartesian plots */
/* Most of world */

    minx = 190;
    maxx = 190+360;

    plcol0(1);
    plenv(minx, maxx, miny, maxy, 1, -1);
    plmap(NULL, "usaglobe", minx, maxx, miny, maxy);

/* The Americas */

    minx = 190;
    maxx = 340;

    plcol0(1);
    plenv(minx, maxx, miny, maxy, 1, -1);
    plmap(NULL, "usaglobe", minx, maxx, miny, maxy);

/* Polar, Northern hemisphere */

    minx = 0;
    maxx = 360;

    plenv(-75., 75., -75., 75., 1, -1);
    plmap(mapform19,"globe", minx, maxx, miny, maxy);

    pllsty(2);
    plmeridians(mapform19,10.0, 10.0, 0.0, 360.0, -10.0, 80.0);
    plend();
    exit(0);
}
示例#2
0
void
c_plhist(PLINT n, PLFLT *data, PLFLT datmin, PLFLT datmax,
	 PLINT nbin, PLINT flags)
{
    PLINT i, bin;
    PLFLT *x, *y, dx, ymax;

    if (plsc->level < 1) {
	plabort("plhist: Please call plinit first");
	return;
    }
    if (plsc->level < 3 && (flags & 1)) {
	plabort("plhist: Please set up window first");
	return;
    }
    if (datmin >= datmax) {
	plabort("plhist: Data range invalid");
	return;
    }
    if ( ! (x = (PLFLT *) malloc((size_t) nbin * sizeof(PLFLT)))) {
	plabort("plhist: Out of memory");
	return;
    }
    if ( ! (y = (PLFLT *) malloc((size_t) nbin * sizeof(PLFLT)))) {
	free((void *) x);
	plabort("plhist: Out of memory");
	return;
    }

    dx = (datmax - datmin) / nbin;
    for (i = 0; i < nbin; i++) {
	x[i] = datmin + i * dx;
	y[i] = 0.0;
    }

    for (i = 0; i < n; i++) {
	bin = (data[i] - datmin) / dx;
	if ((flags & 2) == 0) {
	    bin = bin > 0 ? bin : 0;
	    bin = bin < nbin ? bin : nbin - 1;
	    y[bin]++;
	} else {
	    if(bin >= 0 && bin < nbin) {
		y[bin]++;
	    }
	}
    }

    if (!(flags & 1)) {
	ymax = 0.0;
	for (i = 0; i < nbin; i++)
	    ymax = MAX(ymax, y[i]);

	plenv(datmin, datmax, (PLFLT) 0.0, (PLFLT) (1.1 * ymax), 0, 0);
    }
    /* We pass on the highest couple of bits to the 'plbin' routine */
    plbin(nbin, x, y, (flags & (4+8+16+32)) >> 2);
    free((void *) x);
    free((void *) y);
}
示例#3
0
void
plot2( void )
{
    int i;

// Set up the viewport and window using PLENV. The range in X is -2.0 to
// 10.0, and the range in Y is -0.4 to 2.0. The axes are scaled separately
// (just = 0), and we draw a box with axes (axis = 1).
//
    plcol0( 1 );
    plenv( -2.0, 10.0, -0.4, 1.2, 0, 1 );
    plcol0( 2 );
    pllab( "(x)", "sin(x)/x", "#frPLplot Example 1 - Sinc Function" );

// Fill up the arrays

    for ( i = 0; i < 100; i++ )
    {
        x[i] = ( i - 19.0 ) / 6.0;
        y[i] = 1.0;
        if ( x[i] != 0.0 )
            y[i] = sin( x[i] ) / x[i];
    }

// Draw the line

    plcol0( 3 );
    plwidth( 2 );
    plline( 100, x, y );
    plwidth( 1 );
}
示例#4
0
void
plot2(void)
{
    int i;

/* Set up the viewport and window using PLENV. The range in X is -2.0 to
   10.0, and the range in Y is -0.4 to 2.0. The axes are scaled separately
   (just = 0), and we draw a box with axes (axis = 1). */

    plcol(1);
    plenv((PLFLT) -2.0, (PLFLT) 10.0, (PLFLT) -0.4, (PLFLT) 1.2, 0, 1);
    plcol(2);
    pllab("(x)", "sin(x)/x", "#frPLplot Example 1 - Sinc Function");

/* Fill up the arrays */

    for (i = 0; i < 100; i++) {
	x[i] = (i - 19.0) / 6.0;
	y[i] = 1.0;
	if (x[i] != 0.0)
	    y[i] = sin(x[i]) / x[i];
    }

/* Draw the line */

    plcol(3);
    plline(100, x, y);

}
示例#5
0
void setup_plot_drawable( App *a )
{
    struct
    {
        Display  *display;
        Drawable drawable;
    }     xinfo;

    PLFLT x[3] = { 1, 3, 4 };
    PLFLT y[3] = { 3, 2, 5 };

    plsdev( "xcairo" );
    plsetopt( "drvopt", "external_drawable" );
    plinit();

  #if TO_PIXMAP == 1
    // Here we set up to draw to a pixmap
    xinfo.display  = GDK_PIXMAP_XDISPLAY( a->plotwindow_pixmap );
    xinfo.drawable = GDK_PIXMAP_XID( a->plotwindow_pixmap );
  #else
    // Alternatively, we can do direct to a visible X Window
    xinfo.display  = GDK_WINDOW_XDISPLAY( a->plotwindow->window );
    xinfo.drawable = GDK_WINDOW_XID( a->plotwindow->window );
  #endif

    pl_cmd( PLESC_DEVINIT, &xinfo );
    plenv( 0, 5, 0, 5, 0, 0 );

    plline( 3, x, y );
    plend();
}
示例#6
0
static void polar( void )
//polar contour plot example.
{
    int      i, j;
    PLcGrid2 cgrid2;
    PLFLT    **z;
    PLFLT    px[PERIMETERPTS], py[PERIMETERPTS];
    PLFLT    t, r, theta;
    PLFLT    lev[10];

    plenv( -1., 1., -1., 1., 0, -2 );
    plcol0( 1 );

//Perimeter
    for ( i = 0; i < PERIMETERPTS; i++ )
    {
        t     = ( 2. * M_PI / ( PERIMETERPTS - 1 ) ) * (double) i;
        px[i] = cos( t );
        py[i] = sin( t );
    }
    plline( PERIMETERPTS, px, py );

//create data to be contoured.
    plAlloc2dGrid( &cgrid2.xg, RPTS, THETAPTS );
    plAlloc2dGrid( &cgrid2.yg, RPTS, THETAPTS );
    plAlloc2dGrid( &z, RPTS, THETAPTS );
    cgrid2.nx = RPTS;
    cgrid2.ny = THETAPTS;

    for ( i = 0; i < RPTS; i++ )
    {
        r = i / (double) ( RPTS - 1 );
        for ( j = 0; j < THETAPTS; j++ )
        {
            theta           = ( 2. * M_PI / (double) ( THETAPTS - 1 ) ) * (double) j;
            cgrid2.xg[i][j] = r * cos( theta );
            cgrid2.yg[i][j] = r * sin( theta );
            z[i][j]         = r;
        }
    }

    for ( i = 0; i < 10; i++ )
    {
        lev[i] = 0.05 + 0.10 * (double) i;
    }

    plcol0( 2 );
    plcont( (const PLFLT * const *) z, RPTS, THETAPTS, 1, RPTS, 1, THETAPTS, lev, 10,
        pltr2, (void *) &cgrid2 );
    plcol0( 1 );
    pllab( "", "", "Polar Contour Plot" );
    plFree2dGrid( z, RPTS, THETAPTS );
    plFree2dGrid( cgrid2.xg, RPTS, THETAPTS );
    plFree2dGrid( cgrid2.yg, RPTS, THETAPTS );
}
示例#7
0
void PlPlotWidget::plotLinearFit(int size, std::vector<double> &xp,std::vector<double> &yp,std::vector<double> &yp_err, double m, double c){

    plot->clearWidget();
    //plot->setBackgroundColor(255,255,255,1);

    int   i;
    double max_x, max_y;

    std::vector<double>::iterator result_min_x, result_max_x;
    std::vector<double>::iterator result_min_y, result_max_y;

    PLFLT *x = new PLFLT[size];
    PLFLT *y = new PLFLT[size];
    PLFLT *y_fit = new PLFLT[size];
    PLFLT *y_err_hi = new PLFLT[size];
    PLFLT *y_err_lo = new PLFLT[size];

    for(i=0;i<size;i++){  // is there a better way with first value
        x[i]=xp[i];
        y[i]=yp[i];
        y_fit[i]=m*xp[i]+c;
        y_err_hi[i]=yp[i]+yp_err[i];
        y_err_lo[i]=yp[i]-yp_err[i];
    }

    result_min_x = std::min_element(xp.begin(), xp.end());
    result_max_x = std::max_element(xp.begin(), xp.end());
    result_min_y = std::min_element(yp.begin(), yp.end());
    result_max_y = std::max_element(yp.begin(), yp.end());

    max_x = (*result_max_x)*(1.2);	//sets the axis to be 20% larger than the max value
    max_y = (*result_max_y)*(1.2);

    plcol0( 14 );
    plenv( 0, max_x, 0, max_y, 0, 1 );
    plcol0( 1 );
    pllab( "time (s)", "\gl", "FRAP DATA" );

    plcol0( 14 );
    plwid( 2 );
    plpoin( size, x, y, 20);
    plerry( size, x, y_err_hi,y_err_lo);
    plwid( 1 );

    plcol0( 14 );
    plwid( 2 );
    plline( size, x, y_fit );
    plwid( 1 );

    delete[] x;
    delete[] y;
    delete[] y_fit;
    delete[] y_err_hi;
    delete[] y_err_lo;
}
示例#8
0
int main(int argc, char **argv) {
    enum Constexpr {n_points = 1000};
    double mu = 1.0;
    gsl_odeiv2_system sys = {ode_func, ode_jac, 2, &mu};
    gsl_odeiv2_driver * d= gsl_odeiv2_driver_alloc_y_new(
        &sys,
        gsl_odeiv2_step_rk8pd,
        1e-6,
        1e-6,
        0.0
    );
    int i;
    double t = 0.0;
    double t1 = 100.0;
    /* Initial condition: f = 0 with speed 0. */
    double y[2] = {1.0, 0.0};
    double dt = t1 / n_points;
    double datax[n_points];
    double datay[n_points];

    for (i = 0; i < n_points; i++) {
        double ti = i * dt;
        int status = gsl_odeiv2_driver_apply(d, &t, ti, y);
        if (status != GSL_SUCCESS) {
            fprintf(stderr, "error, return value=%d\n", status);
            break;
        }

        /* Get output. */
        printf("%.5e %.5e %.5e\n", t, y[0], y[1]);
        datax[i] = y[0];
        datay[i] = y[1];
    }

    /* Cleanup. */
    gsl_odeiv2_driver_free(d);

    /* Plot. */
    if (argc > 1 && argv[1][0] == '1') {
        plsdev("xwin");
        plinit();
        plenv(
            gsl_stats_min(datax, 1, n_points),
            gsl_stats_max(datax, 1, n_points),
            gsl_stats_min(datay, 1, n_points),
            gsl_stats_max(datay, 1, n_points),
            0,
            1
        );
        plstring(n_points, datax, datay, "*");
        plend();
    }

    return EXIT_SUCCESS;
}
示例#9
0
void
plot1( void )
{
    int   i;
    PLFLT xmin, xmax, ymin, ymax;

    for ( i = 0; i < 60; i++ )
    {
        x[i] = xoff + xscale * ( i + 1 ) / 60.0;
        y[i] = yoff + yscale * pow( x[i], 2. );
    }

    xmin = x[0];
    xmax = x[59];
    ymin = y[0];
    ymax = y[59];

    for ( i = 0; i < 6; i++ )
    {
        xs1[i] = x[i * 10 + 3];
        ys1[i] = y[i * 10 + 3];
    }

// Set up the viewport and window using PLENV. The range in X is
// 0.0 to 6.0, and the range in Y is 0.0 to 30.0. The axes are
// scaled separately (just = 0), and we just draw a labelled
// box (axis = 0).

    plcol0( 1 );
    plenv( xmin, xmax, ymin, ymax, 0, 0 );
    plcol0( 6 );
    pllab( "(x)", "(y)", "#frPLplot Example 1 - y=x#u2" );

// Plot the data points

    plcol0( 9 );
    plpoin( 6, xs1, ys1, 9 );

// Draw the line through the data

    plcol0( 4 );
    plline( 60, x, y );
}
int main( int argc, const char *argv[] )
{
    cairo_surface_t *cairoSurface;
    cairo_t         *cairoContext;

    cairoSurface = cairo_ps_surface_create( "ext-cairo-test.ps", 720, 540 );
    cairoContext = cairo_create( cairoSurface );

    plparseopts( &argc, argv, PL_PARSE_FULL );

    plsdev( "extcairo" );
    plinit();
    pl_cmd( PLESC_DEVINIT, cairoContext );
    plenv( 0.0, 1.0, 0.0, 1.0, 1, 0 );
    pllab( "x", "y", "title" );
    plend();

    cairo_destroy( cairoContext );
    cairo_surface_destroy( cairoSurface );
    exit( 0 );
}
示例#11
0
int main( int argc, const char *argv[] )
{

	PLFLT x[NSIZE], y[NSIZE];
	PLFLT xmin = 0., xmax = 1., ymin = 0., ymax = 100.;

	for (int i = 0; i < NSIZE; i++)
	{
		x[i] = (PLFLT) (i) / (PLFLT) (NSIZE-1);
		y[i] = ymax * x[i] * x[i];
	}

	plparseopts( &argc, argv, PL_PARSE_FULL );

	plinit();
	plenv(xmin, xmax, ymin, ymax, 0, 0);
	pllab("x", "y", "Simple PLplot demo of a 2D line plot");
	plline(NSIZE, x, y);

	plend();

	return 0;
}
示例#12
0
void
plot5(void)
{
    int i, j;
    PLFLT xx, yy;
    PLFLT **z, **w;
    static PLINT mark = 1500, space = 1500;

/* Set up function arrays */

    plAlloc2dGrid(&z, XPTS, YPTS);
    plAlloc2dGrid(&w, XPTS, YPTS);

    for (i = 0; i < XPTS; i++) {
	xx = (double) (i - (XPTS / 2)) / (double) (XPTS / 2);
	for (j = 0; j < YPTS; j++) {
	    yy = (double) (j - (YPTS / 2)) / (double) (YPTS / 2) - 1.0;
	    z[i][j] = xx * xx - yy * yy;
	    w[i][j] = 2 * xx * yy;
	}
    }

    plenv(-1.0, 1.0, -1.0, 1.0, 0, 0);
    plcol0(2);
    plcont(z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL);
    plstyl(1, &mark, &space);
    plcol0(3);
    plcont(w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL);
    plcol0(1);
    pllab("X Coordinate", "Y Coordinate", "Streamlines of flow");
    plflush();

/* Clean up */
    plFree2dGrid(z, XPTS, YPTS);
    plFree2dGrid(w, XPTS, YPTS);

}
示例#13
0
void draw_page( PLINT mode, const char *title )
{
    PLFLT xs[3], ys[3];
    PLFLT over_x, over_y, over_r;

    // A triangle for the background
    xs[0] = 0.0;
    xs[1] = 1.0;
    xs[2] = 0.0;
    ys[0] = 0.0;
    ys[1] = 1.0;
    ys[2] = 1.0;

    // A circle for the foreground
    over_x = 0.5;
    over_y = 0.5;
    over_r = 0.4;

    plcol0( 1 );

    // Setup a plot window
    plenv( 0.0, 1.0, 0.0, 1.0, 1, 0 );

    // Show which mode we're using
    pllab( "", "", title );

    // Draw a background triangle using the default drawing mode
    plcol0( 2 );
    plsdrawmode( PL_DRAWMODE_DEFAULT );
    plfill( 3, xs, ys );

    // Draw a circle in the given drawing mode
    plcol0( 3 );
    plsdrawmode( mode );
    plarc( over_x, over_y, over_r, over_r, 0.0, 360.0, 0.0, 1 );
}
示例#14
0
struct fft_average *do_fft(double *in, int max)
{
	fftw_complex *out;
	double *fft_in;
	fftw_plan p;
	int i;
	double xmax = 0, xmin = 0, ymin = 0, ymax = 0;
	double average = 0;
	struct fft_average *avg;

	avg = malloc(sizeof(struct fft_average));
	if (!avg)
		exit(1);
	fft_in = (double *)fftw_malloc(sizeof(double) * max);
	out = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * max);

	p = fftw_plan_dft_r2c_1d(max, fft_in, out, FFTW_PRESERVE_INPUT);
	for (i = 0; i < max; i++)
		fft_in[i] = in[i];

//	memcpy(fft_in, in, sizeof(double) * max);
	fftw_execute(p);

	for (i = 0; i < max; i++) {
		double *d;

		d = out[i];
		if (d[0] > xmax)
			xmax = d[0];
		else if (d[0] < xmin)
			xmin = d[0];
		if (d[1] > ymax)
			ymax = d[1];
		else if (d[1] < ymin)
			ymin = d[1];
	}

	plsdev("xwin");
	plinit();
	plenv(-1, 1, -1, 1, 0, 0);
	for (i = 0; i < max; i++) {
		PLFLT x;
		PLFLT y;
		double *d;

		d = out[i];
		if (d[0] < 0) {
			x = d[0] / -xmin;
			avg->xavg += (d[0] / -xmin);
			if (i > 0)
				avg->xavg /= 2;
		} else {
			x = d[0] / xmax;
			avg->xavg += (d[0] / xmax);
			if (i > 0)
				avg->xavg /= 2;
		}

		if (d[1] < 0) {
			y = d[1] / -ymin;
			avg->yavg += (d[1] / -ymin);
			if (i > 0)
				avg->yavg /= 2;
		} else {
			y = d[1] / ymax;
			avg->yavg += (d[1] / ymax);
			if (i > 0)
				avg->yavg /= 2;
		}

		plpoin(1, &x, &y, 1);
	}
	plend();

	fftw_destroy_plan(p);
	fftw_free(fft_in);
	fftw_free(out);

	return avg;
}
示例#15
0
int
main( int argc, const char *argv[] )
{
    int          i, j;
    PLFLT        xx, yy, argx, argy, distort;
    static PLINT mark = 1500, space = 1500;

    PLFLT        **z, **w;
    PLFLT        xg1[XPTS], yg1[YPTS];
    PLcGrid      cgrid1;
    PLcGrid2     cgrid2;

// Parse and process command line arguments

    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

// Initialize plplot

    plinit();

// Set up function arrays

    plAlloc2dGrid( &z, XPTS, YPTS );
    plAlloc2dGrid( &w, XPTS, YPTS );

    for ( i = 0; i < XPTS; i++ )
    {
        xx = (double) ( i - ( XPTS / 2 ) ) / (double) ( XPTS / 2 );
        for ( j = 0; j < YPTS; j++ )
        {
            yy      = (double) ( j - ( YPTS / 2 ) ) / (double) ( YPTS / 2 ) - 1.0;
            z[i][j] = xx * xx - yy * yy;
            w[i][j] = 2 * xx * yy;
        }
    }

// Set up grids

    cgrid1.xg = xg1;
    cgrid1.yg = yg1;
    cgrid1.nx = XPTS;
    cgrid1.ny = YPTS;

    plAlloc2dGrid( &cgrid2.xg, XPTS, YPTS );
    plAlloc2dGrid( &cgrid2.yg, XPTS, YPTS );
    cgrid2.nx = XPTS;
    cgrid2.ny = YPTS;

    for ( i = 0; i < XPTS; i++ )
    {
        for ( j = 0; j < YPTS; j++ )
        {
            mypltr( (PLFLT) i, (PLFLT) j, &xx, &yy, NULL );

            argx    = xx * M_PI / 2;
            argy    = yy * M_PI / 2;
            distort = 0.4;

            cgrid1.xg[i] = xx + distort * cos( argx );
            cgrid1.yg[j] = yy - distort * cos( argy );

            cgrid2.xg[i][j] = xx + distort * cos( argx ) * cos( argy );
            cgrid2.yg[i][j] = yy - distort * cos( argx ) * cos( argy );
        }
    }

// Plot using identity transform
//
//  plenv(-1.0, 1.0, -1.0, 1.0, 0, 0);
//  plcol0(2);
//  plcont(z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL);
//  plstyl(1, &mark, &space);
//  plcol0(3);
//  plcont(w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL);
//  plstyl(0, &mark, &space);
//  plcol0(1);
//  pllab("X Coordinate", "Y Coordinate", "Streamlines of flow");
//
    pl_setcontlabelformat( 4, 3 );
    pl_setcontlabelparam( 0.006, 0.3, 0.1, 1 );
    plenv( -1.0, 1.0, -1.0, 1.0, 0, 0 );
    plcol0( 2 );
    plcont( (const PLFLT * const *) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL );
    plstyl( 1, &mark, &space );
    plcol0( 3 );
    plcont( (const PLFLT * const *) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL );
    plstyl( 0, &mark, &space );
    plcol0( 1 );
    pllab( "X Coordinate", "Y Coordinate", "Streamlines of flow" );
    pl_setcontlabelparam( 0.006, 0.3, 0.1, 0 );

// Plot using 1d coordinate transform

    plenv( -1.0, 1.0, -1.0, 1.0, 0, 0 );
    plcol0( 2 );
    plcont( (const PLFLT * const *) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
        pltr1, (void *) &cgrid1 );

    plstyl( 1, &mark, &space );
    plcol0( 3 );
    plcont( (const PLFLT * const *) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
        pltr1, (void *) &cgrid1 );
    plstyl( 0, &mark, &space );
    plcol0( 1 );
    pllab( "X Coordinate", "Y Coordinate", "Streamlines of flow" );
    //
    // pl_setcontlabelparam(0.006, 0.3, 0.1, 1);
    // plenv(-1.0, 1.0, -1.0, 1.0, 0, 0);
    // plcol0(2);
    // plcont((const PLFLT **) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
    //     pltr1, (void *) &cgrid1);
    //
    // plstyl(1, &mark, &space);
    // plcol0(3);
    // plcont((const PLFLT **) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
    //     pltr1, (void *) &cgrid1);
    // plstyl(0, &mark, &space);
    // plcol0(1);
    // pllab("X Coordinate", "Y Coordinate", "Streamlines of flow");
    // pl_setcontlabelparam(0.006, 0.3, 0.1, 0);
    //
// Plot using 2d coordinate transform

    plenv( -1.0, 1.0, -1.0, 1.0, 0, 0 );
    plcol0( 2 );
    plcont( (const PLFLT * const *) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
        pltr2, (void *) &cgrid2 );

    plstyl( 1, &mark, &space );
    plcol0( 3 );
    plcont( (const PLFLT * const *) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
        pltr2, (void *) &cgrid2 );
    plstyl( 0, &mark, &space );
    plcol0( 1 );
    pllab( "X Coordinate", "Y Coordinate", "Streamlines of flow" );
    //
    // pl_setcontlabelparam(0.006, 0.3, 0.1, 1);
    // plenv(-1.0, 1.0, -1.0, 1.0, 0, 0);
    // plcol0(2);
    // plcont((const PLFLT **) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
    //     pltr2, (void *) &cgrid2);
    //
    // plstyl(1, &mark, &space);
    // plcol0(3);
    // plcont((const PLFLT **) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11,
    //     pltr2, (void *) &cgrid2);
    // plstyl(0, &mark, &space);
    // plcol0(1);
    // pllab("X Coordinate", "Y Coordinate", "Streamlines of flow");
    //
    pl_setcontlabelparam( 0.006, 0.3, 0.1, 0 );
    polar();
    //
    // pl_setcontlabelparam(0.006, 0.3, 0.1, 1);
    // polar();
    //
    pl_setcontlabelparam( 0.006, 0.3, 0.1, 0 );
    potential();
    //
    // pl_setcontlabelparam(0.006, 0.3, 0.1, 1);
    // potential();
    //

// Clean up

    plFree2dGrid( z, XPTS, YPTS );
    plFree2dGrid( w, XPTS, YPTS );
    plFree2dGrid( cgrid2.xg, XPTS, YPTS );
    plFree2dGrid( cgrid2.yg, XPTS, YPTS );

    plend();

    exit( 0 );
}
示例#16
0
int
main( int argc, char **argv )
{
    PLFLT       minx, maxx, miny, maxy;
    PLFLT       x, y;
    //variables for the shapelib example
    const PLINT nbeachareas    = 2;
    const PLINT beachareas[]   = { 23, 24 };
    const PLINT nwoodlandareas = 94;
    PLINT       woodlandareas[94];
    const PLINT nshingleareas  = 22;
    const PLINT shingleareas[] = { 0, 1, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 217, 2424, 2425, 2426, 2427, 2428, 2491, 2577 };
    const PLINT ncragareas     = 2024;
    PLINT       cragareas[2024];
    const PLINT majorroads[] = { 33, 48, 71, 83, 89, 90, 101, 102, 111 };
    int         i;

// Parse and process command line arguments

    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

// Longitude (x) and latitude (y)

    miny = -70;
    maxy = 80;

    plinit();

// Cartesian plots
// Most of world

    minx = -170;
    maxx = minx + 360;

    // Setup a custom latitude and longitude-based scaling function.
    plslabelfunc( geolocation_labeler, NULL );

    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, 70 );
    plmap( NULL, "usaglobe", minx, maxx, miny, maxy );

// The Americas

    minx = 190;
    maxx = 340;

    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, 70 );
    plmap( NULL, "usaglobe", minx, maxx, miny, maxy );

    // Clear the labeling function
    plslabelfunc( NULL, NULL );

// Polar, Northern hemisphere

    minx = 0;
    maxx = 360;

    plenv( -75., 75., -75., 75., 1, -1 );
    plmap( mapform19, "globe", minx, maxx, miny, maxy );

    pllsty( 2 );
    plmeridians( mapform19, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 );

// Polar, Northern hemisphere, this time with a PLplot-wide transform

    minx = 0;
    maxx = 360;

    plstransform( map_transform, NULL );

    pllsty( 1 );
    plenv( -75., 75., -75., 75., 1, -1 );
    // No need to set the map transform here as the global transform will be
    // used.
    plmap( NULL, "globe", minx, maxx, miny, maxy );

    pllsty( 2 );
    plmeridians( NULL, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 );

    // Show Baltimore, MD on the map
    plcol0( 2 );
    plssym( 0.0, 2.0 );
    x = -76.6125;
    y = 39.2902778;
    plpoin( 1, &x, &y, 18 );
    plssym( 0.0, 1.0 );
    plptex( -76.6125, 43.0, 0.0, 0.0, 0.0, "Baltimore, MD" );

    // For C, this is how the global transform is cleared
    plstransform( NULL, NULL );

    // An example using shapefiles. The shapefiles used are from Ordnance Survey, UK.
    // These were chosen because they provide shapefiles for small grid boxes which
    // are easilly manageable for this demo.

    pllsty( 1 );


    minx = 240570;
    maxx = 621109;
    miny = 87822;
    maxy = 722770;
    plscol0( 0, 255, 255, 255 );
    plscol0( 1, 0, 0, 0 );
    plscol0( 2, 150, 150, 150 );
    plscol0( 3, 0, 50, 200 );
    plscol0( 4, 50, 50, 50 );
    plscol0( 5, 150, 0, 0 );
    plscol0( 6, 100, 100, 255 );


    minx = 265000;
    maxx = 270000;
    miny = 145000;
    maxy = 150000;
    plscol0( 0, 255, 255, 255 ); //white
    plscol0( 1, 0, 0, 0 );       //black
    plscol0( 2, 255, 200, 0 );   //yelow for sand
    plscol0( 3, 60, 230, 60 );   // green for woodland
    plscol0( 4, 210, 120, 60 );  //brown for contours
    plscol0( 5, 150, 0, 0 );     //red for major roads
    plscol0( 6, 180, 180, 255 ); //pale blue for water
    plscol0( 7, 100, 100, 100 ); //pale grey for shingle or boulders
    plscol0( 8, 100, 100, 100 ); //dark grey for custom polygons - generally crags


    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, -1 );
    pllab( "", "", "Martinhoe CP, Exmoor National Park, UK (shapelib only)" );


    //Beach
    plcol0( 2 );
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, beachareas, nbeachareas );

    //woodland
    plcol0( 3 );
    for ( i = 0; i < nwoodlandareas; ++i )
        woodlandareas[i] = i + 218;
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, (PLINT_VECTOR) woodlandareas, nwoodlandareas );

    //shingle or boulders
    plcol0( 7 );
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, shingleareas, nshingleareas );

    //crags
    plcol0( 8 );
    for ( i = 0; i < ncragareas; ++i )
        cragareas[i] = i + 325;
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, (PLINT_VECTOR) cragareas, ncragareas );

    //draw contours, we need to separate contours from high/low coastline
    //draw_contours(pls, "ss/SS64_line", 433, 20, 4, 3, minx, maxx, miny, maxy );
    plcol0( 4 );
    plmapline( NULL, "ss/ss64ne_Height_Contours", minx, maxx, miny, maxy, NULL, 0 );

    //draw the sea and surface water
    plwidth( 0.0 );
    plcol0( 6 );
    plmapfill( NULL, "ss/ss64ne_Water_Area", minx, maxx, miny, maxy, NULL, 0 );
    plwidth( 2.0 );
    plmapfill( NULL, "ss/ss64ne_Water_Line", minx, maxx, miny, maxy, NULL, 0 );

    //draw the roads, first with black and then thinner with colour to give an
    //an outlined appearance
    plwidth( 5.0 );
    plcol0( 1 );
    plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, NULL, 0 );
    plwidth( 3.0 );
    plcol0( 0 );
    plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, NULL, 0 );
    plcol0( 5 );
    plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, majorroads, 9 );

    //draw buildings
    plwidth( 1.0 );
    plcol0( 1 );
    plmapfill( NULL, "ss/ss64ne_Building_Area", minx, maxx, miny, maxy, NULL, 0 );

    //labels
    plsfci( 0x80000100 );
    plschr( 0, 0.8 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "MARTINHOE CP", minx, maxx, miny, maxy, 202 );
    plschr( 0, 0.7 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Heale\nDown", minx, maxx, miny, maxy, 13 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "South\nDown", minx, maxx, miny, maxy, 34 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Martinhoe\nCommon", minx, maxx, miny, maxy, 42 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Woody Bay", minx, maxx, miny, maxy, 211 );
    plschr( 0, 0.6 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Mill Wood", minx, maxx, miny, maxy, 16 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Heale Wood", minx, maxx, miny, maxy, 17 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 1.0, "Bodley", minx, maxx, miny, maxy, 31 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.0, "Martinhoe", minx, maxx, miny, maxy, 37 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Woolhanger\nCommon", minx, maxx, miny, maxy, 60 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "West Ilkerton\nCommon", minx, maxx, miny, maxy, 61 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Caffyns\nHeanton\nDown", minx, maxx, miny, maxy, 62 );

    plend();
    exit( 0 );
}
示例#17
0
void
plot1( int do_test )
{
    int   i;
    PLFLT xmin, xmax, ymin, ymax;

    for ( i = 0; i < 60; i++ )
    {
        x[i] = xoff + xscale * ( i + 1 ) / 60.0;
        y[i] = yoff + yscale * pow( x[i], 2. );
    }

    xmin = x[0];
    xmax = x[59];
    ymin = y[0];
    ymax = y[59];

    for ( i = 0; i < 6; i++ )
    {
        xs[i] = x[i * 10 + 3];
        ys[i] = y[i * 10 + 3];
    }

// Set up the viewport and window using PLENV. The range in X is
// 0.0 to 6.0, and the range in Y is 0.0 to 30.0. The axes are
// scaled separately (just = 0), and we just draw a labelled
// box (axis = 0).
//
    plcol0( 1 );
    plenv( xmin, xmax, ymin, ymax, 0, 0 );
    plcol0( 2 );
    pllab( "(x)", "(y)", "#frPLplot Example 1 - y=x#u2" );

// Plot the data points

    plcol0( 4 );
    plpoin( 6, xs, ys, 9 );

// Draw the line through the data

    plcol0( 3 );
    plline( 60, x, y );

// xor mode enable erasing a line/point/text by replotting it again
// it does not work in double buffering mode, however

    if ( do_test && test_xor )
    {
#ifdef PL_HAVE_NANOSLEEP
        PLINT           st;
        struct timespec ts;
        ts.tv_sec  = 0;
        ts.tv_nsec = 50000000;
        plxormod( 1, &st ); // enter xor mode
        if ( st )
        {
            for ( i = 0; i < 60; i++ )
            {
                plpoin( 1, x + i, y + i, 9 );   // draw a point
                nanosleep( &ts, NULL );         // wait a little
                plflush();                      // force an update of the tk driver
                plpoin( 1, x + i, y + i, 9 );   // erase point
            }
            plxormod( 0, &st );                 // leave xor mode
        }
#else
        printf( "The -xor command line option can only be exercised if your "
            "system\nhas nanosleep(), which does not seem to happen.\n" );
#endif
    }
}
示例#18
0
int
main(int argc, char *argv[])
{
    int i, j;
    PLFLT dtr, theta, dx, dy, r;
    char text[4];
    static PLFLT x0[361], y0[361];
    static PLFLT x[361], y[361];

    dtr = PI / 180.0;
    for (i = 0; i <= 360; i++) {
	x0[i] = cos(dtr * i);
	y0[i] = sin(dtr * i);
    }

/* Parse and process command line arguments */

    (void) plparseopts(&argc, argv, PL_PARSE_FULL);

/* Initialize plplot */

    plinit();

/* Set up viewport and window, but do not draw box */

    plenv(-1.3, 1.3, -1.3, 1.3, 1, -2);
    for (i = 1; i <= 10; i++) {
	for (j = 0; j <= 360; j++) {
	    x[j] = 0.1 * i * x0[j];
	    y[j] = 0.1 * i * y0[j];
	}

    /* Draw circles for polar grid */

	plline(361, x, y);
    }

    plcol0(2);
    for (i = 0; i <= 11; i++) {
	theta = 30.0 * i;
	dx = cos(dtr * theta);
	dy = sin(dtr * theta);

    /* Draw radial spokes for polar grid */

	pljoin(0.0, 0.0, dx, dy);
	sprintf(text, "%d", ROUND(theta));

    /* Write labels for angle */

/* Slightly off zero to avoid floating point logic flips at 90 and 270 deg. */
	if (dx >= -0.00001)
	    plptex(dx, dy, dx, dy, -0.15, text);
	else
	    plptex(dx, dy, -dx, -dy, 1.15, text);
    }

/* Draw the graph */

    for (i = 0; i <= 360; i++) {
	r = sin(dtr * (5 * i));
	x[i] = x0[i] * r;
	y[i] = y0[i] * r;
    }
    plcol0(3);
    plline(361, x, y);

    plcol0(4);
    plmtex("t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh");

/* Close the plot at end */

    plend();
    exit(0);
}
示例#19
0
void
plot4(void)
{
    int i, j;
    PLFLT dtr, theta, dx, dy, r;
    char text[3];
    PLFLT x0[361], y0[361];
    PLFLT x[361], y[361];

    dtr = PI / 180.0;
    for (i = 0; i <= 360; i++) {
	x0[i] = cos(dtr * i);
	y0[i] = sin(dtr * i);
    }

/* Set up viewport and window, but do not draw box */

    plenv(-1.3, 1.3, -1.3, 1.3, 1, -2);
    for (i = 1; i <= 10; i++) {
	for (j = 0; j <= 360; j++) {
	    x[j] = 0.1 * i * x0[j];
	    y[j] = 0.1 * i * y0[j];
	}

/* Draw circles for polar grid */

	plline(361, x, y);
    }

    plcol0(2);
    for (i = 0; i <= 11; i++) {
	theta = 30.0 * i;
	dx = cos(dtr * theta);
	dy = sin(dtr * theta);

/* Draw radial spokes for polar grid */

	pljoin(0.0, 0.0, dx, dy);
	sprintf(text, "%d", ROUND(theta));

/* Write labels for angle */

/* Slightly off zero to avoid floating point logic flips at 90 and 270 deg. */
	if (dx >= -0.00001)
	    plptex(dx, dy, dx, dy, -0.15, text);
	else
	    plptex(dx, dy, -dx, -dy, 1.15, text);
    }

/* Draw the graph */

    for (i = 0; i <= 360; i++) {
	r = sin(dtr * (5 * i));
	x[i] = x0[i] * r;
	y[i] = y0[i] * r;
    }
    plcol0(3);
    plline(361, x, y);

    plcol0(4);
    plmtex("t", 2.0, 0.5, 0.5,
	   "#frPLplot Example 3 - r(#gh)=sin 5#gh");
    plflush();
}
/*
 * Plot specified x/y coordinates, x as int32_t and y as float, with an arbitrary number
 * of separate lines, as lines and/or points.
 * Output is PDF file, location specified by 'fileName'.
 */
int plplotLines(
    PlplotSetup *setup,
    uint32_t numSamples,	/* size of ix[] and fy[] arrays */
    uint32_t numLines,		/* size of lineDef[] array */
    int32_t *ix,			/* numSamples */
    LineDef *lineDef,		/* numLines */
    const char *graphName,
    const char *fileName,
    bool plotPoints,		/* true: plot points */
    bool plotLine,			/* true: plot line */
    bool skipTrailZeroes)	/* don't plot zero Y values at end of graph */
{
    if(setup == NULL) {
        printf("***plplotLine: setup required\n");
        return -1;
    }

    char tmpFile[TEMP_FN_LEN];
    makeTempFile(tmpFile, TEMP_FN_LEN);

    PLFLT fx[numSamples];
    PLFLT minX = setup->minX;
    PLFLT maxX = setup->maxX;
    PLFLT minY = setup->minY;
    PLFLT maxY = setup->maxY;

    for(uint32_t dex=0; dex<numSamples; dex++) {
        fx[dex] = ix[dex];
    }

    const char *yName = "";
    if(setup->yAxisName) {
        yName = setup->yAxisName;
    }
    const char *xName = "";
    if(setup->xAxisName) {
        xName = setup->xAxisName;
    }

    plsdev ("psc");

    /* standard: background white, foreground (axes, labels, etc.) black */
    plscolbg(PLOT_WHITE);
    plscol0(1, PLOT_BLACK);

    plsfnam(tmpFile);
    plsdiori(1.0);						// portrait
    plinit();
    plenv(minX, maxX, minY, maxY, 0, 0);
    pllab(xName, yName, graphName);

    for(uint32_t dex=0; dex<numLines; dex++) {
        uint32_t thisSamples = numSamples;
        if(skipTrailZeroes) {
            while((lineDef[dex].fy[thisSamples-1] == 0.0) && (thisSamples > 0)) {
                thisSamples--;
            }
            if(thisSamples == 0) {
                printf("***plplotLines: Warning: line with all zeroes skipped\n");
                continue;
            }
        }
        plotOneLine(thisSamples, fx,  &lineDef[dex], plotPoints, plotLine);
    }

    plend();

    int ourRtn = psToPdf(tmpFile, fileName);
    unlink(tmpFile);
    return ourRtn;
}
/*
 * Plot a histogram of prebinned data. X values are int32_t's, and the corresponding
 * Y values - the counts for each X - are uint32_t's.
 */
int plplotBins(
    uint32_t numBins,
    const int32_t *x,			/* numBins of X values, monotonically increasing */
    const uint32_t *y,			/* numBins of Y values for each associated X */
    const char *graphName,
    const char *fileName,
    const char *xAxisName,		/* optional */
    const char *yAxisName)		/* optional */
{
    char tmpFile[TEMP_FN_LEN];
    makeTempFile(tmpFile, TEMP_FN_LEN);

    PLINT totalBins = numBins + 2;

    /* PLFLT array of sample values */
    PLFLT *xf = (PLFLT *)malloc(totalBins * sizeof(PLFLT));

    /* these two will have Y values of zero */
    xf[0] = x[0] - 1;
    xf[totalBins - 1] = x[numBins-1] + 1;

    const int32_t *ip = x;
    PLFLT *op = xf + 1;
    for(uint32_t dex=0; dex<numBins; dex++) {
        *op++ = *ip++;
    }

    /* PLFLT array of bins */
    PLFLT *yf = (PLFLT *)malloc(totalBins * sizeof(PLFLT));
    yf[0] = 0.0;
    yf[totalBins - 1]  = 0.0;
    const uint32_t *uip = y;
    op = yf + 1;
    for(uint32_t dex=0; dex<numBins; dex++) {
        *op++ = *uip++;
    }

    /* get max Y value */
    uint32_t maxY = 0;
    uip = y;
    for(uint32_t dex=0; dex<numBins; dex++) {
        uint32_t currY = *uip++;
        if(currY > maxY) {
            maxY = currY;
        }
    }

    const char *yName = yAxisName ? yAxisName : "";
    const char *xName = xAxisName ? xAxisName : "";

#if	HIST_COLOR
    plsdev ("psc");
    plscolbg(255, 255, 255);			/* white background */
#else
    plsdev ("ps");
#endif
    plsfnam(tmpFile);
    plsdiori(1.0);						// portrait
    plinit();
    plenv(xf[0], xf[totalBins - 1], 0, maxY, 0, 0);

#if	HIST_COLOR
    /* can we alter colors of lines and the spaces inside the histograms? */
    plscolbg(255, 0, 0);				/* red background */
    plscol0(1, 255, 0, 0);				/* red foreground - no effect */
#endif

    pllab(xName, yName, graphName);

    plbin(totalBins, xf, yf, PL_BIN_CENTRED);
    plend();

    free(xf);
    free(yf);

    int ourRtn = psToPdf(tmpFile, fileName);
    unlink(tmpFile);
    return ourRtn;
}
/*
 * Plot a histogram showing the number of occurences of each possible
 * value of 'samples'.
 */
int plplotHist(
    const int32_t *samples,
    uint32_t numSamples,
    const char *graphName,
    const char *fileName,
    const char *xAxisName,		/* optional */
    const char *yAxisName)		/* optional */
{
    char tmpFile[TEMP_FN_LEN];
    makeTempFile(tmpFile, TEMP_FN_LEN);

    /* First determine the range, i.e. the number of bins */
    int32_t minSamp = samples[0];
    int32_t maxSamp = samples[0];
    for(uint32_t dex=0; dex<numSamples; dex++) {
        int32_t s = samples[dex];
        if(s < minSamp) {
            minSamp = s;
        }
        if(s > maxSamp) {
            maxSamp = s;
        }
    }

    /* When we specify PL_BIN_CENTRED, the min and max values are half the normal width */
    minSamp--;
    maxSamp++;

    PLINT numBins = maxSamp - minSamp + 1;

    /* One array containing the sample values, x */
    PLFLT *x = (PLFLT *)malloc(numBins * sizeof(PLFLT));
    int32_t binNum = minSamp;
    for(uint32_t dex=0; dex<(uint32_t)numBins; dex++) {
        x[dex] = binNum++;
    }

    /* Now make and fill the bins proper */
    PLFLT *y = (PLFLT *)malloc(numBins * sizeof(PLFLT));
    for(uint32_t dex=0; dex<(uint32_t)numBins; dex++) {
        y[dex] = 0;
    }
    PLFLT maxY = 0.0;

    for(uint32_t dex=0; dex<numSamples; dex++) {
        int32_t s = samples[dex];
        PLFLT *yp = y + s - minSamp;
        *yp += 1.0;
        if(*yp > maxY) {
            maxY = *yp;
        }
    }

    const char *yName = yAxisName ? yAxisName : "";
    const char *xName = xAxisName ? xAxisName : "";

#if	HIST_COLOR
    plsdev ("psc");
    plscolor(1);
    plscolbg(255, 255, 255);			/* white background */
#else
    plsdev ("ps");
#endif
    plsfnam(tmpFile);
    plsdiori(1.0);						// portrait
    plinit();
    plenv(minSamp, maxSamp, 0, maxY, 0, 0);

#if	HIST_COLOR
    /* can we alter colors of lines and the spaces inside the histograms? */
    plscolbg(255, 0, 0);				/* red background */
    plscol0(1, 255, 0, 0);				/* red foreground - no effect */
#endif

    pllab(xName, yName, graphName);

    plbin(numBins, x, y, PL_BIN_CENTRED);
    plend();

    free(x);
    free(y);

    int ourRtn = psToPdf(tmpFile, fileName);
    unlink(tmpFile);
    return ourRtn;
}
示例#23
0
int
main( int argc, const char *argv[] )
{
    int          i;
    PLFLT        dtr, theta, dx, dy, r, offset;
    char         text[4];
    static PLFLT x0[361], y0[361];
    static PLFLT x[361], y[361];

    dtr = M_PI / 180.0;
    for ( i = 0; i <= 360; i++ )
    {
        x0[i] = cos( dtr * i );
        y0[i] = sin( dtr * i );
    }

// Parse and process command line arguments

    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

// Set orientation to portrait - note not all device drivers
// support this, in particular most interactive drivers do not
    plsori( 1 );

// Initialize plplot

    plinit();

// Set up viewport and window, but do not draw box

    plenv( -1.3, 1.3, -1.3, 1.3, 1, -2 );
    // Draw circles for polar grid
    for ( i = 1; i <= 10; i++ )
    {
        plarc( 0.0, 0.0, 0.1 * i, 0.1 * i, 0.0, 360.0, 0.0, 0 );
    }

    plcol0( 2 );
    for ( i = 0; i <= 11; i++ )
    {
        theta = 30.0 * i;
        dx    = cos( dtr * theta );
        dy    = sin( dtr * theta );

        // Draw radial spokes for polar grid

        pljoin( 0.0, 0.0, dx, dy );
        sprintf( text, "%d", ROUND( theta ) );

        // Write labels for angle

        if ( theta < 9.99 )
        {
            offset = 0.45;
        }
        else if ( theta < 99.9 )
        {
            offset = 0.30;
        }
        else
        {
            offset = 0.15;
        }

// Slightly off zero to avoid floating point logic flips at 90 and 270 deg.
        if ( dx >= -0.00001 )
            plptex( dx, dy, dx, dy, -offset, text );
        else
            plptex( dx, dy, -dx, -dy, 1. + offset, text );
    }

// Draw the graph

    for ( i = 0; i <= 360; i++ )
    {
        r    = sin( dtr * ( 5 * i ) );
        x[i] = x0[i] * r;
        y[i] = y0[i] * r;
    }
    plcol0( 3 );
    plline( 361, x, y );

    plcol0( 4 );
    plmtex( "t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh" );

// Close the plot at end

    plend();
    exit( 0 );
}
示例#24
0
int main(int argc, char **argv)
{
	SNDFILE *file1, *file2;
	SF_INFO info1, info2;
	double *in1, *in2;
	int min_frames, i;
	int like = 0, unlike = 0;
	int total = 0;
	int max1, max2;
	struct fft_average *avg;

	memset(&info1, 0, sizeof(SF_INFO));
	memset(&info2, 0, sizeof(SF_INFO));

	if (argc < 3) {
		printf("compare file1 file2");
		return 1;
	}

	file1 = sf_open(argv[1], SFM_READ, &info1);
	if (!file1) {
		printf("Error opening wave file %s\n", argv[1]);
		exit(1);
	}

	file2 = sf_open(argv[2], SFM_READ, &info2);
	if (!file2) {
		printf("Error opening wave file %s\n", argv[2]);
		sf_close(file2);
		exit(1);
	}

/*
	seconds = (float)info1.frames/(float)info1.samplerate;
	printf("Opened %s\n", argv[1]);
	printf("frames: %d\n", info1.frames);
	printf("samplerate: %d\n", info1.samplerate);
	printf("length (in seconds): %f\n", seconds);
	printf("channels: %d\n", info1.channels);
	printf("format: %x\n", info1.format);
	printf("sections: %d\n", info1.sections);
	printf("seekable: %d\n", info1.seekable);
*/

	in1 = (double *)malloc(sizeof(double) * info1.frames);
	if (!in1) {
		printf("Failed to allocate input array\n");
		sf_close(file1);
		sf_close(file2);
		return 1;
	}

	in2 = (double *)malloc(sizeof(double) * info2.frames);
	if (!in2) {
		printf("Failed to allocate input array\n");
		free(in1);
		sf_close(file1);
		sf_close(file2);
		return 1;
	}

	normalize_wave(file1, in1, info1.frames, info1.channels);
	normalize_wave(file2, in2, info2.frames, info2.channels);
	max1 = shift_wave(in1, info1.frames);
	max2 = shift_wave(in2, info2.frames);
//	max1 = find_max(in1, info1.frames);
//	max2 = find_max(in2, info2.frames);
/*
	shift_wave(in1, info1.frames);
	shift_wave(in2, info2.frames);
*/
	plsdev("xwin");
	plinit();
	plenv(0.0f, info1.frames, -1, 1, 0, 0);
	for (i = 0; i < info1.frames; i++) {
		PLFLT x;
		PLFLT sample = i;
		if (in1[i] == -2)
			continue;
		x = in1[i];
		plpoin(1, &sample, &x, 1);		
	}
	plend();
	
	plsdev("xwin");
	plinit();
	plenv(0.0f, info2.frames, -1, 1, 0, 0);
	for (i = 0; i < info2.frames; i++) {
		PLFLT x;
		PLFLT sample = i;

		if (in2[i] == -2)
			continue;
		x = in2[i];
		plpoin(1, &sample, &x, 1);		
	}
	plend();

	avg = do_fft(in1, max1);
	printf("yavg = %f, xavg=%f\n", avg->yavg, avg->xavg);
	free(avg);
	avg = do_fft(in2, max2);
	printf("yavg = %f, xavg=%f\n", avg->yavg, avg->xavg);
	free(avg);
	min_frames = (info1.frames < info2.frames) ? info1.frames : info2.frames;

	for (i = 0; i < min_frames; i++) {
		double diff;

		if (in1[i] == -2 || in2[i] == -2)
			break;

		if (in1[i] > in2[i])
			diff = in1[i] - in2[i];
		else
			diff = in2[i] - in1[i];

		if (diff <= 0.05)
			like++;
		else
			unlike++;
		total++;
	}

	printf("Minimum frames: %d\n", min_frames);
	printf("Total compares: %d\n", total);
	printf("Like: %d\n", like);
	printf("Unlike: %d\n", unlike);
	printf("Percentage alike: %f\n", ((double)like / (double)total) * 100);
	printf("Max1: %d\n", max1);
	printf("Max2: %d\n", max2);

	free(in1);
	free(in2);
	sf_close(file1);
	sf_close(file2);

	return 0;
}
示例#25
0
int
main(int argc, char *argv[])
{
  PLFLT *x, *y, *z, *clev;
  PLFLT *xg, *yg, **zg, **szg;
  PLFLT zmin, zmax, lzm, lzM;
  long ct;
  int i, j, k;
  PLINT alg;
  char ylab[40], xlab[40];
  char *title[] = {"Cubic Spline Approximation",
		   "Delaunay Linear Interpolation",
		   "Natural Neighbors Interpolation",
		   "KNN Inv. Distance Weighted",
		   "3NN Linear Interpolation",
		   "4NN Around Inv. Dist. Weighted"};

  PLFLT opt[] = {0., 0., 0., 0., 0., 0.};

  xm = ym = -0.2;
  xM = yM = 0.8;

  plMergeOpts(options, "x21c options", NULL);
  plparseopts(&argc, argv, PL_PARSE_FULL);

  opt[2] = wmin;
  opt[3] = (PLFLT) knn_order;
  opt[4] = threshold;

  /* Initialize plplot */

  plinit();

  create_data(&x, &y, &z, pts); /* the sampled data */
  zmin = z[0];
  zmax = z[0];
  for (i=1; i<pts; i++) {
    if (z[i] > zmax)
      zmax = z[i];
    if (z[i] < zmin)
      zmin = z[i];
  }

  create_grid(&xg, xp, &yg, yp); /* grid the data at */
  plAlloc2dGrid(&zg, xp, yp); /* the output grided data */
  clev = (PLFLT *) malloc(nl * sizeof(PLFLT));

  sprintf(xlab, "Npts=%d gridx=%d gridy=%d", pts, xp, yp);
  plcol0(1);
  plenv(xm, xM, ym, yM, 2, 0);
  plcol0(15);
  pllab(xlab, "", "The original data");
  plcol0(2);
  plpoin(pts, x, y, 5);
  pladv(0);

  plssub(3,2);

  for (k=0; k<2; k++) {
    pladv(0);
    for (alg=1; alg<7; alg++) {

      ct = clock();
      plgriddata(x, y, z, pts, xg, xp, yg, yp, zg, alg, opt[alg-1]);
      sprintf(xlab, "time=%d ms", (clock() - ct)/1000);
      sprintf(ylab, "opt=%.3f", opt[alg-1]);

      /* - CSA can generate NaNs (only interpolates?!).
       * - DTLI and NNI can generate NaNs for points outside the convex hull
       *      of the data points.
       * - NNLI can generate NaNs if a sufficiently thick triangle is not found
       *
       * PLplot should be NaN/Inf aware, but changing it now is quite a job...
       * so, instead of not plotting the NaN regions, a weighted average over
       * the neighbors is done.
       */

      if (alg == GRID_CSA || alg == GRID_DTLI || alg == GRID_NNLI || alg == GRID_NNI) {
	int ii, jj;
	PLFLT dist, d;

	for (i=0; i<xp; i++) {
	  for (j=0; j<yp; j++) {
	    if (isnan(zg[i][j])) { /* average (IDW) over the 8 neighbors */

	      zg[i][j] = 0.; dist = 0.;

	      for (ii=i-1; ii<=i+1 && ii<xp; ii++) {
		for (jj=j-1; jj<=j+1 && jj<yp; jj++) {
		  if (ii >= 0 && jj >= 0 && !isnan(zg[ii][jj])) {
		    d = (abs(ii-i) + abs(jj-j)) == 1 ? 1. : 1.4142;
		    zg[i][j] += zg[ii][jj]/(d*d);
		    dist += d;
		  }
		}
	      }
	      if (dist != 0.)
		zg[i][j] /= dist;
	      else
		zg[i][j] = zmin;

	    }
	  }
	}
      }

      plMinMax2dGrid(zg, xp, yp, &lzM, &lzm);

      plcol0(1);
      pladv(alg);

      if (k == 0) {

	lzm = MIN(lzm, zmin);
	lzM = MAX(lzM, zmax);
	for (i=0; i<nl; i++)
	  clev[i] = lzm + (lzM-lzm)/(nl-1)*i;

	plenv0(xm, xM, ym, yM, 2, 0);
	plcol0(15);
	pllab(xlab, ylab, title[alg-1]);
	plshades(zg, xp, yp, NULL, xm, xM, ym, yM,
		 clev, nl, 1, 0, 1, plfill, 1, NULL, NULL);
	plcol0(2);
      } else {

	for (i=0; i<nl; i++)
	  clev[i] = lzm + (lzM-lzm)/(nl-1)*i;

	cmap1_init();
	plvpor(0.0, 1.0, 0.0, 0.9);
	plwind(-1.0, 1.0, -1.0, 1.5);
	/*
	 * For the comparition to be fair, all plots should have the
	 * same z values, but to get the max/min of the data generated
	 * by all algorithms would imply two passes. Keep it simple.
	 *
	 * plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60);
	 */

	plw3d(1., 1., 1., xm, xM, ym, yM, lzm, lzM, 30, -60);
	plbox3("bnstu", ylab, 0.0, 0,
	       "bnstu", xlab, 0.0, 0,
	       "bcdmnstuv", "", 0.0, 4);
	plcol0(15);
	pllab("", "", title[alg-1]);
	plot3dc(xg, yg, zg, xp, yp, DRAW_LINEXY | MAG_COLOR | BASE_CONT, clev, nl);
      }
    }
  }

  plend();

  free_data(x, y, z);
  free_grid(xg, yg);
  free((void *)clev);
  plFree2dGrid(zg, xp, yp);
}